通道湍流换热强化的数值与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题是当今世界面临的首要问题,而近年来我国的能源问题尤为突出。强化传热技术可以通过提高换热器的热量传递性能而提高能源利用效率,从而达到节约能源的目的。本文首先分析了低雷诺数及充分发展湍流的换热强化机理,然后在此基础上提出和研究了一种用于板式换热器的新型强化换热板片,并对管内二维粗糙元和微肋管的湍流换热强化进行了深入的研究。
     低雷诺数和充分发展湍流换热强化分析指出,通道层流换热横截面上的温降比较均匀,因此要在整个截面内增加横向速度来强化换热,大尺度纵向涡是一种很好的同功耗换热强化方法(由纵向涡强化后的流动是低雷诺数湍流流动);充分发展湍流(Re>10000)的温降集中在壁面附近,因此要在壁面设置粗糙元增加壁面湍流度来强化换热。当粗糙元高度小于粘性底层厚度时几乎不强化换热也不增加阻力,而大于5倍粘性底层厚度后,强化换热不再增加但阻力迅速增加,粗糙元为2~3倍粘性底层厚度时同功耗条件下换热强化最佳。
     提出了用于板式换热器的新型不连续交叉肋板片。数值分析和流动显示实验表明,不连续交叉肋板片间产生了包括前纵向涡、后纵向涡及主纵向涡等一系列纵向涡,揭示了其强化换热的物理机制。不连续交叉肋板片比目前常用的人字形板片同功耗换热强化25%以上。用数值计算和流动显示实验方法对肋参数对流动和换热的影响进行了分析,给出了不连续交叉肋板片的最佳结构参数。
     用二维粗糙元管进一步实验研究了充分发展湍流换热强化机理。二维粗糙元管与光滑圆管的努谢尔数比随雷诺数的增加存在极值。粗糙元和粘性底层高度定量分析表明,粗糙元为2~3倍粘性底层厚度时同功耗换热强化最佳。
     微肋管的数值和实验研究表明,微肋管存在强化换热临界雷诺数,把微肋管的换热分为强化区和非强化区。对于普朗特数很大的流体,因为导热底层厚度的减小,使其强化换热临界雷诺数减小。在非强化区内,努谢尔数对普朗特数的依赖关系约为0.3次方,而在强化区内约为0.56次方。螺旋微肋在Re>30000后通过增强肋表面的湍流度强化换热,直微肋则不能增加湍流度,从而也不能强化换热(Re=10000~90000)。
Worldwide energy shortage is the key to the development of modern society and recently energy problem becomes especially urgent in our country China. Enhanced heat transfer techniques can raise the effectiveness of the heat exchangers and consequently save energy. Following the analysis of the enhanced heat transfer for low Reynolds number turbulent and fully turbulent flows a new type of enhanced plate for plate heat exchanger is proposed, the fully turbulent heat transfer enhancement in two dimensional roughness and micro-fin tubes are also investigated in detail.
     The analysis of heat transfer mechanism for the laminar duct flow shows that the radial velocity in the whole cross section is needed to enhance the heat transfer because the thermal resistance in the whole cross section of the duct must took into account. Therefore, to generate large scale longitudinal vortex is a good enhancement technique. For fully turbulent flow (Re>10000), the roughened wall via the increase of the turbulence intensity near the wall can efficiently enhance heat transfer since the thermal resistance in the wall region is dominant.
     The roughness has no influence on the heat transfer coefficient and flow friction when the roughness is inside the viscous sublayer. With increasing the roughness height, heat transfer is no longer enhanced, but the flow friction begins to increase rapidly, when it is over 5 times of the viscous sublayer. Analyses demonstrate that the optimal roughness for maximizing the performance of fully developed turbulence heat transfer is 2~3 times as high as the viscous sublayer.
     Based on the above analysis, a discontinuous cross rib plate for plate heat exchanger is proposed. Numerical analysis and flow visualization show that the front vortex, the back vortex and the main vortex are formed between the discontinuous cross rib plates. Numerical analysis and the experimental measurement also show that the heat transfer enhancement at the given pumping power for the discontinuous cross rib plate can be 25% higher than the currently popularly used chevron type plate. Based on the investigation about the influence of the rib parameters on the flow and heat transfer through the numerical simulations and the flow visualization, the optimum rib parameters are proposed.
