两头乌猪毛色主效基因EDNRB因果突变的鉴别及MUC4基因的遗传进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪的毛色是品种的主要特征之一,“两头乌”是中国地方猪种的代表性毛色类型之一。本实验室前期对影响中国地方猪(沙子岭、巴马香、通城)两头乌毛色的基因进行定位,发现EDNRB基因是影响两头乌猪毛色的主效基因,和EDN3、KIT、KITLG等修饰基因共同调控中国地方猪两头乌毛色的形成。本研究对(?)EDNRB的因果突变位点进行了深入鉴别,以期解析两头乌毛色的分子遗传机理。
     本研究利用8个中外品种(沙子岭、巴马香、通城、荣昌、二花脸、民猪、杜洛克、大白)的10个个体,对EDNRB进行全基因深度测序,搜索到341个SNPs,鉴别到52个区分两头乌猪与非两头乌猪的标签突变位点(Diagnostic SNP)。随后在上述8个品种的94个代表性个体中对这52个突变位点进行测序分型,发现了两头乌猪共享的13kb IBD区域(identical by descent),在IBD区域内鉴别到24个候选因果突变。再利用代表各种毛色类型的11个品种123个体,对此24个候选因果突变位点进行进一步测序分型,筛选出14个影响两头乌毛色的候选因果突变位点。通过对这些位点进行保守性分析以及生物学功能预测分析,认为因果突变是位于EDNRB内含子中一个增强子区域的调节突变,初步揭示了影响两头乌毛色形成的遗传分子机理。此外,利用来自33个中西方猪种代表多种毛色类型的353个个体,对EDNRB标签突变位点g.16484A>G进行遗传变异分析,结果显示中国两头乌猪(除金华外)以及白肩带猪都具有相同的纯合突变基因型,表明这些猪种的毛色两头乌和白肩带都受到EDNRB主效位点的调控,而金华猪可能有自己品种特异的毛色遗传背景。在全黑、全白、全红、棕褐、乌云盖雪等其他固定毛色类型的猪种中EDNRB标签SNP都为纯合野生基因型,再次支持EDNRB是特异影响中国地方猪两头乌毛色的主效位点并验证了汉普夏猪的白肩带的毛色表型是受KIT而非(?)EDNRB影响。
     本研究结果为更好的解析猪毛色分子遗传机理提供了新的视角和思路,丰富了人们对哺乳动物色素沉积机制的了解,加深了人们对中国地方猪种种质特性遗传机理的认识,同时也为我国地方两头乌猪的猪种选育提供了精确高效的分子遗传标记。
     MUC4是MUC家族中一种跨膜糖蛋白,存在于许多组织上皮表面,例如气管、结肠和子宫等。MUC4在润滑和保护上皮表面、细胞增殖和分化、免疫应答、细胞黏附及癌症发生等方面起重要作用。本研究从猪MUC4基因进化的视角着手,对其在中国地方猪种和西方商业猪种中的核苷酸变异和连锁不平衡等进行了分析。
     本研究检测了5头野猪和11个中国地方猪种及3个西方商业猪种的307个个体在MUC4基因区域的53个SNP基因型,在这些猪种中对MUC4基因进行了核苷酸变异、单倍型和连锁不平衡程度等分析。中国和西方猪种在MUC4位点都具有丰富的核苷酸变异。西方猪种,如杜洛克和大白,与中国猪种的核苷酸变异程度相似,这表明长期对西方猪种瘦肉产量的人工选择没有减少MUC4的遗传变异。单倍型进化分析结果表明MUC4在中国和西方猪种中的进化途径截然不同。品种间的遗传分化树状图大体反映了这些品种的进化历史和地理分布情况。中国和西方品种连锁不平衡模式相似,都小于20Kb,这不同于此前西方商业猪种中LD程度较高(大于100Kb)的报道。西方猪种在MUC4位点具有不同寻常的较低的LD程度,反映了猪基因组核苷酸变异的复杂性。这些发现提示:在类似这样的区域内,我们必须用更高密度的标记(例如1SNP/10Kb)来定位因果目的基因。在一些中国和西方猪种中,Tajima's D或Fu and Li's D统计值呈显著的正值,提示MUC4在这些猪种中可能受到平衡选择。然而,这种统计值的显著性结果也可能是SNP的筛选的偏差引起的。
Coat color is one of breed characteristics in pigs, and two-end-black is one of representative coat color phenotypes in Chinese indigenous pigs. Our previous study demonstrated that EDNRB is a major gene affecting the two-end-black coat color. EDNRB together with other modifier genes like EDN3, KIT and LITLG determine the two-end-black phenotype in Chinese indigenous pigs including Shaziling, Bamaxiang and Tongcheng pigs. The aim of this study was to identify the causal mutation(s) of the EDNRB gene and to dissect the molecular basis of the two-end-black coat color phenotype in pigs.
