利用全基因组高通量SNP标记定位猪乳头数和断奶体重QTL
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究构建了二花脸×通城、二花脸×荣昌、二花脸x巴马香和二花脸x沙子岭4个F2资源群体,利用Illumina porcine 60k DNA芯片判定了392头F2代仔猪个体及其亲本的基因型,并对乳头数表型进行了全基因组关联分析以定位猪的乳头数QTL。
     结果表明:13个总乳头数QTL(7个5%基因组显著水平和6个1%基因组显著水平)分别定位于SSC1、SSC3、SSC5、SSC6、SSC7、SSC9、SSC10、SSC12、SSC13和SSC14,其中,位于SSC1、SSC3、SSC5、SSC6、SSC10和SSC12上的8个QTL与前人的定位结果相同,位于SSC7、SSC9、SSC13和SSC14上的5个QTL为新检测到的总乳头数QTL;11个左侧乳头数QTL(2个5%基因组显著水平和9个1%基因组显著水平)分别定位于SSC3、SSC4、SSC7、SSC8、SSC9、SSC10、SSC13、SSC14、SSC15和SSC18,其中,有5个QTL与总乳头数QTL一致,另外,SSC8上的QTL验证了前人的报道,其余染色体上的QTL为首次报道的左侧乳头数QTL;9个右侧乳头数QTL(1个5%基因组显著水平和8个1%基因组显著水平)分别定位于SSC1、SSC3、SSC5、SSC6、SSC7、SSC12和SSC13,其中,有7个QTL与总乳头数QTL相同,另外,SSC1上的QTL与前人的报道相同,其余染色体上的QTL为新发现的右侧乳头数QTL。
     通过最显著关联的SNP标记的F值下降3来确定QTL的临界区域,并通过Ensemble和NCBI网站猪基因组数据库搜寻猪乳头数QTL区域内的位置候选基因,结果发现了RBFOX2、ARID5A、PDIA2、ACTB、DYRKIA、TUBAL3、MYOCD、NEDD9、PPRC1、CUEDC2、CYP17A1和INSIG1共12个位置候选基因,这些结果为深入鉴别控制猪乳头数的因果基因(QTG)提供了重要的参考。
     本研究在四个不同的资源群体中检测到多个不同的影响乳头数的QTL,发现左右侧乳头数QTL大多位于不同染色体区域,且增加乳头数形成的QTL有利等位基因来源于不同的地方猪种始祖,这些结果一方面体现出左右乳头发育的不对称性,另一方面揭示出乳头数遗传基础的复杂性。
     本研究构建了二花脸×通城、二花脸×荣昌、二花脸×巴马香和二花脸×沙子岭4个F2资源群体,利用Illumina porcine 60k DNA芯片判定了392头F2代仔猪个体及其亲本的基因型,并利用仔猪45日龄断奶体重表型进行了全基因组关联分析以定位仔猪45日龄断奶体重QTL,结果在4个F2资源群体中定位到了9个(5个5%基因组显著水平,4个1%基因组显著水平)影响仔猪45日龄断奶体重的QTL,它们分别位于SSC1、SSC2、SSC5、SSC7、SSC11和SSC14,其中在二花脸×巴马香资源群体中定位到正效应最大的QTL,位于SSC7的103.85 Mb处;在二花脸×沙子岭F2资源群体中检测到负效应最大的QTL,位于SSC14的43.77 Mb处。
     前人研究将28-42日龄仔猪断奶体重QTL定位于SSC1、SSC2、SSC4、SSC7、SSC9、SSC15、SSC17和SSC18,本研究也在SSC1、SSc2和SSC7这3条染色体上检测到了仔猪断奶体重QTL,这些QTL分别位于二花脸×荣昌资源群体SSC1的291.24 Mb处、二花脸×沙子岭资源群体SSC2的40.31 Mb处、二花脸×通城资源群体SSC7的7.23Mb、二花脸×荣昌资源群体SSc7的28.13 Mb和二花脸x巴马香资源群体SSC7的103.85 Mb处,而位于二花脸×荣昌猪F2资源群体SSC7上的断奶体重QTL与前人的定位结果相同。
     在Ensemble和NCBI网站的猪基因组数据库中搜寻45日龄仔猪断奶体重QTL置信区间内的位置候选基因,结果表明AGPAT1、RNF5、NOTCH4、DPF3、CYP2R1、COPB1、PDE3B、NOP2和GDF3等9个基因可作为影响仔猪断奶体重的位置候选基因。这些结果为全面揭示断奶体重的分子遗传机理和最终鉴别控制断奶体重的因果突变位点提供了有利的前期工作基础。
Four F2 resource populations of Erhualian×Tongcheng, Erhualian×Rongchang, Erhualian×Bamaxiang and Erhualian×Shaziling were constructed, and genomic DNA of 392 piglets and their parents and grandparents was genotyped with Illumina porcine 60k DNA chips. Genome-wide association analysis was conducted to detect QTL for teat number in pigs.
