利用全基因组关联分析(GWAS)鉴别猪腹股沟/阴囊疝易感基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腹股沟/阴囊疝是猪最主要的遗传性疾病之一,每年给世界养猪业造成巨大的经济损失。猪腹股沟/阴囊疝的发病率约为1%,遗传力在0.2-0.6不等,环境、品种及遗传背景不同,表现差异较大。在育种实践中,通过常规表型选择对于降低猪腹股沟/阴囊疝的发生率收效甚微,分离和鉴别猪阴囊疝易感位点及其主要致病基因是猪阴囊疝抗病育种的关键。
     本研究采集了全国8省(市)16个大型种猪场的长白、大白、杜洛克和皮特兰等国外主要商业猪种222个腹股沟/阴囊疝患病家系的739个样本(含239个患病个体),利用Illumina Porcine SNP60K DNA芯片对这些个体进行基因分型,通过严谨的质控检验,最终确定211个家系711个样本(含226个患病个体)的39289个有效SNP用于全基因组关联分析(GWAS)。
     鉴于样本家系结构的复杂背景,为避免群体层化效应给GWAS分析带来干扰,首先对样本信息进行了群体结构分析,并根据群体分布结果,开展了基于家系的传递不平衡检测(TDT)分析,未发现显著关联位点;然后针对样本中含有7个患病个体以上的3个半同胞家系分别进行了连锁定位分析以及合并分析,采用Bonferroni校正值确定显著性阂值,也未检测到显著关联位点;再对所有样本进行病例-对照SNP全基因组关联分析和单倍型分析并通过QQ-PLOT作图验证,结果发现在SSC1上17.83Mb-18.13Mb区域5个SNP标记,ASGA0097745(p=0.00057)、ASGA0001418和ASGA0001422(p=0.00089)、ALGA0001427(p=0.00094)、H3GA0001012(p=0.00176)以及SSC7上16.85Mb位置的MARC0077275标记(p=0.00155)与猪腹股沟/阴囊疝显著相关。与其他研究结果比较,SSC1上的17.83-18.13Mb定位区间与Grindflek等(2006)报道区间重叠,易感区域得以进一步验证。而7号染色体的易感位点/区域与Grindflek等(2006)和Knorr等(2006)两个小组在7号染色体上定位到显著影响猪腹股沟/阴囊疝发生的易感位点/区域均不一致,是一个新的猪腹股沟/阴囊疝易感位点。
     通过Ensemble网站,在1号染色体上的易感区域搜寻到一个位置候选基因糖醛基-2-磺基转移酶(UST),该酶所调控的硫酸皮肤素粘多糖被证明与人类腹股沟/阴囊疝有关。7号染色体上易感位点所对应的位置候选基因为细胞周期蛋白依赖激酶5调节亚单位相关蛋白1类似物1(CDKAL1),推测该基因可能通过调控细胞凋亡影响疝气发生。展望未来,将采用更大规模的样本群体,利用目的基因深度重测序策略,对这两个位置候选基因开展深入的遗传和功能验证分析。
     本研究利用大规模特定家系全基因组关联分析定位到两个猪腹股沟/阴囊疝易感区域,为下一步在更大样本群中进行重复验证及精细定位猪腹股沟/阴囊疝致病基因奠定了坚实基础,为最终创建阴囊疝抗病分子育种技术提供了理论依据。
Pig inguinal/scrotal hernias are one of the most common congenital disorders in pigs and cause severe economic loss in the pig industry. Pigs develop inguinal/scrotal hernias with a prevalence of1%and estimated heritabilities between0.2and0.6in different breeds and environment. It is difficult to decrease the occurring frequencies of pig inguinal/scrotal hernias by traditional phenotype selection in the breeding schemes. Identification of causative genes or closely Linkage Disequilibrium markers for inguinal/scrotal hernias is an essential precondition for removal of this genetic defect by marker-assisted selection(MAS).
     We herein collected739commercial pubred pigs representing Landrace, Large White, Duroc and Pietrain breeds with239inguinal/scrotal individual cases and their unaffected siblings in222families from16commercial pig breeding farms in8provinces in China All animals were genotyped with Illumina porcine60k DNA chips. After quality control, a total of39289SNPs and711samples including226inguinal/scrotal case animals from211families were used for genome-wide association analysis.
     To avoid population stratification effect on GWAS, we analyzed population structures. Transmission disequilibrium test (TDT) and QQ-plots of the P values analysis were first implemented to identified candidate susceptibility loci for pig inguinal/scrotal hernias, however no significant locus was detected. Genome-wide linkage analysis of inguinal/scrotal hernias were then conducted separately and collectively in3half-sib families each with more than7inguinal/scrotal case animals. Again,we failed to identify significant locus. Lastly, we performed the case-control genome-wide analysis based on single-maker and haplotype by using Q-Q plots for veridation. Five susceptibility loci in a region of17.83-18.13Mb on SSC1including ASGA0097745, ASGA0001418, ASGA0001422, ALGA0001427, and H3GA0001012, and one SNP at16.85Mb on SSC7, showed significant association with pig inguinal/scrotal hernia. Of these loci, ASGA0097745is the most significant with a P value of0.00057.This results confirmed the previous finding on SSC1,while the locus on SSC7was reported for the first time.
     Two positional candidate genes, UST and CDKAL1, were found from these two susceptibility regions using Ensembl website. The UST gene on SSC7is a more promising candidate gene affecting pig inguinal/scrotal hernia for its function on biosynthesis of dermatan sulfate glycosaminoglycan, which has been shown to be associated with human syndromes with phenotype of hernia. While CDKAL1(cyclin-dependent kinase5regulatory subunit associated protein1-like1) could affect the occurrence of hernia through the function on cell death. Further study should be directed to validate the above-mentioned candidate region and genes for pig scrotal/inguinal hernia by larger population&deep GWAS strategies.