     For this purpose,10representative pigs from8Chinese and Western breeds (Shaziling, Bamaxiang, Tongcheng, Rongchang, Erhualian, Min, Duroc, Large white) were used for EDNRB resequceing. A total of341SNPs were detected and52diagnostic SNPs distinguishing two-end-black pigs from non-two-end-black pigs were identified. Subsequently, the52diagnostic SNPs were genotyped in94pigs from the above-mentioned8breeds. A13-kb IBD region shared by all two-end-black pigs was found and24candidate causal mutations were identified in IBD region. The24SNPs were further genotyped in123unrelated pigs from11breeds representing a variety of coat color phenotypes, revealing14candidate causative mutations. These SNPs were analyzed for their conservation among mammals and potential functional elements. The findings indicate that causal variants are most likely regulating mutations in an enhancer region with intron1of EDNRB. The genetic variation at EDNRB diagnostic SNP g.16484A>G was detected in353pigs from diverse breeds. The result showed that all two-end-black and white-belt pigs form Chinese local breeds except Jinhua were homozygous for the mutant allele, indicating that this mutation is most likely the causative site in EDNRB gene affecting the two-end-black and white-belt phenotypes but causative gene in Jinhua pigs could be different. While All pigs having other coat color phenotypes including solid black, solid white, red, brown were homozygous for the wild-type allele. Moreover, we also confirmed that the white-belt phenotype in Hampshire was regulated by KIT not EDNRB.
     The results provide novel insights into the molecular basis of coat colors in pigs, and enrich our understanding of the pigmentation mechanism in mammals. Furthermore, this study improves our knowledge about the genetic mechanisms of breed characteristics in Chinese pigs, and provides effective molecular genetic makers for Chinese two-end-black pigs breeding.
     MUC4is a type of membrane anchored glycoprotein and serves as the major constituent of mucus that covers epithelial surfaces of many tissues such as trachea, colon and cervix. MUC4plays important roles in the lubrication and protection of the surface epithelium, cell proliferation and differentiation, immune response, cell adhesion and cancer development. To gain insights into the evolution of the porcine MUC4gene, we surveyed the nucleotide variability and linkage disequilibrium (LD) within this gene in Chinese indigenous breeds and Western commercial breeds.
     A total of53SNPs covering the MUC4gene were genotyped on5wild boars and307domestic pigs representing11Chinese breeds and3Western breeds. The nucleotide variability, haplotype phylogeny and LD extent of MUC4were analyzed in these breeds. Both Chinese and Western breeds had considerable nucleotide diversity at the MUC4locus. Western pig breeds like Duroc and Large White have comparable nucleotide diversity as many of Chinese breeds, thus artificial selection for lean pork production have not reduced the genetic variability of MUC4in Western commercial breeds. Haplotype phylogeny analyses indicated that MUC4had evolved divergently in Chinese and Western pigs. The dendrogram of genetic differentiation between breeds generally reflected demographic history and geographical distribution of these breeds. LD patterns were unexpectedly similar between Chinese and Western breeds, in which LD usually extended less than20kb. This is different from the presumed high LD extent (more than100kb) in Western commercial breeds. The significant positive Tajima'D, and Fu and Li's D statistics in a few Chinese and Western breeds implied that MUC4might undergo balancing selection in domestic breeds. Nevertheless, we cautioned that the significant statistics could be upward biased by SNP ascertainment process.
     Conclusion:Chinese and Western breeds have similar nucleotide diversity but evolve divergently in the MUC4region. Western breeds exhibited unusual low LD extent at the MUC4locus, reflecting the complexity of nucleotide variability of pig genome. The finding suggests that high density (e.g. ISNP/lOkb) markers are required to capture the underlying causal variants at such regions.
引文
[1]Pielberg G. Molecular Coat Colour Genetics:Dominant White in Pigs and Greying with Age in Horses. [D]. Uppsala:Swedish University of Agricultural Sciences,2004.
    [2]Spillman WJ. Inheritance of Color Coat in Swine. Science.1906,24(614):441-443.
    [3]Hetzer HO. Inheritance of coat colour in swine. II. Results of Landrace by Poland China crosses. Journal of Heredity.1945,36:187-192.
    [4]Hetzer HO. Inheritance of coat colour in swine. I. General survey of major colour variations in swine. Journal of Heredity.1945,36:121-128.
    [5]Hetzer HO. Inheritance of coat colour in swine. III. Results of Landrace by Berkshire crosses. Journal of Heredity.1945,36:255-256.
    [6]Hetzer HO. Inheritance of coat colour in swine. IV. Analysis of hybrids of Landrace and Large Black. Journal of Heredity.1945,36:309-312.
    [7]Hetzer HO. Inheritance of coat colour in swine. V. Results of Landrace by Duroc-Jersey crosses. Journal of Heredity.1946,37:217-224.
    [8]Hetzer HO. Inheritance of coat colour in swine. VI. Results of Yorkshire by Duroc-Jersey crosses. Journal of Heredity.1947,38:121-124.