     Results showed that thirteen QTLs for total teat number including seven at 5% and six at 1% genome-wide significance level were mapped to SSC1, SSC3, SSC5, SSC6, SSC7, SSC9, SSC10, SSC12, SSC13 and SSC14. Eight QTLs on SSC1, SSC3, SSC5, SSC6, SSC10 and SSC12 were overlaped with the previous QTLs, and 5 QTLs on SSC7, SSC9, SSC13 and SSC14 were detected only in this study. Eleven QTLs for teat number at left side including two at 5% and nine at 1% genome-wide significance level were detected on SSC3, SSC4, SSC7, SSC8, SSC9, SSC10, SSC13, SSC14, SSC15 and SSC18, and 5 Of the 11 QTLs were overlaped with the QTLs for total teat number, QTL for left teat number on SSC8 was consistent with the previous reports, and the other chromosomes including SSC3, SSC4, SSC7, SSC9, SSC10, SSC13, SSC14, SSC15 and SSC18 contained novel QTLs for this trait. Nine QTLs for teat number at right side including one at 5% and eight at 1% genome-wide significance level were detected on SSC1, SSC3, SSC5, SSC6, SSC7, SSC12 and SSC13, and of them,7 QTLs were overlaped with the QTLs for total teat number, QTL on SSC1 confirmed previous report, and QTLs for right teat number on SSC3, SSC5, SSC6, SSC7, SSC12 and SSC13 were detected for the first time.
     The confidence intervals of QTL were defined by SNPs with lower F values of 3 compared with the most significantly associated SNP marker. Twelve positional candidate genes within the QTL confidence intervals were characterized for teat number including RBFOX2, ARID5A, PDIA2, ACTB, DYRK1A, TUBAL3, MYOCD, NEDD9, PPRC1, CUEDC2, CYP17A1 and INSIG1. These results would benefit the final characterization of the responsible genes for teat number.
     This study detected multiple QTLs for teat number in 4 F2 resource populations from Chinese indigenous pig crosses. A majority of QTLs for teat number at left and right sides were found in different chromsomal regions. The favourable QTL alleles for increased teat number were originated from different Chinese founder breeds. The results reflected the genetic basis of teat asymmetry and the complex genetic architecture of teat number in pigs.
     Four F2 resource populations including Erhualian x Tongcheng, Erhualian x Rongchang, Erhualian x Bamaxiang and Erhualian x Shaziling intercross were constructed, and genomic DNA of 392 piglets and their parents and grandparents was genotyped with Illumina Porcine 60k DNA chips. Genome-wide association analysis was conducted to detect QTL for body weight of piglets weaned at day 45. Nine QTLs for this trait were mapped to SSC1, SSC2, SSC5, SSC7, SSC11 and SSC14, respectively, including five 5% genome-wide significant QTLs and four 1% genome-wide significant QTLs. The most significant QTL with Erhualian-derived favorable alleles was detected at 103.85 Mb on SSC7 in the Erhualian x Bamaxiang cross, and the most significant QTL with non-Erhualian originated favourable alleles was evidenced at 43.77 Mb on SSC14 in the Erhualian×Shaziling resource population.