     The mechanisms of the turbulent heat transfer are further investigated by experimentally measuring the heat transfer in two dimensional roughness tubes. There exists a maximum enhancement ratio of heat transfer with increasing Reynolds number for the fixed roughness height. Quantitative analysis shows that when the roughness is 2~3 times of the viscous sublayer, the enhancement ratio of heat transfer at the fixed pumping power is the highest.
     The numerical and experimental investigations of the micro-fin tube indicate that there exists a critical Reynolds number for heat transfer enhancement, which divides heat transfer into the enhancement and non-enhancement regions on a basis of Reynolds number. The critical Reynolds number for large Prandtl number fluid is lower than that for small Prandtl number fluid due to the height of conduction sublayer is smaller for large Prandtl number fluid. In the non-enhancement region, the Prandtl number dependence n of the Nusselt number in the form of Nu∝Prn is about 0.3, while in the enhancement region, n is about 0.56. Helical micro-fins can greatly improve the performance of the turbulence heat transfer due to the enhanced turbulence intensity near the tube surface at Re>30000. In contrast with helical micro-fins, the straight micro-fins have basically no enhancement effect on heat transfer at the Reynolds numbers from 10000 to 80000.
引文
[1] Bergles A E. ExHFT for fourth generation heat transfer technology. Exp. Thermal Fluid Sci., 2002, 26(2-4): 335-344.
    [2] Bergles A E. The implications and challenges of enhanced heat transfer for the chemical process industries. Trans. IChemE, 2001, 79(A4): 437-444.
    [3]中华人民共和国国务院新闻办公室.《中国的能源状况与政策》白皮书. 2007.
    [4]宣能啸.我国能效问题分析.节能, 2004, 10: 3-7.
    [5] Meng J A, Li Z X. Study on new enhanced tube used in heat exchangers of water chiller system. Daikin project report, 2005.
    [6] Li X W. Heat transfer enhancement mechanism and fouling effect in SD tube: flow visualization, heat transfer and pressure drop. Daikin internship report, 2005.
    [7]钱颂文.换热器设计手册.北京:化学工业出版社, 2001.
    [8]许伟.几种典型翅片传热及阻力特性的数值研究与分析[硕士学位论文].清华大学工程力学系, 2005.
    [9]任效明.百叶窗翅片和针肋的对流换热特性的数值研究[硕士学位论文].清华大学工程力学系, 2005.
    [10]杨崇麟.板式换热器工程设计手册.北京:机械工业出版社, 1995.
    [11] Thonon B, Vidil R, Marvillet C. Recent research and developments in plate heat exchangers. J. Enhanced Heat Transfer, 1995, 2(1-2): 149-155.
    [12] Ayub Z H. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transfer Eng., 2003, 24(5): 3-16.
    [13] Tribbe C, Muller Steinhagen H M. Gas/liquid flow in plate-and-frame heat exchangers-partⅠ: pressure drop measurement. Heat Transfer Eng., 2001, 22(1): 5-11.
    [14] Tribbe C, Muller Steinhagen H M. Gas/liquid flow in plate-and-frame heat exchangers-partⅡ: two-phase multiplier and flow pattern analysis. Heat Transfer Eng., 2001, 22(1): 12-21.
    [15] http://www.alfalaval.com
    [16]程宝华,李先瑞.板式换热器及换热装置技术应用手册.北京:中国建筑工业出版社, 2005.
    [17]王松汉.板翅式换热器.北京:化学工业出版社, 1984.
    [18]凯斯W M,伦敦A L.紧凑式热交换器.宣益民,张后雷译.北京:科学出版社, 1997.
    [19] Webb R L. Principles of Enhanced Heat Transfer. New York: John Wiley, 1994.
    [20]顾维藻,神家锐,马重芳,等.强化传热.北京:科学出版社, 1990.
    [21] Muley A. Heat transfer and pressure drop in plate heat exchangers. [PhD Thesis]. University of Cincinnati, 1997.
    [22] Witry A, Al-Hajeri M H. Fluid flow and heat transfer investigations in shell and dimple heat exchangers. Int. J. Energy Research, 2005, 29(5): 427-438.
    [23]曲宁.板式换热器传热与流动分析[硕士学位论文].山东大学, 2005.
    [24]赵镇南.板式换热器人字波纹倾角对阻力及传热性能的影响.石油化工设备, 2001, 30(S1): 1-3.