    [9]Hetzer HO. Inheritance of coat color in swine; results of Landrace by Hampshire crosses. J Hered. 1948,39(4):122-128.
    [10]Hetzer HO. Inheritance of coat colour in swine. IV. Results of Landrace by Hampshire crosses. Journal of Heredity.1949,39:123-128.
    [11]Hetzer HO. Effectiveness of selection for extension of black-spotting in Beltsville no 1 swine. Journal of Heredity.1954,45:215-223.
    [12]Jennifer YL, David EF. Melanocyte biology and skin pigmentation. Nature.2007,445:843-850.
    [13]蔡文琴,李海标主编.发育神经生物学.北京:科学出版社.1999:120-138.
    [14]张红卫主编.发育生物学.北京:高等教育出版社.2001:221-228.
    [15]师科荣,王爱国,邓学梅,李宁.猪毛色性状遗传机制研究进展.养猪.2003,4:24-28.
    [16]Buckingham M., and Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol.2007,23:645-673.
    [17]Moase CE and Trasler DG. Splotch locus mouse mutants:models for neural tube defects andWaardenburg syndrome type I in humans. J Med Genet.1992,29:145-151.
    [18]Lang D, Lu MM, Huang L, Engleka KA, Zhang M, Chu EY, Lipner S, Skoultchi A, Millar SE, and Epstein JA. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature.2005,433: 884-887.
    [19]Watanabe A, Takeda K, Ploplis B and Tachibana M. Epistatic relationship betweenWaardenburg syndrome genes MITF and PAX3. Nat Genet.1998,18:283-286.
    [20]Wegner M. Secrets to a healthy Sox life:lessons for melanocytes. Pigment Cell Res.2005, 18:74-85.
    [21]Kelsh RN. Sorting out Sox 10 functions in neural crest development. Bioessays.2006,28:788-798.
    [22]Hou L and Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanoc development:do all roads lead to Mitf? Cell Res.2008,18:1163-1176.
    [23]Potterf SB, Mollaaghababa R, Hou L, Southard-Smith EM, Hornyak TJ, Arnheiter H and Pavan WJ. Analysis of SOX 10 function in neural crest-derivedmelanocyte development:SOX10-dependent transcriptional controlof dopachrome tautomerase. Dev Biol.2001,237:245-257.
    [24]Dutton KA, Pauliny A, Lopes SS, Elworthy S, Carney TJ, Rauch J, Geisler R, Haffter P and Kelsh RN. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development.2001,128:4113-4125.
    [25]Murisier F and Beermann F. Genetics of pigment cells:lessons from the tyrosinase gene family. Histol Histopathol.2006,21:567-578.
    [26]Nakayama A, Nguyen MT, Chen CC, Opdecamp K, Hodgkinson CA and Arnheiter H. Mutations in microphthalmia, the mouse homolog of the human deafness geneMITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech Dev.1998,70:155-166.
    [27]Lister JA, Robertson CP, Lepage T, Johnson SL and Raible DW. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development. 1999,126:3757-3767.
    [28]Ikeya M, Lee SM, Johnson JE, McMahon AP and Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature.1997,389:966-970.
    [29]Hari L, Brault V, Kleber M, Lee HY, Ille F, Leimeroth R, Paratore C, Suter U, Kemler R and Sommer L. Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol.2002, 159:867-880.
    [30]Dunn KJ,Williams BO, Li Y and Pavan WJ. Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci USA. 2000,97:10050-10055.
    [31]Dorsky RI, Moon RT and Raible DW. Control of neural crest cell fate by the Wnt signalling pathway. Nature.1998,396:370-373.
    [32]Giller T, Breu V, Valdenaire O and Clozel M. Absence of ET(B)-mediated contraction in Piebald-lethal mice. Life Sci.1997,61:255-263.
    [33]Matsushima Y, Shinkai Y, Kobayashi Y, Sakamoto M, Kunieda T and Tachibana M. A mouse model of Waardenburg syndrome type 4 with a new spontaneous mutation of the endothelin-B receptor gene. Mamm Genome.2002,13:30-35.
    [34]Artie T, Till M, Pelet A, Amiel J, Edery P, Boutrand L, Munnich A and Lyonnet S. Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet.1995, 4:2407-2409.
    [35]Edery P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RM, Martelli H, Bidaud C, Munnich A and Lyonnet S. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet.1996,12:442-444.
    [36]Shin MK, Levorse JM, Ingram RS and Tilghman SM. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature.1999,402:496-501.
    [37]Harris ML, Hall R and Erickson CA. Directing pathfinding along the dorsolateral path the role of EDNRB2 and EphB2 in overcoming inhibition. Development.2008,135:4113-4122.
    [38]Parichy DM, Rawls JF, Pratt SJ, Whitfield TT, and Johnson SL. Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development.2000,126:3425-3436.