     The previous studies showed that the QTLs for body weight of piglets weaned at days 28 to 42 were mapped to SSC1, SSC2, SSC4, SSC7, SSC9, SSC15, SSC17 and SSC18. In this study, QTLs for weaned body weight were also deteced on SSC1, SSC2 and SSC7, including one QTL located at 291.24 Mb on SSC1 in the Erhualian x Rongchang resource population, one at 40.31 Mb on SSC2 in the Erhualian×Shaziling resource population, three at 7.23Mb,28.13 Mb and 103.85 Mb on SSC7 in the Erhualian x Tongcheng, Erhualian x Rongchang and Erhualian x Bamaxiang resource population, respectively, QTL on SSC7 in the Erhualian x Rongchang resource population was consistent with the previous report.
     Positional candidate genes in the QTL regions were characterized from pig genome database on Ensemble and NCBI. Nine positional candidate genes were identified, including AGPAT1, RNF5, NOTCH4, DPF3, CYP2R1, COPB1, PDE3B, NOP2 and GDF3.
     These findings revealed the genetic architecture of weaned body weight and could benefit the final chracterization of the causative genes and mutations for weaned body weight.
引文
[1]. Gelderman H. Investigations on Inheritance of Quantitative in Animals by Gene Markers. I. Methods. Theoretical and Applied Genetics.1975,46:319-330.
    [2]. Lander E S, Schork N J. Genetic dissection of complex traits. Science.1994,265:2037-2048.
    [3]. Andersson-Eklund L, Marklund L, Lundstrom K, Haley C S, Andersson K, Hansson I, Moller M, Andersson L. Mapping quantitative trait loci for carcass and meat quality trait in a wild boar Large White intercross. Journal of Animal Science.1998,3:694-700.
    [4]. 刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的应用.湖北农业科学1998,(1):33-35.
    [5]. 徐宁迎,傅衍.家畜数量性状基因位点定位的常用统计方法.浙江农业科学.2000,3:146-149.
    [6]. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research.1989,12:427-438.
    [7]. Weber J L. Informativeness of human (dC-dA)N(Dg-dT)n polymorphisms. Genomics.1990,7: 524-530.
    [8]. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho E K, Dallaire S, Freeman J L, Gonzalez J R, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald J R, Marshall C R, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville M J, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter N P, Aburatani H, Lee C, Jones K W, Scherer S W, Hurles M E. Global variation in coppy number in the human genome. Nature.2006,23(444):444-454.
    [9]. 孙玉琳,刘飞,赵晓航.拷贝数变异的全基因组关联分析.生物化学与生物物理进展.2009,36(8):968-977.
    [10]. Tanita C. Genome evolution:CNV evolution revisited. Nature reviews Genetics.2008, 9(11):814-815.
    [11]. 李成涛,赵书民,李莉.拷贝数变异研究新进展.中国司法鉴定2009,(4):36-38.
    [12]. 吴志俊,金玮.拷贝数变异:基因组多样性的新形式.遗传2009,31(4):339-347.
    [13]. Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theoretical and Applied Genetics.1976,47:35-39.
    [14]. Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics.1993,135:205-211.
    [15]. Guo Y M, Lee G J, Archibald A L, Haley C S. Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan×Large White populations. Animal Genetics.2008, 39(5):486-495.
    [16]. Jiang C, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995,140:1111-1127.
    [17]. http://www.animalgenome.org/QTLdb/H
    [18]. 鲁绍雄,连林生.畜禽数量性状基因座位的精细定位.中国牛业科学.2006,32(1):38-42.
    [19]. Abdallah J M, Goffinet B, Cierco-Ayrolles C. Linkage disequilibrium fine mapping of quantitative trait loci:a simulation study. Genetics, Selection, Evolution.2003,35(5):513-532.
    [20]. 郭源梅,张勤,任军,周利华.猪F2代资源家系的群体结构对QTL定位的影响.中国农业科学.2011,44(4).
    [21]. Meuwissen T H E, Karlsen A, Lien S, Olsaker I, Goddard M E. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics.2002,161:373-379.
    [22]. Andersson L, Georges M. Domestic-animal genomics:deciphering the genetics of complex traits. Nature reviews Genetics.2004,5(3):202-212.
    [23]. Palaisa K, Morgante M, Tinggey S, Rafalski A. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. The Proceedings of the National Academy of Science of the USA.2004,101:9885-9890.
    [24]. 张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.选择牵连效应分析:发掘重要基因的新思路.中国农业科学2006,39(8):1526-.1535.