    [25] Focke W W. Selecting optimum plate heat exchanger surface patterns. ASME J. Heat Transfer, 1986, 108: 153-160.
    [26] Gut J A W, Fernandes R, Pinto J M, et al. Thermal model validation of plate heat exchangers with generalized configurations. Chemical Eng. Sci., 2004, 59(21): 4591-4600.
    [27] Gut J A W, Pinto J M. Optimal configuration design for plate heat exchangers. Int. J. Heat Mass Transfer, 2004, 47(22): 4833-4848.
    [28] Rao B P, Das S K. An experimental study on the influence of flow maldistribution on the pressure drop across a plate heat exchanger. ASME J. Fluids Eng., 2004, 126(4): 680-691.
    [29] Rao B P, Sunden B, Das S K. An experimental and theoretical investigation of the effect of flow maldistribution on the thermal performance of plate heat exchangers. ASME J. Fluids Eng., 2005, 127(3): 332-343.
    [30] Shah R K, Focke W W. Plate heat exchangers and their design theory. Shah R K, Subbarao E C, Mashelkar R A. Heat exchanger equipment design. Washington: Hemisphere, 1998.
    [31] Gut J A W, Pinto J M. Modeling of plate heat exchangers with generalized configurations. Int. J. Heat Mass Transfer, 2003, 46: 2571-2585.
    [32] Shah R K. Advances in science and technology of compact heat exchangers. Heat Transfer Eng., 2006, 27(5): 3-22.
    [33] Focke W W, Knibbe P G. Flow visualization in parallel-plate ducts with corrugated walls. J. F. M., 1986, 165: 73-77.
    [34] Focke W W, Zachariades J, Oliver I. The effect of the corrugation inclination angle on the thermo hydraulic performance of plate heat exchangers. Int. J. Heat Mass Transfer, 1985, 28(8): 1469-1479.
    [35] Heggs P J, Sandham P, Hallam R A, et al. Local transfer coefficients in corrugated plate heat exchanger channels. Trans. IChemE, 1997, 175: 641-645.
    [36] Stasiek J, Collins M W, Ciofalo M, et al. Investigation of flow and heat transfer in corrugated passages-Ⅰexperimental results. Int. J Heat Mass Transfer, 1996, 39(1): 149-164.
    [37] Ciofalo M, Stasiek J, Collins M W. Investigation of flow and heat transfer in corrugated passages-Ⅱnumerical simulations. Int. J Heat Mass Transfer, 1996, 39(1): 165-192.
    [38] Ciofalo M, Piazza I D, Stasiek J A. Investigation of flow and heat trasnfer in corrugated-undulated plate heat exchangers. Heat Mass Transfer, 2000, 36: 449-462.
    [39] Croce G, Agaro P D. Numerical analysis of forced convection in plate and frame heat exchangers. Int. J. Numerical Methods Heat Fluid Flow, 2002, 12(6): 756-771.
    [40] Jain S, Joshi A, Bansal P K. A new approach to numerical simulation of small sized plate heat exchangers with chevron plates. ASME J. Heat Transfer, 2007, 129: 291-297.
    [41] Metwally H M, Manglik R M. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels. Int. J. Heat Mass Transfer, 2004, 47(10-11): 2283-2292.
    [42] Rush T A, Newell T A, Jacobi A M. An experimental study of flow and heat transfer in sinusoidal wavy passages. Int. J. Heat Mass Transfer, 1999, 42(9): 1541-1553.
    [43] Comini G, Nonino C, Savino S. Effect of space ration and corrugation angle on convection enhancement in wavy channels. Int. J. Numerical Method Heat Fluid Flow, 2003, 13(4): 500-519.
    [44] Manglik R M, Ding J. Laminar flow heat transfer to viscous power-law fluids in doube-sine ducts. Int. J. Heat Mass Transfer, 1997, 40(6): 1379-1390.
    [45] Greiner M, Fischer P F, Tufo H M, et al. Three-dimensional simulations of enhanced heat trasnfer in a flat passage downstream from a grooved channel. ASME J. Heat Transfer, 2002, 124: 169-176.
    [46] Gschwind P, Regele A, Kottke V. Sinusoidal wavy channels with Taylor- Goertler vortices. Exp. Thermal Fluid Sci., 1995, 11: 270-275.