     In summary, this study identified two susceptibility loci for pig inguinal/scrotal hernia by GWAS.The findings paved the load to fine mapping the two loci of interest, and to develop molecular breeding technologies for selections against inguinal/scrotal hernia in pigs.
引文
[1]干洪斌,家畜外科学[M](第4版),北京,中国农业出版社,2007
    [2]J Rex Walters,(2010) Have we forgotten about inherited disease? AGBU Pig Genetics Workshop-October 2010
    [3]Chang KS and Chang JHT. (1994) Animal models of pediatric surgical diseases. Pediatric Surgery International,9,307-322.
    [4]Grindflek E, Moe M, Taubert H, Simianer H, Lien S, Moen T. (2006) Genome-wide linkage analysis of inguinal hernia in pigs using affected sib pairs. BMC Genet,7,25
    [5]施启顺等.猪遗传性疾患发生率的调查.遗传,1988,10(4):25-27.
    [6]Vogt DW and Ellersieck MR. (1990) Heritability of susceptibility to scrotal herniation in swine. American Journal of Veterinary Research,51,1501-1503.
    [7]Lingaas F and Ronningen K. (1991) Epidemiological and genetical studies in Norwegian pig herds. Ⅱ. Overall disease incidence and seasonal variation. Acta Veterinaria Scandinavica,32,89-96.
    [8]Partlow GD, Fisher KRS, Page PD, MacMillan K, Walker AF. (1993) Prevalence and types of birth defects in Ontario swine determined by mail survey. Can J Vet Res.1993; 57:67-73.
    [9]Thaller G, Dempfle L, Hoeschele I.(1996)Maximum likelihood analysis of rare binary traits under different modes of inheritance.Genetics 1996,143:1819-29.
    [10]Charagu PK. (2006) Congenital defects in pigs:1. hernias and ridglings. http://www.hypor.com/dbdocs//43147ed874b22.pdf.
    [11]Mattsson, Petra. (2011) Prevalence of congenital defects in Swedish Hampshire, Landrace and Yorkshire pig breeds and opinions on their prevalence in Swedish commercial herds
    [12]范国英,刘俊伟,钟华,陈俊杰。(2011)某规模化猪场公猪腹股沟阴囊疝发病及治疗情况《养猪》2011年第02期
    [13]陈其云.(2008)小公猪阴囊疝的诊治《养猪》2008年第4期p79
    [14]Mikami H, Fredeen HT. (1979) A genetic study of cryptorchidism and scrotal hernia in pigs. Can J Genet Cytol,21,9-19
    [15]Gatphayak, et al. Present Situation of Porcine Hernia inguinalis/scrotalis in Thailand. The Global Food & Product Chain—Dynamics, Innovations, Conficts, Strategies. Deutscher Tropentag. October 2005.
    [16]Berge S. (1941) The inheritance of paralysed hind legs, scrotal hernia and atresia ani in pigs. Journal of Heredity,32,271-274.
    [17]Huston R, Saperstein G, Schoneweis D and Leipold HW. (1978) Congenital defects in pigs. The Veterinary Bulletin,48,645-674.
    [18]Technical Information (2010)Understanding Inguinal and Scrotal Hernias. Written on 20 Dec, 2010 at 7:51 in Technical Information http://Swineweb.com
    [19]Clarnette TD, Sugita Y and Hutson JM. (1997) Genital anomalies in human and animal models reveal the mechanisms and hormones governing testicular descent. British Journal of Urology,79, 99-112.
    [20]Ivell R and Hartung S. (2003) The molecular basis of cryptorchidism. Molecular Human Reproduction,9,175-181.
    [21]Hutson JM and Hasthorpe S. (2005) Testicular descent and cryptorchidism:the state of the art in 2004. Journal of Pediatric Surgery,40,297-302.
    [22]Hutson JM, Sasaki Y, Huynh J, Yong E and Ting A. (2004) The gubernaculum in testicular descent and cryptorchidism. The Turkish Journal of Pediatrics,46, Suppl,3-6.
    [23]Heyns CF, Human HJ, Werely CJ and DeKlerk DP. (1990) The glycosaminoglycans of the gubernaculum during testicular descent in the fetus. The Journal of Urology,143,612-617.
    [24]Van der Schoot P and Elger W. (1992) Androgen-induced prevention of the outgrowth of cranial gonadal suspensory ligaments in fetal rats. Journal of Andrology,3,534-42.
    [25]Tanyel FC. (2004b) The descent of testis and reason for failed descent. The Turkish Journal of Pediatrics, Suppl,7-17.
    [26]Nef S and Parada L. (1999) Cryptorchidism in mice mutant from INSL3. Nature Genetics,22, 295-299.
    [27]Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, Engel W and Adham IM. (1999) Targeted disruption of the INSL3 gene causes bilateral cryptorchidism. Molecular Endocrinology,13,681-91
    [28]Kubota Y, Nef S, Farmer PJ, Temelcos C, Parada LF and Hutson JM. (2001) Leydig insulin-like hormone and gubernacular development and testicular descent. The Journal of Urology,165, 1673-1675.
    [29]Smith KJ, Wade JD, Claasz AA, Otvos L Jr, Temelcos C, Kubota Y, Hutson JM, Tregear GW and Bathgate RA. (2001) Chemical synthesis and biological activity of rat ins13. Journal of Peptide Science,7,495-501.
    [30]Tomiyama H, Hutson JM, Truong A and Agoulnik AI. (2003) Transabdominal testicular descent is disrupted in mice with deletion of insulin-like factor 3 receptor. Journal of Pediatric Surgery, 38,1793-1798.