    [25].施启顺.主基因研究与畜禽遗传资源开发.自然资源学报.1998,(3):282-285.
    [26]. Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nature reviews Genetics.2001,2:130-138.
    [27]. Glazier A M, Nadeau J H, Aitman T J. Finding genes that underlie complex traits. Science.2002, 298:2345-2349.
    [28]. 肖石军.猪产肉及抗病性状的遗传基础与育种应用研究.[博士学位论文].南昌:江西农业大学,2010.
    [29]. Christian L L. Halothane test for PSS-field application. Proceeding of American Association of Swine Practitioners Conference.1974,6-13.
    [30]. Smith C, Bampton P R. Inheritance of reaction to halothane anesthesiology in pigs. Genetic Research.1977,29:287.
    [31]. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V K, Weiler J E, O'Brien P J, MacLennan D H.Identification of a mutation in porcine ryanodine receptor associated with malignant hy-perthermia. Science.1991,253:448-451.
    [32]. Milan D, Jeon J T, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy P L, Chardon P, Andersson L. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science.2000,288:1248-1251.
    [33]. Sironen A, Thomsen B, Andersson M, Ahola V, Villki J. An intronic insertion in KPL2 result s in aberrant splicing and causes the immotile short-tail sperm defect in the pig. The Proceedings of the National Academy of Science of the USA.2006,3 (13):5006-5011.
    [34]. 师科荣,王爱国,李宁,邓学梅.白色基因座(I)在中国地方猪种毛色遗传中的作用研究.遗传学报.2005,32(3):275-281.
    [35]. Besmer P, Murphy J E, George P C, Qiu F H, Bergold P J, Lederman L, Snyder H W, Brodeur D, Zuckerman E E, Hardy W D. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature.1986,320:415-421.
    [36]. Chabot B, Stephenson D A, Chapman V M, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature.1988, 335:88-89.
    [37]. Johansson M, Ellegren H, Marklund L, Gustavsson U, Ringmar-Cederberg E, Andersson K, Edfors-Lilja I, Andersson L. The gene for dominant white color in the pig is closely linked to ALB and PDGRFRA on chromosome 8. Genomics.1992,14(4):965-969.
    [38]. Sakurai M, Zhou J H, Ohtaki M, Itoh T, Murakami Y, Yasue H. Assignment of c-KIT gene to swine chromosome 8pl2-p21 by fluorescence in situ hybridization. Mammal Genome.1996, 7(5):397.
    [39]. Mariani P, Moller M J, Hoyheim B. The extension coat color locus and the loci for blood group and tyrosine aminotransferase are on pig chromosome 6. Journal of Heredity.1996, 87(4):272-276.
    [40]. Vogeli P, Meijerink E, Fries R, Neuenschwander S, Vorlander N, Stranzinger G, Bertschinger H U. A molecular test for the detection of E. coli F18 receptors:a breakthrough in the struggle against edema disease and post2weaning diarrhea in swine. Schweiz Arch Tierheilk,1997,139 (11): 479-484.
    [41]. Alonso S, Izagirre N, Smith-Zubiaga I, Gardeazabal J, Diaz-Ramon J L, Diaz-Perez J L, Zelenika D, Boyano M D, Smit N, de la Rua C. Complex signatures of selection for the melanogenic loci TYR, TYRP1 and DCT in humans. BMC Evolutionary Biology.2008,8:74.
    [42]. Ren J, MaoH, Zhang Z, Xiao S, Ding N, Huang L. A 6-bpdeletion in the TYRP1 gene causes The brown colouration phenotype in Chinese indigenous pigs. Heredity.2010,1-7.
    [43]. 刘桂兰,蒋思文,熊远著,郑荣,屈彦纯.IGF2基因PCR-RFLP多态性与脂肪沉积相关性状的关联分析.遗传学报2003,30(12):1107-1112.
    [44]. Van Laere A S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald A L, Haley C S, Buys N, Tally M, ran Andersson G, Georges M, Andersson L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature.2003,425:832-836.
    [45]. Mikawa S, Morozumi T, Shimanuki S, Hayashi T, Uenishi H, Domukai M, Okumura N, Awata T. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor,germ cell nuclear factor. Genome Research.2007,17(5):586-593.