    [47] Greiner M, Fischer P F, Tufo H M. Two-dimensional simulations of enhanced heat transfer in an intermittently grooved channel. ASME J. Heat Transfer, 2002, 124: 538-545.
    [48] Tauscher R, Mayinger F. Heat transfer enhancement in a plate heat exchanger with rib-roughened surfaces. Kakac S, Bergles A. E, Mayinger F, Yuncu H edit. Heat transfer enhancement of heat exchangers. Netherlands: Kluwer Academic Publishers, 1999.
    [49] Sunden B. Heat transfer and fluid flow in rib-roughened rectangular ducts. Kakac S, Bergles A. E, Mayinger F, Yuncu H edit. Heat transfer enhancement of heat exchangers. Netherlands: Kluwer Academic Publishers, 1999.
    [50] Sunden B. Flow and heat transfer mechanism in plate-and-frame heat exchangers. Kakac S, Bergles A. E, Mayinger F, Yuncu H edit. Heat transfer enhancement of heat exchangers. Netherlands: Kluwer Academic Publishers, 1999.
    [51] Olsson C O, Sunden B. Experimental study of flow and heat transfer in rib-roughened rectangular channels. Exp. Thermal Fluid Sci., 1998, 16(4): 349-365.
    [52] Sunden B, Faghri M. Computer simulations in compact heat exchangers. South Hampton: Computational Mechanics, 1998.
    [53] Islamoglu Y, Parmaksizoglu C. Comparison of CFD simulation to experiment for convection heat transfer in an enhanced channel. Heat Transfer Eng., 2006, 27(9): 53-59.
    [54] Tanda G. Heat transfer in rectangular channels with transverse and V-shaped broken ribs. Int. J. Heat Mass Transfer, 2004, 47: 229-243.
    [55] Smotrys M L, Ge H, Jacobi A M, et al. Flow and heat transfer behavior for a vortex-enhanced interrupted fin. ASME J. Heat Transfer, 2003, 125: 788-794.
    [56] Islamoglu Y, Parmaksizoglu C. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Applied Thermal Eng., 2003, 23: 979-987.
    [57] Zimmerer C, Gschwind P, Gaiser G, et al. Comparison of heat and mass trnasfer in different heat exchanger geometries with corrugated walls. Exp. Thermal Fluid Sci., 2002, 26: 269-273.
    [58]钱颂文,朱冬生,李庆领,等.管式换热器强化传热技术.北京:化学工业出版社, 2002.
    [59] Hong S W, Bergles A E. Augmentation of laminar flow heat transfer in tubes by means of twisted-tape inserts. ASME J. Heat Transfer, 1976, 98: 251-256.
    [60] Date A W. Flow in tubes containing twisted tapes. Heating Ventilating Eng., 1973, 47: 240-248.
    [61] Wang L, Sunden B. Performance comparison of some tube inserts. Int. Comm. Heat Mass Transfer, 2002, 29(1): 45-56.
    [62] Manglik R M. Heat transfer enhancement of in-tube flows in process heat exchangers by means of twisted-tape inserts [PhD Thesis]. Rensselaer Polytechnic Institute, 1991.
    [63] Soliman H M, Chau T S, Trupp A C. Analysis of laminar heat transfer in internally finned tubes with Uniform outside wall temperature. J. Heat Transfer, 1980, 102: 598-604.
    [64] Al-Sarkhi A, Abu-Nada E. Characteristics of forced convection heat transfer in vertical internally finned tube. Int. J. Heat Mass Transfer, 2005, 32: 557-564.
    [65] Yu B, Nie J H, Wang Q W, et al. Experimental study on the pressure drop and heat transfer characteristics of tubes with internal wave-like longitudinal fins. Heat Mass Transfer, 1999, 35: 65-73.
    [66] Mark E K, David E K. A numerical study of turbulent boundary layer flow over a flat surface with a single dimple. In: Advances in Enhanced Heat Transfer, HTD-Vol. 365/PID-Vol. 4. New York: ASME, 2000.
    [67] Bunker R S, Donnellan K F. Heat transfer and friction factors for flow inside circular tubes with concavity surfaces. ASME J. of Turbomachinery, 2003, 125: 666-672.
    [68] Mahmood G I, Ligrani P M. Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure. Int. J. Heat Mass Transfer, 2002, 45: 2011-2020.
    [69] Won S Y, Zhang Q, Ligrani P M. Comparisons of flow structure above dimpled surfaces with different dimple depths in a channel. Physics of Fluids, 2005, 17: 045105.