    [31]Kubota Y, Temelcos C, Bathgate RA, Smith KJ, Scott D, Zhao C and Hutson JM. (2002) The role of Insulin 3, testosterone, MIS and relaxin in rat gubernacular growth. Molecular Human Reproduction,8,900-905.
    [32]Papanastasopoulos P, Panagidis A, Verras D, Repanti M, Georgiou G.(2009)A case of complete androgen insensitivity syndrome presenting with incarcerated inguinal hernia:an immunohistochemical study. Fertil Steril.2009 Sep;92(3):1169.e11-4
    [33]李建宏、祁艳卫、蒋学武、段守兴、张镟、杨新彬、唐水平.(2011)胰岛素样因子3对体外培养的小鼠睾丸引带细胞增殖和收缩活性的影响,实用儿科临床杂志,2011,12,第26卷第23期P1781-1783
    [34]Ramasam yM, D i Pilla N, Yap T. Enlargem ent of the processus vag ina lis dur ing testicular descent in rats. Ped ia tr Sug,2001,17:312..315
    [35]H rabovszky Z, D i Pilla N, Yap TA. The ro le of the gubernacu lar bu 1b in crem asterm use le deve lopm en t o f the rat. Rec,2002,267:159..165.
    [36]Huttson JM. Testicular feminization:a model for testicular descent in mice and men. J Pediatr Surg,1986,21:195-198.
    [37]G rocock CA, Cha rlton HM, Pike MC. Role of the feta 1 pituitary in cryptorch idisminduced by exogenousm aterna 1 oestrogen during pregnancy in m ice. J Reprod Fert,1988,83:295-300.
    [38]Park WH, Hutson JM. The gubernaculum show s rhy thm ic contractility and active m ovement during testicu lar descent. J Pediatr Surg,1991,26:615.-617.
    [39]Terada M, Hutson JM, Watts LM. Character ization o f the gubernacular contractile response to ca lcitonin genere la ted peptide in the mouse. J Pediatr Surg,1995,30:730..733.
    [40]Hutson JM, Hasthorpe S and Heyns CF. (1997) Anatomical and functional aspects of testicular descent and cryptorchidism. Endocrine Reviews,18,259-280.
    [41]丘敏梅、钟德玝.(2010)腹股沟疝的病因学研究进展.现代生物医学进展Vo1.10 NO.14JUL.2010,P2773-2775
    [42]章立、杨斌等.(2009)降钙素基因相关多肽与先天性腹股沟斜疝发病因素的研究进展.中华疝和腹壁外科杂志(电子版)2009年2月第3卷第1期P83-87
    [43]Rahman N, Lakhoo K.(2009) Patent processus vaginalis:a window to the abdomen.Afr J Paediatr Surg.2009 Jul-Dec;6(2):116-117
    [44]Ramasamy M, Di Pilla N, Yap T, Hrabovszky Z, Farmer PJ, Hutson JM. (2001) Enlargement of the processus vaginalis during testicular descent in rats. Pediatr Surg Int,17,312-315.
    [45]Hutson JM, Hasthorpe S. (2005) Abnormalities of testicular descent. Cell Tissue Res,322, 155-158.
    [46]Hughes I A, Acerini CL. (2008) Factors controlling testis descent. Eur J Endocrinol,159 Suppl 1, S75-82
    [47]Backhouse KM. (1982) Development and descent of the testis. Eur J Pediatr,139,249-252.
    [48]Robert K, George CE. (2007) Anatomy, Histology & Cell Biology:PreTest Self-Assessment and Review. McGraw-Hill Medical, ISBN:0071471855
    [49]Tanyel FC, Dagdeviren A, Muftiioglu S, Gursoy MH, Yilruker S, Buyiikpamukcu N. (1999) Inguinal hernia revisited through comparative evalution of peritoneum, processus vaginalis, and sacs obtained from children with hernia, hydrocele, and undescended testis. J Pediatr Surg,34, 552-555
    [50]Tanyel FC, Muftuoglu S, Dagdeviren A, Kaymaz FF, Buyukpamukcu N. (2001b) Myofibroblasts defined by electron microscopy suggest the dedifferentiation of smooth muscle within the sac walls associated with congenital inguinal hernia. BJU Int,87,251-255
    [51]Tanyel FC, Erdem S, Buyukpamukcu N, Tan E. (2002) Smooth muscle within incomplete obliterations of processus vaginalis lacks apoptotic nuclei. Urol Int,69,42-45
    [52]Mouravas VK, Koletsa T, Sfougaris DK, Philippopoulos A, Petropoulos AS, Zavitsanakis A, Kostopoulos 1.(2010)Smooth muscle cell differentiation in the processus vaginalis of children with hernia or hydrocele. hernia.2010 Apr; 14(2):187-91.
    [53]Orrenius S, Zhivotovsky B, Nicotera P. (2003) Regulation of cell death:the calcium-apoptosis link. Nat Rev Mol Cell Biol,4,552-565.
    [54]Tanyel FC, Ulusu NN, Tezcan EF, Buyukpamukcu N. (2003) Total calcium content of sacs associated with inguinal hernia, hydrocele or undescended testis reflects differences dictated by programmed cell death. Urol Int,70,211-215
    [55]Tanyel FC, Okur HD. (2004) Autonomic nervous system appears to play a role in obliteration of processus vaginalis. Hernia,8,149-154
    [56]Fuller GM, Shields D (1998) The cell cycle and cell division. In:Fuller GM, Shields D, Molecular Basis of Medical Cell Biology. Appleton & Lange, Stamford, pp 106-123.
    [57]Tanyel FC, Ertunc M, Buyukpamukcu N, Onur R. (2001a) Mechanisms involved in contractile differences among cremaster muscles according to localization of testis. J Pediatr Surg,36, 1551-1560.