    [46]. Mikawa S, Sato S, Nii M, Morozumi T, Yoshioka G, Imaeda N, Yamaguchi T, Hayashi T, Awata T. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genetics.2011,12:5.
    [47]. Ren J, Duan Y, Qiao R, Yao F, Guo Y, Zhang Z, Huang L. A missense mutation in PPARD causes a major QTL effect on ear size in pigs. PLos Genetics.2011,doi:10.1371.pgen.1002043.
    [48]. Kim K S, Larsen N, Short T, Plastow G, Rothschild M F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake trait. Mammalian genome.2000,11(2):131-135.
    [49]. Houston R D, Haley C S, Archibald A L, Cameron N D, Plastow G S, Rance K A. A Polymorphism in the 5'-Untranslated Region of the Porcine Cholecystokinin Type A Receptor Gene Affects Feed Intake and Growth. Genetics.2006,174 (3):1555-1563.
    [50]. 薛慧良,徐来祥.猪钙蛋白酶抑制蛋白基因的基因型与肉质性状的关联性分析.中国生物化学与分子生物学报.2009,25(7):615-619.
    [51]. Nonneman D, Rohrer G A, Wise T H, Lunstra D D, Ford J J. A Variant of Porcine Thyroxine-Binding Globulin Has Reduced Affinity for Thyroxine and Is Associated with Testis Size. Biology of reproduction.2005,72:214-220.
    [52]. Rathje T A, Rohrer G A, Johnson R K. Evidence for quantitative trait loci affecting ovulation rate in Pigs. Journal of Animal Science.1997,75:1486-1494.
    [53]. Rohrer G A, Ford J J, Wise T H, Vallet J, Christenson R K. Identification of quantitative trait loci affecting female reproductive traits in a multi-generation Meishan×Urge White composite swine Population. Journal of Animal Science.1999,77:1385-1391.
    [54]. Cassady J P, Johnson R K, Pomp D, Rohrer G A, Van Vleck L D, Spiegel E K, Gilson K M. Identification of quantitative trait loci affecting reproduction in pigs. Journal of Animal Science. 2001,79(3):623-633.
    [55]. Rehfeldt C, Kuhn G. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. Journal of Animal Science.2006,84:E113-E123.
    [56]. Knott S A, Marklund L, Haley C S, Andersson K, Davies W, Ellegren H, Fredholm M, Hansson I, Hoyheim B, Lundstrom K, Moller M, Andersson L. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Geneties. 1998,149:1069-1080.
    [57].杨广成.猪复杂性状的遗传解析:以脊椎数和初情期为例.[博士学位论文].南昌:江西农业大学,2008.
    [58]. Schmidt G H. Biology of lactation.1971,W. H. Freeman and Company San Francisco, CA.
    [59]. http://en.wikipedia.org/wiki/Mammary_gland
    [60]. 杨志春.猪翻乳头的解剖组织学特征的研究与探讨.畜牧兽医学报.1999,(6):519-524.
    [61]. Balinsky B I. On the prenatal growth of the mammary gland rudiment in the mouse. Journal of Anatomy.1950,84:227-235.
    [62]. Propper A Y. Wandering epithelial cells in the rabbit embryo milk line. Developmental Biology. 1978,67:225-231.
    [63]. Mailleux A A, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, Kato S, Dickson C, Thiery J P, Bellusci S. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 2002,129:53-60.
    [64]. Turner C W, Gomez E T. The normal development of the mammary gland of the male and female albino mouse.I. Intrauterine. University of Missouri, College of Agriculture, Agricultural Experiment Station, Bulletin.1993,182:3-20.
    [65]. Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, Dunbar M, Philbrick W, Wysolmerski J. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 2001,128:513-525.
    [66]. Chu E Y, Hens J, Andl T, Kairo A, Yamaguchi T P, Brisken C, Glick A, Wysolmerski J J, Millar S E. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development.2004,131:4819-29.
    [67]. Veltmaat J M, Van Veelen W, Thiery J P, Bellusci S. Identification of the mammary line in mouse by Wnt10b expression. Developmental Dynatics.2004,229:349-356.
    [68]. Hens J R, Wysolmerski J J. Key stages of mammary gland development:molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Research.2005, 7:220-224.