    [70] Won S Y, Ligrani P M. Numerical predictions of flow structure and local Nusselt number ratios along and above dimpled surfaces with different dimple depths in a channel. Numerical Heat Transfer Part A, 2004, 46: 549-570.
    [71] Gee D L, Webb R L. Forced convection heat transfer in helically rib-roughened tubes. Int. J. Heat Mass Transfer, 1980, 23: 1127-1136.
    [72] Webb R L, Eckert E R G. Heat transfer and friction in tubes with repeated-rib roughness. Int. J. Heat Mass Transfer, 1971, 14: 601-617.
    [73] Ravigururajan T S, Berlges A E. Optimization of in-tube enhancement for large evaporators and condensers. Energy, 1996, 21(5): 421-432.
    [74] Kalinin E K, Dreitser G A. Heat transfer enhancement in heat exchangers. Hartnett J P, Irvine T F, Cho Y I, Greene G A edit. Advanced in heat transfer, Vol. 31, California: Academic Press, 1998.
    [75] Hishida M, Takase K. Heat transfer coefficient of the ribbed surface. Proceedings of the third ASME/JSME joint thermal engineering conference, Vol. 3. New York: ASME, 1987: 103-110.
    [76] Vicente P G, Garcia A, Viedma A. Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers. Int. J. Heat Mass Transfer, 2004, 47: 671-681.
    [77] Sethumadhavan R, Rao M. R. Turbulent flow friction and heat transfer characteristics of single and multistart spirally enhanced tubes. J. Heat Transfer, 1986, 108: 55-61.
    [78] Zimparov V D, Vulchanov N L, Delov L B. Heat transfer and friction characteristics of spirally corrugated tubes for power plant condensers-1 Experimental investigation and performance evaluation. Int. J. Heat Mass Transfer, 1991, 4: 2187-2197.
    [79] Garcia A, Vicente P G, Viedma A. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers. Int. J. Heat Mass Transfer, 2005, 48: 4640-4651.
    [80] Ravigururajan T S, Berlges A E. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Exp. Therm. Fluid Sci., 1996, 13: 55-70.
    [81] Ravigururajan T S. A comparative study of thermal design correlations for turbulent flow in helical-enhanced tubes. Heat Transfer Eng., 1999, 20: 54-70.
    [82] Fuji K, Itoh N, Innami T, et al. Heat transfer pipe. U.S. Patent, 4044797, assigned to Hitachi Ltd., 1977.
    [83] Brognaux L J, Webb R L, Chamra L M. Single-phase heat transfer in micro-fin tubes. Int. J. Heat Mass Transfer, 1997, 40(18): 4345-4357.
    [84] Jensen M K, Vlakancic A. Experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes. Int. J. Heat Mass Transfer, 1999, 42(7): 1343-1351.
    [85] Chamra L M, Webb R L, Randlett M R. Advanced micro-fin tubes for evaporation. Int. J. Heat Mass Transfer, 1996, 39(9): 1827-1838.
    [86] Chamra L M, Webb R L, Randlett M R. Advanced micro-fin tubes for condensation. Int. J. Heat Mass Transfer, 1996, 39(9): 1839-1846.
    [87] Cavallini A, Censi G, Col D D, et al. Condensation inside and outside smooth and enhanced tubes-a review of recent research. Int. J. Refrigeration, 2003, 26(4): 373-392.
    [88] Valladares O G. Review of in-tube condensation heat transfer correlations for smooth and microfin tubes. Heat Transfer Eng., 2003, 24(4): 6-24.
    [89] Shedd T A, Newell T A. Visualization of two-phase flow through microgrooved tubes for understanding enhanced heat transfer. Int. J. Heat Mass Transfer, 2003, 46(22): 4169-4177.
    [90] Shedd T A, Newell T A, Lee P K. The effects of the number and angle of microgrooves on the liquid film in horizontal annular two-phase flow. Int. J. Heat Mass Transfer, 2003, 46(22): 4179-4189.
    [91] Al-Fahed S F, Ayub Z H, Al-Marafie A M, et al. Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow condition. Exp. Thermal Fluid Sci., 1993, 7(3): 249-253.
    [92] Chiou C B, Wang C C, Lu D C. Single-phase heat transfer and pressure drop characteristics of microfin tubes. Trans. ASHRAE, 1995, 101(2): 1041-1048.