    [58]Beuermann C, Beck J, Schmelz U, Dunkelberg H, Schotz E, Brenig B, Knorr C. (2009) Tissue calcium content in piglets with inguinal or scrotal hernias or cryptorchidism. J Comp Pathol,140, 182-186.
    [59]van Wessem KJ, Simons MP, Plaisier PW, Lange JF. (2003) The etiology of indirect inguinal hernias:congenital and/or acquired? Hernia,7,76-79
    [60]Rahman N, Lakhoo K. (2009) Patent processus vaginalis:a window to the abdomen. Afr J Paediatr Surg,6,116-117.
    [61]Peacock EE and Madden 1W. (1974) Studies on the biology and treatment of recurrent inguinal hernia:II. morphological changes. Annals of Surgery,179,567-571.
    [62]江志鹏、陈双等,(2010)腹前下壁腹横筋膜及其相关结构的解剖学研究现状。中华疝和腹壁外科杂志(电子版)2010 Vo1.4 No.1 P.69-74
    [63]Pans A, Pierard GE, Albert A and Desaive C. (1997) Adult groin hernias:new insight into their biomechanical characteristics. European Journal of Clinical Investigation,27,863-868.
    [64]Pans A, Albert A, Lapiere CM and Nusgens B. (2001) Biochemical study of collagen in adult groin hernias. Journal of Surgical Research,95,107-113.
    [65]Rodrigues Jr AJ, Rodrigues CJ, Cunha ACP and Yoo JH. (2002) Quantitative analysis of collagen and elastic fibers in transversalis fascia in direct and indirect inguinal hernia. Revista do Hospital das Clinicas,57,265-270.
    [66]Rodrigues CJ, Yoo JH and Rodrigues Jr AJ. (2006) Elastin (ELN) gene point mutation in patients with inguinal hernia. Genetics and Molecular Biology,29,1,45-4
    [67]Klinge U, Zheng H, Si ZY, Schumpelick V, Bhardwaj R and Klosterhalfen B. (1999a) Altered collagen synthesis in fascia transversalis of patiens with inguinal hernia. Hernia,4,181-187.
    [68]Klinge U, Zheng H, Si ZY, Schumpelick V, Bhardwaj R and Klosterhalfen B. (1999b) Synthesis of type Ⅰ and Ⅲ collagen, expression of fibronectin and matrix metalloproteinases-1 and-13 in hernial sac of patients with inguinal hernia. International Journal of Surgical Investigation,1, 219-227.
    [69]Klinge U, Zheng H, Si ZY, Schumpelick V, Bhardwaj R and Klosterhalfen B. (1999c) Expression of the extracellular matrix proteins collagen Ⅰ, collagen Ⅲ and fibronectin and matrix metalloproteinase-1 and-13 in the skin of patients with inguinal hernia. European Surgical Research,31,480-490
    [70]Rosch R, Klinge U, Si Z, Junge K, Klosterhalfen B and Schumpelick V. (2002) A role for the collagen Ⅰ/Ⅲ and MMP-1/-13 genes in primary inguinal hernia? BMC Medical Genetics,3,2.
    [71]Wiedemann H, Chung E, Fujii T, Miller EJ and Kuhn K. (1975) Comparative electronmicroscope studies on type-Ⅲ and type-I collagens. European Journal of Biochemistry,51,363-368
    [72]Berliner SD, An approach to groin hernia [J]. Surg Clin North Am,1984,64(2):197-213
    [73]Fleischmajer R, Perlish JS, Burgeson RE, Shaikh-Bahai F and Timpl R. (1990) Type I and type Ⅲ collagen interactions during fibrillogenesis. Annals of the New York Academy of Science,580, 161-175.
    [74]Ajabnoor MA, Mokhtar AM, Rsfee AA, et al. Defective collagen metablism in Saudi patients with hernia [J]. Ann Clin Biochem,1992,29(Pt4):430-436
    [75]Pans A. New prospects in the etiology of groin hernias [J].Chirurgie,1999,124(3):529-544
    [76]Morris-Stiff G, Coles G, Moore R, Jurewicz A and Lord R. (1997) Abdominal wall hernia in autosomal dominant polycystic kidney disease. The British Journal of Surgery,84,615-617.
    [77]Uden A and Lindhagen T. (1988) Inguinal herniation in patients with congenital dislocation of the hip:a sign of general connective tissue disorder. Acta Orthop Scand,59,667-668.
    [78]Bendavid R. (2004) The unified theory of hernia formation. Hernia,8,171-176.
    [79]Jansen PL, Mertens Pr P, Klinge U and Schumpelick V. (2004) The biology of hernia formation. Surgery,1,1-4.
    [80]Du FX, Mathialagan N, Dyer CJ, Grosz MD, Messer LA, Clutter AC, Lohuis MM, Byatt JC. (2004a) Discovery and mapping of a QTL affecting scrotal hernia incidence on chromosome 2 in domestic pigs.29th International Conference on Animal Genetics, ISAG, Tokyo,123.
    [81]Du FX, Mathialagan N, Dyer CJ, Grosz MD, Messer LA, Wang T, Clutter AC, Lohuis MM, Byatt JC. (2004b) Mapping genes affecting scrotal hernia condition in domestic pigs. J Anim Sci Vol.82, Suppl.1/J Diary Sci Vol.87, Suppl.1/Poult Sci,83,453.
    [82]Knorr C, Bornemann-Kolatzki K and Brenig B. (2006) Genome-wide scan for porcine rupture identifies association with several chromosomal regions. In:Plant and Animal Genome XIV; San Diego.
    [83]Ding NS, Mao HR, Guo YM, Ren J, Xiao SJ, Wu GZ, Shen HQ, Wu LH, Ruan GF, Brenig B, Huang LS. (2009b) A genome-wide scan reveals candidate susceptibility loci for pig hernias in an intercross between White Duroc and Erhualian. J Anim Sci,87,2469-2474.