    [69]. Wysolmerski J J, Philbrick W M, Dunbar M E, Lanske B, Kronenberg H, Broadus A E Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development 1998,125: 1285-1294.
    [70]. Dunbar M E, Dann P R, Robinson G W, Hennighausen L, Zhang J P, Wysolmerski J J. Parathyroid hormone-related protein signaling is necessary for sexual dimorphism during embryonic mammary development. Development.1999,126:3485-3493.
    [71]. Hovey R C, Trott J F, Vonderhaar B K. Establishing a framework for the functional mammary gland:From endocrinology to morphology. Journal of Mammary Gland Biology and Neoplasia. 2002,7:17-38.
    [72]. Feng Y, Mancha D, Wagner K U, Khan S A. Estrogen receptor-{alpha} expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. The Proceedings of the National Academy of Science of the USA.2007,104:14718-14723.
    [73]. Robinson G W. Cooperation of signalling pathways in embryonic mammary gland development. Nature Reviews Genetics.2007,8:963-972.
    [74]. Eblaghie M C, Song S J, Kim J Y, Akita K, Tickle C, Jung H S. Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. Journal of Anatomy.2004,205:1-13.
    [75]. Roarty K, Serra R. Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth. Development 2007,134:3929-3939.
    [76]. Veltmaat J M, Relaix F, Le LT, Kratochwil K, Sala F G, van Veelen W, Rice R, Spencer-Dene B, Mailleux A A, Rice D P. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 2006,133:2325-2335.
    [77]. Buono K D, Robinson G W, Martin C, Shi S, Stanley P, Tanigaki K, Honjo T, Hennighausen L. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Developmental Biology.2006,293:565-580.
    [78]. Heckman B M, Chakravarty G, Vargo-Gogola T, Gonzales-Rimbau M, Hadsell D L, Lee A V, Settleman J, Rosen J M. Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Developmental Biology.2007, 309:137-149.
    [79]. Ensslin M A, Shur B D. The EGF repeat and discoidin domain protein, SED1/MFG-E8, is required for mammary gland branching morphogenesis. The Proceedings of the National Academy of Science of the USA.2007,104(8):2715-2720.
    [80]. Hens J R, Dann P, Zhang J P, Harris S, Robinson G W, Wysolmerski J.2007. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development 134:1221-1230.
    [81]. Kouros-Mehr H, Slorach E M, Sternlicht M D, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 2006,127:1041-1055.
    [82]. Asselin-Labat M L, Sutherland K D, Barker H, Thomas R, Shackleton M, Forrest N C, Hartley L, Robb L, Grosveld F G, van der Wees J. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biology.2007,9:201-209.
    [83]. Hirooka H, de Koning D J, Harlizius B, van Arendonk J A, Rattink A P, Groenen M A, Brascamp E W, Bovenhuis H. A whole-genome scan for quantitative trait loci affecting teat number in pigs. Journal of Animal Science.2001,79(9):2320-2326.
    [84]. Rodriguez C, Tomas A, Alves E, Ramirez O, Arque M, et al. QTL mapping for teat number in an Iberian by Meishan pig intercross. Animal Genetics.2005,36:490-496.
    [85]. Wada Y, Akita T, Awata T, Furukawa T, Sugai N, Inage Y, Ishii K, Ito Y, Kobayashi E, Kusumoto H, Matsumoto T, Mikawa S, Miyake M, Murase A, Shimanuki S, Sugiyama T, Uchida Y, Yanai S, Yasue H. Quantitative trait loci (QTL) analysis in a Meishan x Gottingen cross population. Animal Genetics.2000,31(6):376-384.
    [86]. Jonas E, Schreinemachers H J, Kleinwachter T, On C, Oltmanns I, Tetzlaff S, Jennen D, Tesfaye D, Ponsuksili S, Murani E, Juengst H, Tholen E, Schellander K, Wimmers K. QTL for the heritable inverted teat defect in pigs. Mammal Genome.2008,19:127-138
    [87]. Haley C S, Lee G J, Richie M. Comparative reproductive performance in Meishan and Large White pigs and their crosses. Journal of Animal Science.1995,60:259-267.