    [93] Wang C C, Chiou C B, Lu D C. Single-phase heat transfer and flow friction correlations for microfin tubes. Int. J. Heat Fluid Flow, 1996, 17 (5):500-508.
    [94] Al-Fahed S F, Chamra L M, Chakroun W. Pressure drop and heat transfer comparison for both microfin tube and twisted-tape inserts in laminar flow. Exp. Thermal Fluid Sci., 1999, 18(4): 323-333.
    [95] Wang H S, Rose J W. Prediction of effective friction factors for single-phase flow in horizontal microfin tubes. Int. J. Refrigeration, 2004, 27(8): 904-913.
    [96] Webb R L, Narayanamurthy R, Thors P. Heat transfer and friction characteristics of internal helical-rib roughness. J. Heat Transfer, 2000, 122: 134-142.
    [97] Liu X Y, Jensen M K. Numerical investigation of turbulent flow and heat transfer in internally finned tubes. J. Enhanced Heat Transfer, 1999, 6: 105-119.
    [98] Bhatia R S, Webb R L. Numerical study of turbulent flow and heat transfer in micro-fin tubes-part 2, parametric study. J. Enhanced Heat Transfer, 2001, 8: 305-314.
    [99] Bhatia R S, Webb R L. Numerical study of turbulent flow and heat transfer in micro-fin tubes-part 1, model validation. J. Enhanced Heat Transfer, 2001, 8: 291-304.
    [100] Liu X. Y, Jensen M K. Geometry effects on turbulent flow and heat transfer in internally finned tubes. ASME J. Heat Transfer, 2001, 123: 1035-1044.
    [101] Kim J H, Jansen K E, Jensen M K. Analysis of heat transfer characteristics in internally finned tubes. Numerical Heat Transfer Part A, 2004, 46: 1-21.
    [102] Kim J H, Jansen K. E, Jensen M K. Simulation of three-dimensional incompressible turbulent flow inside tubes with helical fins. Numerical Heat Transfer Part B, 2004, 46: 195-221.
    [103] Lugt H J. Vortex flow in nature and technology. New York: John Wiley Sons, 1983.
    [104] Dyke M V. An album of fluid motion. California: The Parabolic Press, 1982.
    [105] Fiebig M. Vortices, generators and heat transfer. Trans. IChemE (Part A), 1998, 76: 108-123.
    [106] Jacobi A M, Shah R K. Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress. Exp. Therm. Fluid Sci., 1995, 11: 295-309.
    [107] Fiebig M. Embedded vortices in internal flow: heat transfer and pressure loss enhancement. Int. J. Heat Fluid Flow, 1995, 16: 376-388.
    [108] Bergles A E. Heat transfer enhancement-the encouragement and accommodation of high heat fluxes. J. Heat Transfer, 1997, 119: 8-19.
    [109] Wendt B. Greber J I, Hingst W R. Structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. AIAA J., 1995, 16: 376-388.
    [110] Eibeck P A, Eaton J K. Heat transfer effects of a longitudinal vortex embedded in a turbulent boundary layer. ASME J. Heat Transfer, 1985, 109: 16-24.
    [111] Pauley W R, Eaton J K. The effect of embedded longitudinal vortex arrays on turbulent boundary layer heat transfer. J. Heat Transfer, 1994, 116: 871-879.
    [112] Sedney R. A survey of the effects of small protuberances on boundary-layer flow. AIAA J., 1973, 11(6): 782-792.
    [113] Tiggelbeck S, Mitra N K, Fiebig M. Experimental investigations of heat transfer enhancement and flow losses in a channel with double rows of longitudinal vortex generators. Int. J. Heat Mass Transfer, 1993, 36(9): 2327-2337.
    [114] Sohankar A, Davidson L. Effect of inclined vortex generators on heat transfer enhancement in a three-dimensional channel. Numerical Heat Transfer Part A, 2001, 39: 433-448.
    [115] Biswas G, Torii K, Fujii D, et al. Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow. Int. J. Heat Mass Tranfer, 1996, 39(16): 3441-3451.
    [116] Fiebig M, Kallweit P, Mitra N, et al. Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Exp. Therm. Fluid Sci., 1991, 4: 103-114.
    [117] Fiebig M, Brockmeier U, Mitra N K, et al. Structure of velocity and temperature fields in laminar channel flows with longitudinal vortex generators. Num. Heat Transfer (Part A), 1989, 15: 281-302.