    [84]Stinckens, Anneleen, Janssens, Steven, Spincemaille, Geert, Buys, Nadine.(2011) A whole genome association study using the 60K porcine SNP beadchip reveals candidate susceptibility loci for scrotal hernia in pigs, EAAP edition:62 location:Stavanger, Aug-2011, Division of Gene Technology, KULeuven publication
    [85]Beck J, Bornemann-Kolatzki K, Knorr C, Taeubert H, Brenig B. (2006) Molecular characterization and exclusion of porcine GUSB as a candidate gene for congenital hernia inguinalis/scrotalis. BMC Vet Res,2,14.
    [86]Germerodt M, Beuermann C, Rohrer GA, Snelling WM, Brenig B, Knorr C. (2008) Characterization and linkage mapping of 15 porcine STS markers to fine-map chromosomal regions associated with hernia inguinalis/serotalis. Anim Genet,39,671-672
    [87]Du ZQ, Zhao X, Vukasinovic N, Rodriguez F, Clutter AC, Rothschild MF. (2009) Association and haplotype analyses of positional candidate genes in five genomic regions linked to scrotal hernia in commercial pig lines. PloS One,4, e4837
    [88]Zhao X, Du ZQ, Vukasinovic N, Rodriguez F, Clutter AC, Rothschild MF. (2009) Association of HOXA10, ZFPM2, and MMP2 genes with scrotal hernias evaluated via biological candidate gene analyses in pigs. Am J Vet Res,70,1006-1012.
    [89]吴国灶.(2009)猪胶原基因COL1A1、COL21A1与猪阴囊疝的遗传相关研究.江西农业大学硕士学位论文,2009.
    [90]Moore SS, Li C, Basarab J, et al, Fine mapping of quantitative trait loci and assessment of positional candidate genes for backfat on bovine chromosome 14 in a commercial line of Bos taurus[J]. Anim Sci 2003,81(8):1919-1925.
    [91]Andersson L, Georges M. Domestic-animal genomics:deciphering the genetics of complex traits[J]. Nat Rev Genet 2004,5(3):202-212.
    [92]Uleberg E, Wideroe IS, Grindflek E, et al., Fine mapping of a QTL for intramuscular fat on porcine chromosome 6 using combined linkage and linkage disequilibrium mapping[J]. Anim Breed Genet 2005,122(1):1-6.
    [93]Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes[J]. Nat Rev Genet 2009,10(6):381-391.
    [94]Andersson L. Genome-wide association analysis in domestic animals:a powerful approach for genetic dissection of trait loci[J]. Genetica 2009,136(2):341-349.
    [95]McCarthy MI, Abecasis GR, Cardon LR, et al.. Genome-wide association studies for complex traits:consensus, uncertainty and challenges [J]. Nat Rev Genet 2008,9(5):356-369.
    [96]涂欣,石立松,汪樊,王擎。全基因组关联分析的进展与反思[J]。生理科学进展,2010,41(2)87—94
    [97]Hirschhorn J.N.& Daly M.J. (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6,95-108.
    [98]Lindblad-Toh K., Wade C.M., Mikkelsen T.S., Karlsson E.K. et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438,803-819.
    [99]Amaral A.J., Megens H.J., Crooijmans R.P., Heuven H.C.& Groenen M.A. (2008) Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179,569-79.
    [100]Druet T.& Georges M. (2010) A hidden markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics 184,789-98.
    [101]Tewhey R., Bansal V., Torkamani A., Topol E.J.& Schork N.J. (2011) The importance of phase information for human genomics. Nat Rev Genet 12,215-23.
    [102]Meuwissen T.H.& Goddard M.E. (2000) Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155,421-30.
    [103]Zhang Z.Y., Sartelet Z., Guillaume F., Charlier C, George M., Farnir F.& Duret T. (2012) Ancestral haplotype-based association mapping with generalized linear mixed models accounting for stratification. Bioinformatics Submitted for publication.
    [104]Henderson C.R. (1984) Applications of linear models in animal breeding. University of Guelph, Guelph, Ont.
    [105]Stephens M.& Balding D.J. (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10,681-90.
    [106]Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Mailer J., Sklar P., de Bakker P.I., Daly M.J.& Sham P.C. (2007) PLIMK:a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81,559-75.
    [107]Aulchenko Y.S., Ripke S., Isaacs A.& van Duijn C.M. (2007) GenABEL:an R library for genome-wide association analysis. Bioinformatics 23,1294-6.
    [108]Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y.& Buckler E.S. (2007) TASSEL:software for association mapping of complex traits in diverse samples. Bioinformatics 23,2633-5.
    [109]Ma L., Runesha H.B., Dvorkin D., Garbe J.R.& Da Y. (2008) Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies. BMC Bioinformatics 9,315.
    [110]Zhao H.H., Fernando R.L.& Dekkers J.C. (2007) Power and precision of alternate methods for linkage disequilibrium mapping of quantitative trait loci. Genetics 175,1975-86.
    [111]Archibald AL, Haley CS, Brown JF, Couperwhite S, McQueen HA, et al. (1995) The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome 6:157-175.
    [112]Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, et al. (1996) A comprehensive map of the porcine genome. Genome Res 6:371-391.
    [113]Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, et al. (2005) Pigs in sequence space:a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70.
    [114]Humphray SJ, Scott CE, Clark R, Marron B, Bender C, et al. (2007) A high utility integrated map of the pig genome. Genome Biol 8:R139.
    [115]Bischoff SR, Tsai S, Hardison NE, York AM, Freking BA, et al. (2008) Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays. BMC Genomics 9:252.
    [116]Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, et al. (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4:e6524.
    [117]Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851-1858.