    [39]Yoshida H, Hayashi S, Shultz LD, Yamamura K, Nishikawa S and Kunisada T. Neural and skin cell-specific expression pattern conferred by steel factor regulatory sequence in transgenic mice. Dev Dyn.1996,207:222-232.
    [40]Yoshida H, Kunisada T, Kusakabe M, Nishikawa S and Nishikawa SI. Distinct stages of melanocyte differentiation revealed by anlaysis of nonuniform pigmentation patterns. Development.1996, 122:1207-1214
    [41]Jordan SA and Jackson IJ. (2000). MGF (KIT ligand) is a chemokinetic factor for melanoblast migration into hair follicles. Dev Biol.2000,225:424-436.
    [42]Mackenzie MA, Jordan SA, Budd PS and Jackson IJ. Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev Biol.1997,192:99-107.
    [43]Nishikawa S, Kusakabe M, Yoshinaga K, Ogawa M, Hayashi S, Kunisada T, Era T and Sakakura T. In uteromanipulation of coat color formation by amonoclonal anti-c-kit antibody:two distinct waves of c-kit-dependency during melanocyte development. EMBO J.1991,10:2111-2118.
    [44]Hemesath TJ, Price ER, Takemoto C, Badalian T and Fisher DE. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature.1998,391:298-301.
    [45]Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ and Fisher DE. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev.2000,14:301-312.
    [46]Price ER, Ding HF, Badalian T, Bhattacharya S, Takemoto C, Yao TP, Hemesath TJ and Fisher DE. Lineage-specific signaling in melanocytes C-kit stimulation recruits p300/CBP to microphthalmia. J Biol Chem.1998,273:17983-17986.
    [47]McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W and Ding HF. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell.2002,109:707-718.
    [48]Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, Sagrera A, Read AP and Sanchez-Garcia I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet.2002, 11:3231-3236.
    [49]Chabot B, Stephenson DA, Chapman VM, Besmer P and Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature.1988, 335:88-89.
    [50]Huang E, Nocka K, Beier DR, Chu TY, Buck J, Lahm HW, Wellner D, Leder P and Besmer P. The hematopoietic growth factor KL is encoded by the S1 locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell.1990,63:225-233.
    [51]Miller CT, Beleza S, Pollen AA, Schluter D, Kittles RA, Shriver MD and Kingsley DM. cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell.2007,131:1179-1189.
    [52]Giebel LB and Spritz RA. Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism. Proc Natl Acad Sci USA.1991,88:8696-8699.
    [53]Rouzaud F, Hearing VJ. Regulatory elements of the melanocortin 1 receptor. Peptides.2005, 26(10):1858-1870.
    [54]Alonso S, Izagirre N, Smith-Zubiaga I, et al. Complex signatures of selection for the melanogenic loci TYR, TYRP1 and DCT in humans. BMC Evol Biol.2008,8:74.
    [55]Lamoreux, M., K. Wakamatsu, and S. Ito, Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Research.2001,14(1): 23-31.
    [56]Lee HO, Levorse JM, Shin MK. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev Biol.2003,259:162-75.
    [57]Pavan WJ, Tilghman SM. Piebald lethal (s1) acts early to disrupt the development of neural crest-derived melanocytes. Proc Natl Acad Sci USA.1994,91:7159-63.
    [58]Reid K, Turnley AM, Maxwell GD, Kurihara Y, Kurihara H, Bartlett PF, Murphy M. Multiple roles for endothelin in melanocyte development:regulation of progenitor number and stimulation of differentiation. Development.1996,122:3911-9.
    [59]Raels, JF, Mellgren, EM and Johnson, SL. How the zebrafish gets its stripes. Dev Biol.2001,240: 301-14
    [60]Lahav R, Ziller C, Dupin E, Le Douarin NM. Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc Natl Acad Sci USA.1996, 93:3892-7.
    [61]Lecoin L, Lahav R, Martin FH, Teillet MA and Le Douarin NM. Steel and c-kit in the development of avian melanocytes:a study of normally pigmented birds and of the hyperpigmented mutant silky fowl. Dev Dyn.1995,203:106-18.
    [62]Wehrle-Haller B and Wseton JA. Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development.1995,121:731-42.
    [63]Patrick p and Lionel L. Involvement of endothelin receptors in normal and pathological development of neural crest cells. Int. J. Dev. Biol.2003,47:315-325.
    [64]Karin O, Lidia K, Heinz A, and William JP. Endothelin signalling in the development of neural crest-derived melanocytes. Biochem. Cell Biol.1998,76:1093-1099.
    [65]Lei Zh, Hyung-Ok L, ChaRandle SJ, V Ashley C, E Michelle S-S and Myung KS.Spatiotemporal regulation of endothelin receptor-B by SOX 10 in neural crest-derived enteric neuron precursors. Nature Genetics.2004,36:732-737.