    [118] Zhu J X, Mitra N K, Fiebig M. Effects of longitudinal vortex generators on heat transfer and flow loss in turbulent channel flows. Int. J. Heat Mass Transfer, 1993, 36(9): 2339-2347.
    [119] Deb P, Biswas G, Nitra N. K. Heat transfer and flow structure in laminar and turbulent flows in a rectangular channel with longitudinal vortices. Int. J. Heat Mass Transfer, 1995, 38(13): 2427-2444.
    [120] Tiggelbeck S, Mitra N K, Fiebig M. Comparison of wing-type vortex generators for heat transfer enhancement in channel flows. ASME J. Heat Transfer, 1994, 116: 880-885.
    [121] Lau S. Experimental study of the turbulent flow in a channel with periodically arranged longitudinal vortex generators. Exp. Therm. Fluid Sci., 1995, 11: 255-261.
    [122]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[博士学位论文].北京:清华大学工程力学系, 2003.
    [123] Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement. Int. J. Heat Mass Transfer, 1998, 41(14): 2221-2225.
    [124] Guo Z Y. Mechanism and control of convective heat transfer-Coordination of velocity and heat flow fields. Chinese Sci. Bull., 2001, 46(7): 596-599.
    [125]过增元.对流换热的物理机制及其控制.科学通报, 2001, 45(19): 2118-2122.
    [126] He Y L, Tao W Q, Song F Q, et al. Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle. Int. J. Heat Fluid Flow, 2005, 26: 459-473.
    [127] Tao Y B, He Y L, Wu Z G, et al. Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes. Int. J. Heat Fluid Flow, 2007, 28: 1531-1544.
    [128] Tao W Q, Guo Z Y, Wang B X. Field synergy principle for enhancing convective heat transfer-its extension and numerical verifications. Int. J. Heat Mass Transfer, 2002, 45: 3849-3856.
    [129] Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. Int. J. Heat Mass Transfer, 2005, 48(9): 1797-1807.
    [130] Meng J A, Liang X G, Li Z X. Field synergy optimization and enhanced heat transfer by multi-longitudinal vortexes flow in tube. Int. J. Heat Mass Transfer, 2005, 48: 3331-3337.
    [131]过增元,黄素逸.场协同原理与强化传热新技术.北京:中国电力出版社, 2004.
    [132]过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的应用.科学通报, 2003, 48(1): 21-25.
    [133]夏再忠.导热和对流换热过程的强化与优化[博士学位论文].北京:清华大学工程力学系, 2001.
    [134]程新广.火积及其在传热优化中的应用[博士学位论文].北京:清华大学工程力学系, 2004.
    [135] Webb R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int. J. Heat Mass Transfer, 1981, 24(4): 715-726.
    [136] Shah R K, Subbarao E C, Mashelkar R A. Heat transfer equipment design. New York: Hemisphere publishing Corporation, 1988.
    [137] Kakac S, Shah R K, Bergles A E. Low Reynolds number flow heat exchangers: advanced study institute book. Washington: Hemisphere, 1983.
    [138] London A L, Shah R K. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. New York: Academic Press, 1978.
    [139] Saidi A, Sunden B. A numerical investigation of heat transfer enhancement in offset strip fin heat exchangers in self-sustained oscillatory flows. Int. J. Numer. Method Heat Fluid Flow, 2001, 11(7): 699-716.
    [140] Jacobi A M, Shah R K. Air-side flow and heat transfer in compact heat exchangers: a discussion of enhancement mechanisms. Heat Transfer Eng., 1998, 19(4): 29-41.
    [141]普朗特L,奥斯瓦提奇K,维格哈特K.流体力学概论(下册).郭永怀,陆士嘉译.北京:科学出版社, 1984.
    [142]史里希廷H.边界层理论(下册).徐燕侯等译.北京:科学出版社, 1991.
    [143]欣茨J O.湍流(下册).周光坰等译.北京:科学出版社, 1987.
    [144]张兆顺.湍流.北京:国防工业出版社, 2002.
    [145] Davidson P A. Turbulence: an introduction for scientists and engineers. New York: Oxford University Press, 2004.
    [146]陆明万,罗学富.弹性理论基础(上册).第2版.北京:清华大学出版社, 2001.