    [118]Visscher PM,Brown MA,McCarthy MI,et al.(2012)Five years of GWAS discovery.Am J Hum Genet.13;90(1):7-24
    [119]Karlsson EK, Baranowska I, Wade CM, et al, Efficient mapping of mendelian traits in dogs through genome-wide association[J]. Nat Genet 2007,39(11):1321-1328.
    [120]Drogemuller C, Karlsson EK, Hytonen MK, et al. A mutation in hairless dogs implicates FOX13 in ectodermal development[J]. Science 2008,321(5895):1462.
    [121]Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog[J].Nature 2005,438(7069):803-819.
    [122]Salmon Hillbertz NHC, Isaksson M, Karlsson EK, et al. Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback Nature genetics.2007 Nov:39(11):1318-20
    [123]Wiik, A. C. et al. A deletion in nephronophthisis 4 (NPHP4) is associated with recessive cone-rod dystrophy in standard wire-haired dachshund[J].Genome Res.200818,1415-1421
    [124]Awano, T. et al. Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis[J]. Proc. Natl Acad. Sci. USA 2009 106,2794-2799
    [125]Cadieu E, Neff MW, Quignon P, et al. Coat variation in the domestic dog is governed by variants in three genes[J]. Science 2009 326:150-153.
    [126]Parker HG et al. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs[J]. Science 2009 325:995-998.
    [127]Charlier, C. et al. Highly effective SNP-based association mapping and management of recessive defects in livestock[J]. Nature Genet 2008.40,449-454.
    [128]Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan et al.2009. Development and characterization of a high density SNP genotyping assay for cattle. PLoS ONE 4:e5350.
    [129]Ren J, Mao HR, Zhang ZY, et al.A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs[J].Heredity 2010.In press
    [130]Riquet J, Coppieters W, Cambisano N, et al., Fine-mapping of quantitative trait loci by identity by descent in outbred populations:application to milk production in dairy cattle [J]. Proc Natl Acad Sci U S A 1999,96(16):9252-9257.
    [131]Farnir F, Grisart B, Coppieters W, et al. Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees:revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14 [J]. Genetics 2002,161(1):275-287.
    [132]Berg F, Stern S, Andersson K, et al. Refined localization of the FAT1 quantitative trait locus on pig chromosome 4 by marker-assisted backcrossing [J]. BMC Genet 2006,7:17.
    [133]Barendse, W. et al. A validated whole-genome association study of efficient food conversion in cattle[J]. Genetics.2007 176,1893-1905.
    [134]Kolbehdari, D. et al. A whole-genome scan to map quantitative trait loci for conformation and functional traits in Canadian Holstein bulls [J]. Dairy Sci.2008 91,2844-2856.
    [135]Daetwyler, H. D., Schenkel, F. S., Sargolzaei, M.& Robinson, J. A. A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map[J]. Dairy Sci 2008.91,3225-3236
    [136]Li Jiang., Jianfeng Liu., Dongxiao Sun., Peipei Ma, Xiangdong Ding, Ying Yu, Qin Zhang*.(2010) Genome Wide Association Studies for Milk Production Traits in Chinese Holstein Population.PLoS ONE, October 2010/Volume 5, Issue 10, e13661
    [137]Wood, S. H., X. Y. Ke, T. Nuttall, N. McEwan, W. E. Ollier et al.2009. Genome-wide association analysis of canine atopic dermatitis and identification of disease related SNPs. Immunogenetics 61:765-772.
    [138]Bannasch, D., A. Young, J. Myers, K. Truve, P. Dickinson et al.2009. Localization of canine Brachycephaly using an across breed mapping approach. PLoS ONE 5:e9632.
    [139]Wilbe, M., P. Jokinen, K. Truve, E. H. Seppala, E. K. Karlsson et al.2010. Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex. Nat. Genet.42:250-254.
    [140]Adam R. Boyko et al A Simple Genetic Architecture Underlies Morphological Variation in Dogs[J]. PLoS Biol.2010 8(8):e1000451
    [141]Amaury Vaysse, Abhirami Ratnakumar, Thomas Derrienl,et al. (2011)Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping. PLoS Genetics, October 2011/Volume 7, Issue 10, e1002316
    [142]Naomi Duijvesteijn*1, Egbert F Knoll, Jan WM Merksl, Richard PMA Crooijmans2, Martien AM Groenen2,Henk Bovenhuis2 and Barbara Harliziusl (2010)A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genetics 2010,11:42
    [143]Eli Grindflekl*, Sigbjorn Lien2,3, Hanne Hamlandl,3, Marianne HS Hansenl,3, Matthew Kent2,3, Maren van Sonl and Theo HE Meuwissen2 (2011) Large scale genome-wide association and LDLA mapping study identifies QTLs for boar taint and related sex steroids BMC Genomics 2011,12:362
    [144]Ramayo Caldas, Y. Mercade, A. Castello, A Rodriguez, C Rodriguez, C Casellas,J (2011) Genome-wide association study on growth, carcass and meat quality in an Iberian x Landrace cross [2011] http://agris.fao.org/aos/records/ES2011000381
    [145]Onteru SK, Fan B, Nikkila MT, Garrick DJ, Stalder KJ, Rothschild MF.(2011) Whole-genome association analyses for lifetime reproductive traits in the pig.J Anim Sci.2011 Apr;89(4):988-995.