    [66]Andrew PR, Valerie EN. Waardenburg syndrome. J Med Genet.1997,34:656-665
    [67]Gariepy CE, Cass DT and Yanagisawa M. Null mutation of endothelin receptor type B gene in spotting lethal rats causes aganglionic megacolon and white coat color. Proc Natl Acad Sci USA.1996, 93:867-72.
    [68]Ceccherini I, Zhang AL, Matera I, Yang G, Devoto M, Romeo G and Cass DT. Interstitial deletion of the endothelin-B receptor gene in the spotting lethal (sl) rat. Hum Mol Genet.1995,4:2089-96.
    [69]Kunieda T, Kumagai T, Tsuji T, Ozaki T, Karaki H and Ikadai H. A mutation in endothelin-B receptor gene causes myenteric aganglionosis and coat color spotting in rats. DNA Res.1996,3:101-5
    [70]Takahisa Y, Shin O, Takeshi S, Takehito T, Tetsuo K and Masashi Y. Reduced Expression of the Endothelin Receptor Type B Gene in Piebald Mice Caused by Insertion of a Retroposon-like Element in Intron 1. The Journal of Biological Chemistry.2006,281(16):10799-10807
    [71]Myung KS, Liane BR and Shirley MT. Molecular characterization of four induced alleles at the Ednrb locus. Proc. Natl. Acad. Sci. USA.1997,94:13105-13110
    [72]Metallinos DL, Bowling AT and Rine J. A missense mutation in the endothelin-B receptor gene is associated with Lethal White Foal Syndrome:an equine version of Hirschsprung disease. Mamm Genome.1998,9:426-31.
    [73]Yang GC, Croaker D, Zhang AL, Manglick P, Cartmill T and Cass D. A dinucleotide mutation in the endothelin-B receptor gene is associated with lethal white foal syndrome (LWFS); a horse variant of Hirschsprung disease. Hum Mol Genet.1998,7:1047-52.
    [74]Manga P, Kromberg JGR, Turner A, Jenkins T, Ramsay M. In Southern Africa, brown oculocutaneous albinism (BOCA) maps to the OCA2 locus on chromosome 15q:P-Gene mutations identified. Am J Hum Genet.2001,68(3):782-787.
    [75]Du JY, Fisher DE. Identification of Aim-1 as the under-white mouse mutant and its transcriptional regulation by MITF.J Biol Chem.2002,277(1):402-406.
    [76]Santschi EM, Purdy AK, Valberg SJ, Vrotsos PD, Kaese H, Mickelson JR. Endothelin receptor B polymorphism asso-ciated with lethal white foal syndrome in horses. Mamm Genome.1998,9(4): 306-309.
    [77]Edery P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RM, Martelli, Bidaud C, Munnich A and Lyonnet S. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet.1996,12:442-4.
    [78]Ohtani S, Shinkai Y, Horibe A, Katayama K, Tsuji T, Matsushima Y, Tachibana M, Kunieda T. A deletion in the endothelin-B receptor gene is responsible for the Waardenburg syndrome-like phenotypes of WS4 mice. Experimental Animals.2006,55(5):491-495.
    [79]Norris, BJ and VA Whan, A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome research.2008,18(8):1282-1293.[80] Rosengren Pielberg, G., et al., A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet.2008,40(8):1004-1009.[81] Durkin, K., et al., Serial translation by means of circular intermediates underlies colour sidedness in cattle. Nature.2012,482(7383):81-84.
    [82]Dorshorst, B., et al., A Complex Genomic Rearrangement Involving the Endothelin 3 Locus Causes Dermal Hyperpigmentation in the Chicken. PLoS Genet.2011,7(12):e1002412.
    [83]Elinor KK, Izabella B, Claire MW, Nicolette HCSH, Michael CZ, Nathan A, Tara MB, Nick P, Gerli RP, Edward J KI, Kenine E C, Evan TK, Jill PM, Henrik von E, Olle K, A ke H, Eric SL,Go "ran A, Andersson L and Lindblad-Toh K, Efficient mapping of mendelian traits in dogs through genome-wide association. Nature genetics.2007,39(11):1322-1328.
    [84]Candille, S.I., et al., A P-Defensin Mutation Causes Black Coat Color in Domestic Dogs. Science. 2007,318(5855):1418-1423.
    [85]Jun R, Huirong M, Zhiyang ZH, Shijun X, Nengshui D and Lusheng H. A 6-bp deletion in the TYRP1 gene brown colouration phenotype in Chinese indigenous pigs. Journal of Heredity.2011, 106(5):862-8
    [86]Giuffra E, Tornsten A, Marklund S, et al. A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm Genome. 2002,13(10):569-577.
    [87]Marklund S, Kijas J, Rodriguez-Martinez H, et al. Molecular basis for the dominant white phenotype in the domestic pig. Genome Res.1998,8(8):826-833.
    [88]Johansson Moller M, Chaudhary R, Hellmen E, et al. Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm Genome.1996,7(11):822-830.