    [147] Kreplin H P, Eckelmann H. Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Physics of Fluids, 1979, 22(7): 1233-1239.
    [148] Alfredsson P H, Johansson A V. The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Physics of Fluids, 1988, 31(5): 1026-1033.
    [149] Park J Y, Chung M K. Revisit of viscous sublayer scaling law. Physics of Fluids, 2004, 16(2): 478-481.
    [150] Bradshaw P, Huang G P. The law of the wall in turbulent flow. Proc. R. Soc. Lond. A, 1995, 451: 165-188.
    [151] Jimenez J. Turbulent flows over rough walls. Annu. Rev. Fluid Mech., 2004, 36: 173-196.
    [152] Churchill S W. A reinterpretation of the turbulent Prandtl number. Ind. Eng. Chem. Res, 2002, 41: 6393-6401.
    [153] Mceligot D M, Taylor M F. The turbulent Prandtl number in the near-wall region for low-Prandtl-number gas mixtures. Int. J. Heat Mass Transfer, 1996, 30(6): 1287-1295.
    [154] Kader B A. Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transfer, 1981, 24(9): 1541-1544.
    [155] Katoh K, Choi K S, Azuma T. Heat transfer enhancement and pressure loss by surface roughness in turbulent channel flows. Int. J. Heat Mass Transfer, 2002, 43: 4009-4017.
    [156] Ceylan K, Kelbaliyev G. The roughness effects on friction and heat transfer in the fully developed turbulent flow in pipes. Applied Thermal Eng., 2003, 23: 557-570.
    [157] Slanciauskas A. Two friendly rules for the turbulent heat transfer enhancement. Int. J. Heat Mass Transfer, 2001, 44: 2155-2161.
    [158] Molki M, Mottahed B. Artificial roughness effects on turbulent transfer coefficients in the entrance region of a circular tube. Int. J. Heat Mass Transfer, 1996, 39(12): 2515-2523.
    [159] Chaube A, Sahoo P K, Solanki S C. Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater. Renewable Engergy, 2006, 31: 317-331.
    [160] Stripf M, Schulz A, Witting S. Surface roughness effects on external heat transfer of a HP turbine vane. ASME J. Turbomachinery, 2005, 127: 200-208.
    [161] Vicente P G, Garcia A, Viedma A. Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes. Int. J. Heat Mass Transfer, 2002, 45: 543-553.
    [162] Fluent 6.0 Users Guide. Lebanon, NH: Fluent Inc., 2001.
    [163]陶文铨.计算传热学的近代进展.北京:科学出版社, 2000.
    [164] Wolfstein M. The velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient. Int. J. Heat Mass Transfer, 1969, 12: 301-318.
    [165]范洁川.近代流动显示技术.北京:国防工业出版社, 2002.
    [166]梅尔兹科奇.流动显示.黄素逸等译.北京:科学出版社, 1991.
    [167] Wang C C, Lo J, Lin Y T, et al. Flow visualization of wave-type vortex generators having inline fin-tube arrangement. Int. J. Heat Mass Transfer, 2002, 45: 1944-1944.
    [168] Wang C C, Lo J, Lin Y T, et al. Flow visualization of annular and delta winglet vortex generators in fin-and-tube heat exchanger application. Int. J. Heat Mass Transfer, 2002, 45: 3803-3815.
    [169]三零四所主编.热电偶.北京:国防工业出版社, 1978.
    [170]凌善康,原遵东编写.国家技术监督局计量司组编. 90国际温标通用热电偶分度表手册.北京:中国计量出版社, 1994.
    [171]刘征.壁面温度测量及异形管管内对流换热的实验研究[硕士学位论文].北京:清华大学工程力学系, 2002.
    [172]李晓伟.交叉椭圆管换热实验研究[本科毕业设计].北京:清华大学工程力学系, 2003.
    [173] Dirker J, Meyer J P. Convective heat transfer coefficients in concentric annuli. Heat Transfer Eng., 2005, 26(2): 38-44.
    [174] Vilemas J, Cesna B, Survila V. Heat transfer in gas-cooled annular channels. Washington: Hemisphere, 1987.
    [175]杨世铭,陶文铨.传热学.北京:高等教育出版社.第三版. 1998.
    [176] Petukhov B S. Heat transfer and friction in turbulent pipe flow with variable properties. Advances in Heat Transfer, Vol 6, Academic, New York, 1970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700