    [146]Bin Fan, Suneel K. Onterul, Zhi-Qiang Du, Dorian J. Garrickl, Kenneth J. Stalderl, Max F. Rothschild.(2011)Genome-Wide Association Study Identifies Loci for Body Composition and Structural Soundness Traits in Pigs. PLoS ONE February 2011.Volume 6, Issue 2, e14726
    [147]Vivi R Gregersenl, Lene N Conleyl, Kirsten K Sorensenl, Bernt Guldbrandtsenl, Ingela H Velander2 and Christian Bendixen. (2012) Genome-wide association scan and phased haplotype construction for quantitative trait loci affecting boar taint in three pig breeds. BMC Genomics 2012,13:22 doi:10.1186/1471-2164-13-22
    [148]Barendse, W., A. Reverter, R. J. Bunch, B. E. Harrison, W. Barris and M. B. Thomas.2007. A validated whole-genome association study of efficient food conversion in cattle. Genetics 176:1893-1905.
    [149]Settles, M., R. Zanella, S. D. McKay, R. D. Schnabel, J. F. Taylor et al.2009. A whole genome association analysis identifies loci associated with Mycobacterium avium subsp. Paratuberculosis infection status in US Holstein cattle. Anim. Genet.40:655-662.
    [150]Calus, M. P. L.2009. Genomic breeding value prediction:methods and procedures. Animal 4:157-164.
    [151]Feugang, J. M., A. Kaya, G. P. Page, L. Chen, T. Mehta et al.2009. Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility. BMC Genomics 10:176.
    [152]Hayes, B. J., P. J. Bowman, A. J. Chamberlain, K. Savin, C. P. van Tassell et al.2009a. A validated genome wide association study to breed cattle adapted to an environment altered by climate change. PLoS ONE 4:e6676.
    [153]Snelling, W. M., M. F. Allan, J. W. Keele, L. A. Kuehn, T. McDaneld, T. P. L. Smith, T. S. Sonstegard, R. M. Thallman and G. L. Bennett.2010. Genome-wide association study of growth in crossbred beef cattle. J. Anim. Sci.88:837-848.
    [154]Murdoch, B. M., M. L. Clawson, W. W. Laegreid, P. Stothard, M. Settles et al.2010. A 2cM genome-wide scan of European Holstein cattle affected by classical BSE. BMC Genet.11:20.
    [155]Sherman, E. L., J. D. Nkrumah and S. S. Moore.2010. Whole genome single nucleotide polymorphism associations with feed intake and feed efficiency in beef cattle. J. Anim. Sci. 88:16-22.
    [156]Pant, S. D., F. S. Schenkel, C. P. Verschoor, Q. You, D. F. Kelton et al..2010. A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle. Genomics 95:176-182.
    [157]Gorbach, D. M., W. Cai, J. C. M. Dekkers, J. M. Young, D. J. Garrick et al.2009. Whole-genome analyses for genes associated with residual feed intake and related traits utilizing the PorcineSNP60 BeadChip. Pig Genome Ⅲ Conference. November 2-4. Hinxton, UK. Abstract No.11.
    [158]Onteru, S. K., B. Fan, D. Garrick, K. J. Stalder and M. F. Rothschild.2009. Whole genome analyses for pig reproductive traits using the PorcineSNP60 BeadChip. Pig Genome Ⅲ Conference. November 2-4, Hinxton, Cambridge, UK. Abstract No.5.
    [159]Bin Fan, Suneel K. Onterul, Zhi-Qiang Dul, Dorian J. Garrickl, Kenneth J. Stalderl, Max F. Rothschild.(2011) Genome-Wide Association Study Identifies Loci for Body Composition and Structural Soundness Traits in Pigs. PLoS ONE February 2011, Volume 6, Issue 2, e 14726
    [160]Zhao, X., H. T. Blair, S. Onteru, S. A. Piripi, M. F. Rothschild et al.2010. A genome wide association study and fine mapping for Chondrodysplasia of Texel sheep. The International Plant & Animal Genome ⅩⅧ Conference. January 9-13, San Diego, California. P579.
    [161]Becker, D., J. Tetens, A. Brunner, D. Burstel, M. Ganter et al.2010. Microphthalmia in Texel sheep is associated with a missense mutation in the paired-like homeodomain 3 (PITX3) gene. PLoS ONE 5:8689.
    [162]Sun LD, Cheng H, Wang ZX, et al. (2010) Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet.42(11):1005-9.
    [163]Zeggini E, Scott LJ, Saxena R, et al. (2010) Meta-analysis of genomewide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet, 40(5):638-645.
    [164]Burton PR, Clayton DG, Cardon LR, et al. (2007) Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet,39(11):1329-1337.
    [165]Menashe I, Maeder D, Garcia-Closas M, et al. (2010) Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade. Cancer Res,70(11):4453-4459.
    [166]Tang WW, Wu XB, Jiang R, et al. (2009) Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy. PLoS Genet,5(5):e1000464.
    [167]Maxam AM, GilbertW. A new method for sequencing DNA. Proc Natl Acad Sci USA,1977,74 (2):560-564.
    [168]Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-ter-minating inhibitors. Proc Natl Acad Sci USA,1977,74 (12):5463-5467.
    [169]Schuster SC. Next-generation sequencing transforms today's biology. NatMethods,2008,5(1): 16-18.
    [170]Shendure J, J i H. Next-generation DNA sequencing. Nat Biotechn-ol,2008,26 (10) 1135-1145.
    [171]Rubin C.J., Zody M.C., Eriksson J., Meadows R.S., Sherwood E., Webster M.T.Jiang L. Ingman M., Sharpe T., Ka S., Hallbook F., Besnier F., Carlborg O., Bedhom B., Tixier-Boichard M., Jensen P., Siegel P., Lindblad-Toh K.& Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010,464:587-591.