    [89]Pielberg G, Olsson C, Syvanen AC, Andersson L:Unexpectedly high allelic diversity at the KIT locus causing dominant white color in the domestic pig. Genetics.2002,160(1):305-311.
    [90]Kijas JM, Wales R, Tornsten A, et al. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics.1998,150(3):1177-1185.
    [91]Kijas JM, Moller M, Plastow G, et al. A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics.2001,158(2):779-785.
    [92]张仲葛,李炳垣,陈效华.中国猪品种志.上海:上海科学技术出版社.1986.
    [93]Riquet J, Coppieters W, Cambisano N, et al. Fine mapping of quantitative t rait loci by identity by desent in outbred pop2 ulation:application to milk production in dairy cat tle[J]. Proc Natl Acad Sci USA.1999,96 (16):9 25229 257.
    [94]Gerli RP, Anna G, Elisabeth S, Ino C, Johan L, Monika HS, Thomas D, Matthew B, Carolyn F, Gabriella L, Kaj S, Roswitha B, Monika V, Sara S, Manfred G, Claire W, Kerstin L-T, Fredrik P, Carl-Henrik H, Johann S and Leif A. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nature Genetics.2008,40(8):1004-1009.
    [95]Jonas E, Greger L, Ulrika G, Bertrand B, Michele T-B, Lina S, Dominic W, Annemieke J, Addie V, Ettore R, Per J and Leif A. Identification of the Yellow Skin Gene Reveals a Hybrid Origin of the Domestic Chicken. PLoS Genetics.2008,4(2):e 1000010.
    [96]Lindblad-Toh K. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature.2005,438:803-819.
    [97]Wade CM, Karlsson EK, Mikkelsen TS, Zody MC and Lindblad-Toh K. The dog genome: sequence, evolution and haplotype structure, in The Dog and Its Genome.2006,179-207 (Cold Spring Harbor Labora-tory Press, Cold Spring Harbor, NY)
    [98]Makuza, J. M. Folch and M. Pe'rez-Enciso. Selection in the Making:A Worldwide Survey of Haplotypic Diversity Around a Causative Mutation in Porcine IGF2. Genetics.2008,178:1639-1652.
    [99]Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L. A Mutation in PRKAG3 Associated with Excess Glycogen Content in Pig Skeletal Muscle. Science.2000.288:1248-1251.
    [100]Rebeiz M, Jikomes N. Kassner VA and Carroll SB. Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences. Proc. Natl Acad. Sci.USA.2011,10036-10043.
    [101]Frankel N. et al.Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature.2011,474:598-603.
    [102]Prud'homme B. et al. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature.2006,440:1050-1053.
    [103]薛菲.畜禽良种.中国畜禽种业.2007,第六期.
    [1]Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cance Metastasis Rev.2004,23:77-99.
    [2]Wick MR, Ritter JH, Humphrey PA. Sarcomatoid carcinomas of the lung:a clinicopathologic review. Am J Clin Pathol.1997,108:40-53.
    [3]Wells M, Brown LJ. Symposium part Ⅳ:investigative approaches to endocervical pathology. Int J Gynecol Pathol.2002,21:360-367.
    [4]Filipe MI. Mucins in the human gastrointestinal epithelium:a review. Invest Cell Pathol.1979, 2:195-216.
    [5]Rama B, Bradley ST:Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid & Interface Science.2006,11(2-3):164-170.
    [6]Williams SJ, Daniel HW, Mai T, Helen JE, Grant RS and Michael A.Mc Guckin. J Biol Chem.2001, 276(21):18327-18336.
    [7]Fowler J, Vinall L and Swallow D. Polymophism of the human MUC genes. Front Biosci.2001, 6:D1207-D1215.
    [8]Axelsson MA, Asker N and Hansson GC. O-glycosylated MUC2 monomer and dimer from LS174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are in soluble and contain nonreducible intermolecular bonds. J Biol Chem.1998,273:18864-18870.
    [9]Spicer AP. Parry G, Patton S and Gendler SJ. Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane and cytoplasmic domains and a loss of minisatellite-like polymorphism. J Biol Chem.1991,266:15099-15109.
    [10]Moniaux N, Escande F, Porchet N, Aubert JP, Batra SK:Structural organization and classification of the human mucin genes. Front Biosci.2001,6:D 1192-1206.
    [11]纪元 朱雄增.黏液素基因家族及其在胰腺肿瘤诊断中的作用.中华病理学杂志.2006年2月第35卷第2期.
    [12]Corfield AP, Myerscough N, Gough M, Brockhausen I, Schauer R, Paraskeva C:Glycosylation patterns of mucins in colonic disease. Biochem Soc Trans.1995,23(4):840-845.
    [13]Satoh S, Hinoda Y, Hayashi T, Burdick MD, Imai K, Hollingsworth MA:Enhancement of metastatic properties of pancreatic cancer cells by MUC1 gene encoding an anti-adhesion molecule. Int J Cancer.2000,88(4):507-518.
    [14]Hamanaka Y, Suehiro Y, Fukui M, et al. Circulating anti-MUC1 LgG antibodies as a favorable prognostic factor for pancreatic cancer. Int J Cancer.2003,103:97-100.
    [15]Nicolas M, Fabienne E, Surinder K. B, Nicole P, Anne L and Jean-Pierre A. Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. Eur. J. Biochem.2000, 267:4536-4544.
    [16]Chaturvedi P, Singh AP, Batra SK:Structure, evolution, and biology of the MUC4 mucin. FASEB J. 2008,22(4):966-981.
    [17]曾维宏.猪MUC4基因的全长cDNA分离、组织表达及高密度SNPs的搜寻.硕士毕业论文.2009
    [18]Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK:Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res.2004,64(2):622-630.
    [19]Singh AP, Chaturvedi P, Batra SK:Emerging roles of MUC4 in cancer:a novel target for diagnosis and therapy. Cancer Res.2007,67(2):433-436.
    [20]Eskelinen MJ, Haglund UH, Prognosis of hunman pancrestic adenicarcinoma:review of clinical and histopathological variables and possible uses of new molecular methods. Eur J Surg.1999, 165:292-306.
    [21]Doyle LA, Moller E, Dal Cin P, Fletcher CD, Mertens F, Hornick JL. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. American Journal of Surgical Pathology.2011, 35(5):733-741.
    [22]Bruyere E, Jonckheere N, Frenois F, Mariette C, Van Seuningen I. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties:Implication for S100A4 protein. Am J Surg Pathol.2011,35(5):733-41.
    [23]Ferrell AD, Malayer JR, Carraway KL, Geisert RD:Sialomucin complex (Muc4) expression in porcine endometrium during the oestrous cycle and early pregnancy. Reprod Domest Anim.2003, 38(1):63-65.
    [24]Kim CH, Kim D, Ha Y, Cho KD, Lee BH, Seo IW, Kim SH, Chae C:Expression of mucins and trefoil factor family protein-1 in the colon of pigs naturally infected with Salmonella typhimurium. J Comp Pathol.2009,140(1):38-42.
    [25]Peng QL, Ren J, Yan XM, Huang X, Tang H, Wang YZ, Zhang B, Huang LS:The g.243A>G mutation in intron 17 of MUC4 is significantly associated with susceptibility/resistance to ETEC F4ab/ac infection in pigs. Anim Genet.2007,38(4):397-400.
    [26]Jacobsen M, Cirera S, Joller D, Esteso G, Kracht SS, Edfors I, Bendixen C, Archibald AL, Vogeli P, "Neuenschwander S et al:Characterisation of five candidate genes within the ETEC F4ab/ac candidate region in pigs. BMC Res Notes.2011,4:225.
    [27]Balcells I, Castello A, Mercade A, Noguera JL, Fernandez-Rodriguez A, Sanchez A, Tomas A: Analysis of porcine MUC4 gene as a candidate gene for prolificacy QTL on SSC13 in an Iberian x Meishan F2 population. BMC Genet.2011,12(1):93.
    [28]Watterson GA:On the number of segregating sites in genetical models without recombination. Theor Popul Biol.1975,7(2):256-76.
    [29]Tajima F:Evolutionary relationship of DNA sequences in finite populations. Genetics.1983, 105(2):437-60.
    [30]Tajima F:Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics.1989,123(3):585-95.
    [31]Ojeda A, Huang LS, Ren J, Angiolillo A, Cho IC, Soto H, Lemus-Flores C, Makuza SM, Folch JM, Perez-Enciso M:Selection in the making:a worldwide survey of haplotypic diversity around a causative mutation in porcine IGF2. Genetics.2008,178(3):1639-1652.
    [32]Ojeda A, Rozas J, Folch JM, Perez-Enciso M:Unexpected high polymorphism at the FABP4 gene unveils a complex history for pig populations. Genetics.2006,174(4):2119-2127.
    [33]Wright S:Variability within and among Natural Populations. Evolution and the Genetics of Populations.1978,4:590.
    [34]Weir BS, Cockerham CC:Estimation F-statistics for the analysis of population structure. Evolution. 1984,38:1358-1370.
    [35]Wang JY, Guo JF, Zhang Q, Hu HM, Lin HC, Wang Ch, Zhang Y and Wu Y. Genetic Diversity of Chinese Indigenous Pig Breeds in Shandong Province Using Microsatellite Markers. Asian-Aust. J. Anim. Sci.2011,24(1):28-36.
    [36]赵晓枫,吴俊红,徐宁迎,胡晓湘,李宁.金华猪遗传结构及其与太湖猪遗传分化的研究.生物多样性.2008,16(4):339-345.
    [37]Hardy GH:Mendelian Proportions in a Mixed Population. Science.1908.28(706):49-50.