    [172]Andreia J. Amaral, Luca Ferretti, Hendrik-Jan Megens, Richard P. M. A. Crooijmans, Haisheng Nie, Sebastian E. Ramos-Onsins, Miguel Perez-Enciso, Lawrence B. Schook, Martien A. M. Groenen. Genome-Wide Footprints of Pig Domestication and Selection Revealed through Massive Parallel Sequencing of Pooled DNA. [J] PLOS ONE 2011,6(4):e14782
    [173]A Esteve-Codina, R Kofler, H Himmelbauer, L Ferretti, A P Vivancos, M A M Groenen, J M Folch, M C Rodriguez and M Perez-Enciso. Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. [J] Heredity 2011 107,256-264
    [174]Harris TD, Buzby PR, Babcock H, et al. Single-molecule DNA sequencing of a viral genome. Science,2008,320 (5872):106-109.
    [175]Rusk N. Cheap third-generation sequencing. Nature,2009,6 (4):244-245.
    [176]Jansen RC, Nap JP. Genetical genomics:the added value from segregation. Trends Genet,2001, 17(7):388391.
    [177]Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297-302(2003).
    [178]Rosa GJM, Leon N, Rosa AJM. Review of microarray experimental design strategies for genetical genomics studies. Physiol Genomics,2006,28(1:15-23.
    [179]Passador-Gurgel, G., Hsieh, W.P., Hunt, P., Deighton, N.& Gibson, G. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. Nat. Genet.39,264-268 (2007).
    [180]Julien F Ayroles, et al. Systems genetics of complex traits in Drosophila melanogaster Nature Genetics 2009 41:299-307.
    [181]Schadt EE, et al. Mapping the Genetic Architecture of Gene Expression in Human Liver. PLoS BIOLOGY 2008,6(5):1020-1032.
    [182]Schadt EE, et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003;422:297-302. [PubMed:12646919]
    [183]Schadt EE, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 2005;37:710-717. [PubMed:15965475]
    [184]Xia Yang, Joshua L. Deignan, Hongxiu Qi, Jun Zhu,Validation of Candidate Causal Genes for Abdominal Obesity Which Affect Shared Metabolic Pathways and Networks Nat Genet.2009 April; 41(4):415-423.
    [185]Enrico Petretto, Rizwan Sarwar, Ian Grieve, Han Lu et al. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat Genet.2008 May; 40(5):546-552.
    [186]Matthias Heinig Enrico Petretto, Chris Wallace, Leonardo Bottolo et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 2010 467:460-464.
    [187]Jonathan K. Pritchard, Matthew Stephens and Peter Donnelly. (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics 155:945-959
    [188]G. EVANNO, S. REGNAUT and J. GOUDET Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study Molecular Ecology (2005) 14 2611-2620
    [189]Eden R. Martin, Stephanie A. Monks, Liling L. Warren,and Norman L. Kaplan3 A Test for Linkage and Association in General Pedigrees:The Pedigree Disequilibrium Test Am. J. Hum. Genet.67:146-154,2000
    [190]Richard S. Spielman, Ralph E. McGinnis,and Warren J. Ewenst. (1993) Transmission Test for Linkage Disequilibrium:The Insulin Gene Region and Insulin-dependent Diabetes Mellitus (IDDM). Am. J. Hum. Genet.52:506-516
    [191]Yurii S. Aulchenkol,_, Stephan Ripke2, Aaron Isaacs l and Cornelia M. van Duijnl. GenABEL: an R library for genome-wide association analysis. BIOINFORMATICS Vol.23 no.10 2007, pages 1294-1296
    [192]Carine Nezer, Catherine Collette, Laurence Moreau, Benoit Brouwers, Jong-Joo Kim, Elisabetta Giuffra, Nadine Buys, Leif Andersson and Michel Georges.Haplotype Sharing Refines the Location of an Imprinted Quantitative Trait Locus With Major Effect on Muscle Mass to a 250-kb Chromosome Segment Containing the Porcine IGF2 Gene. Genetics 165: 277-285 (September 2003)
    [193]Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate. Kobayashi M, Sugumaran G, Liu J, Shworak NW, Silbert JE, Rosenberg RD. J Biol Chem.1999 Apr 9;274(15):10474-80.
    [194]Proteoglycans in the developing brain:new conceptual insights for old proteins.Bandtlow CE, Zimmermann DR.Physiol Rev.2000 Oct;80(4):1267-90. Review.
    [195]Maeda N, Fukazawa N, Hata T. The binding of chondroitin sulfate to pleiotrophin/heparin-binding growth-associated molecule is regulated by chain length and oversulfated structures. J Biol Chem.2006 Feb 24;281(8):4894-902.
    [196]Fujimoto T, Kawashimsa H, Tanak T, et al. CD44 binds a chondroitin sulfate proteoglycan, aggrecan [J]. Int Immunol,2001,13(3):359
    [197]Rheumatology (Oxford).2011 Dec;50 Suppl 5:v41-8. Diagnosis of the mucoporysaccharidoses. Lehman TJ, Miller N, Norquist B, Underhill L, Keutzer J.
    [198]Ching YP, Pang AS, Lam WH, Qi RZ, Wang JH (2002) Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor. J Biol Chem 277:15237-15240.
    [199]Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, et al. (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics 39: 770-775.
    [200]Ohara-Imaizumi M, Yoshida M, Aoyagi K, Saito T, Okamura T, et al. (2010) Deletion of CDKAL1 Affects Mitochondrial ATP Generation and First-Phase Insulin Exocytosis. PLoS ONE 5(12):e15553. doi:10.1371/journal.pone.0015553
    [201]Gibson G. Rare and common variants:twenty arguments. Nat Rev Genet.2012, 8;13(2):135-45.doi:10.1038/nrg3118.
    [202]Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet.2010.11(6):415-25.
    [203]Pritchard JK, Cox NJ. The allelic architecture of human disease genes:common disease-common variant...or not? Hum Mol Genet.2002 Oct 1;11(20):2417-23.
    [204]Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF, Kruglyak L, Ostrander EA. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res.2004 Dec;14(12):2388-96. Epub 2004 Nov 15.
    [205]Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet.2009 Jun;10(6):381-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700