    [38]Ennis S:Linkage disequilibrium as a tool for detecting signatures of natural selection. Methods Mol Biol.2007,376:59-70.
    [39]Reich DE, Michele C, Stacey B, James I, Pardis CS, Daniel JR, Thomas L, Rose K, Shelli FF, Ryk W and Eric SL. Linkage disequilibrium in the human genome. Nature.2001,411:199-204.
    [40]Housley RA, Gamble CS, Street M. and Pettitt P. Radiocarbon evidence for the Late glacial human recolonisation of northern Europe. Proc. Prehist. Soc.1994,63:25-54.
    [41]Richards M. et al. Tracing European founder lineages in the Near Eastern mtDNA pool. Am. J. Hum.Genet.2000,67:1251-1276.
    [42]Reich DE and Goldstein DB. Genetic evidence for a Paleolithic human population expansion in Africa. Proc. Natl Acad. Sci. USA.1998,95:8119-8123.
    [43]Ingman M, Kaessmann H, Pa Ea Ebo S. and Gyllensten U. Mitochondrial genome variation and the origin of modern humans. Nature.2000,408:708-713.
    [44]Tishkoff SA. et al. Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science.1996,271:1380-1387.
    [45]Tishkoff SA. et al. Short tandem-repeat polymorphism/Alu haplotype variation at the PLAT locus: Implications for modern human origins. Am. J. Hum. Genet.2000,67:901-925.
    [46]Mark JD, John DR, Stephen FS, Thomas JH and Lander ES. High-resolution haplotype structure in the human genome. Nature Genetics.2001,29:229-232.
    [47]Eric S. Lander, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature.2005,438:803-819.
    [48]Michael E. Goddard and Ben J. Hayes. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature reviews. Genetics.2009,10:381-391.
    [49]Amaral AJ, Megens HJ, Crooijmans RP, Heuven HC, Groenen MA:Linkage disequilibrium decay and haplotype block structure in the pig. Genetics.2008,179(1):569-579.
    [50]Porter V. A Handbook to the Breeds of the World. Helm Information. Pigs.1993, London
    [51]Esteve A, Ojeda A, Huang LS, Folch JM, Perez-Enciso M:Nucleotide variability of the porcine SERPINA6 gene and the origin of a putative causal mutation associated with meat quality. Anim Genet. 2011,42(3):235-241.
    [52]Ren J, Duan Y, Qiao R, Yao F, Zhang Z, Yang B, Guo Y, Xiao S, Wei R, Ouyang Z et al:A missense mutation in PPARD causes a major QTL effect on ear size in pigs. PLoS Genet.2011, 7(5):e1002043.
    [53]Zhang ZG, Li BD, Chen XH:Pig Breeds in China. Shanghai Scientific and Technical Publisher, Shanghai 1986.
    [54]Li N, Stephens M:Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics.2003,165(4):2213-2233.
    [55]Librado P, Rozas J:DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics.2009,25(11):1451-1452.
    [56]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S:MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol.2011,28(10):2731-2739.
    [57]Barrett JC, Fry B, Maller J, Daly MJ:Haploview:analysis and visualization of LD and haplotype maps. Bioinformatics.2005,21(2):263-265.
    [58]R:R Development Core Team. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria.2009, ISBN 3-900051-07-0.
    [59]Megens HJ, Crooijmans RP, San Cristobal M, Hui X, Li N, Groenen MA:Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples:differences in microsatellite variation between two areas of domestication. Genet Sel Evol.2008,40(1):103-128.
    [60]Chaturvedi P, Singh AP, Moniaux N, Senapati S, Chakraborty S, Meza JL, Batra SK:MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol Cancer Res.2007,5(4):309-320.
    [61]Moniaux N, Chaturvedi P, Varshney GC, Meza JL, Rodriguez-Sierra JF, Aubert JP, Batra SK: Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. Br J Cancer.2007,97(3):345-357.
    [62]Amaral AJ, Ferretti L, Megens HJ, Crooijmans RP, Nie H, Ramos-Onsins SE, Perez-Enciso M, Schook LB, Groenen MA:Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One.2011,6(4):e 14782.
    [63]Ojeda A, Ramos-Onsins SE, Marietta D, Huang LS, Folch JM, Perez-Enciso M:Evolutionary study of a potential selection target region in the pig. Heredity.2011,106(2):330-338.
    [64]Yang G, Ren J, Zhang Z, Huang L:Genetic evidence for the introgression of Western NR6A1 haplotype into Chinese Licha breed associated with increased vertebral number. Anim Genet.2009, 40(2):247-250.
    [65]Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E et al:Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science.2005,307(5715):1618-1621.
    [66]Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L:The origin of the domestic pig: independent domestication and subsequent introgression. Genetics.2000,154(4):1785-1791.
    [67]Du FX, Clutter AC, Lohuis MM:Characterizing linkage disequilibrium in pig populations. Int J Biol Sci.2007,3(3):166-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700