    [88]. Orzechowska B, Rzechowska B, Mucha A. An evaluation of reproductive efficiency of sows. Stan Hodowlii Wyniki Oceny Swin w Roku.1998,16:27-49.
    [89]. Wimmers K, Chomdej S, Schellander K, Ponsuksili S. Linkage mapping of SNPs in the porcine relaxin gene. Animal Genetics.2002,34:323-324.
    [90]. McNeilly S. Suckling and the control of gonadotropin secretion. In:Knobil E, Neill JD (eds). The Physiology of Reproduction.vol 2, Chap.60, Raven Press, New York,1994,1179-1212.
    [91]. Hovey R C, Harris J, Hadsell D L, Lee A V, Ormandy C J. Local insulin like growth factor II mediates prolactin induced mammary gland development. Molecular Endocrinology. 2003,17:460-471.
    [92]. Strange K S, Wilkinson D, Edin G, Emerman J T. Mitogenic properties of insulin like growth factors Ⅰ and Ⅱ, insulin like growth factor binding protein 3 and epidermal growth factor on human breast stromal cells in primary culture. Breast Cancer Research Treat 2004,84:77-84.
    [93]. Bole Feysot C, Goffin V, Edery M, Binart N, Kelly P A. Prolactin (PRL) and its receptor:Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocrine Reviews.1998,19:225-268.
    [94]. Lee S S, Chen Y, Moran C, Stratil A, Reinder G, Bartenschlager H, Moser G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 5. Journal of Anim Breed Genetics.2003,120(1):38-44.
    [95]. Beeckmann P, Schrfel J J, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 1. Journal of Anim Breed Genetics.2003, 120(1):1-10.
    [96]. Lee S S, Chen Y, Moran C, Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 2. Journal of Anim Breed Genetics. 120(1):11-19.
    [97]. Beeckmann P, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 8. Journal of Anim Breed Genetics.2003,120(1):66-73.
    [98]. Dragos-Wendrich M, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 10. Journal of Anim Breed Genetics.2003,120(1):82-88.
    [99]. Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome X. Journal of Anim Breed Genetics.2003,120(1):144-151.
    [100]. King A H, Jiang Z H, Gibson J P, Haley C S, Archibald A L. Mapping Quantitative Trait Loci Affecting Female Reproductive Traits on Porcine Chromosome 8. Biology of reproduction. 2003,68:2172-2179.
    [101]. Geldermann B H, Muller E, Moser G, Reiner G, Bartenschlager H, Cepica S, Stratil A, Kuryl J, Moran C, Davoli R, Brunsch C. Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses. Journal of Anim Breed Genetics. 2003,120:363-369.
    [102]. Holl J W, Cassady J P, Pomp D, Johnson R K. A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. Journal of Animal Science.2004, 82(12):3421-3429.
    [103]. Rodriguez C, Tomas A, Alves E, Ramirez O, Arque M, Munoz G, Barragan C, Varona L, Silio L, Amills M, Noguera J L. QTL mapping for teat number in an Iberian-by-Meishan pig intercross. Animal Geneicst. 2005,36(6):490-496.
    [104]. Sato S, Atsuji K, Saito N, Okitsu M, Sato S, Komatsuda A, Mitsuhashi T, Nirasawa K, Hayashi T, Sugimoto Y, Kobayashi E. Identification of quantitative trait loci affecting corpora lutea and number of teats in a Meishan x Duroc F2 resource population. Journal of Animal Science.2006, 84(11):2895-2901.
    [105]. Zhang J, Xiong Y, Zuo B, Lei M, Jiang S, Li F, Zheng R, Li J, Xu D. Detection of quantitative trait loci associated with several internal organ traits and teat number trait in a pig population. Journal of Genetics Genomics.2007,34(4):307-314.
    [106]. Bidanel J P, Rosendo A, lannuccelli N, Riquet J, Gilbert H, Caritez, J C, Billon Y, Amigues Y, Prunier A, Milan D. Detection of quantitative trait loci for teat number and female reproductive traits in Meishan x Large White F2 pigs. Animal.2008,813-820.
    [107]. Ding N, Guo Y, Knorr C, Ma J, Mao H, Lan L, Xiao S, Ai H, Haley CS, Brenig B, Huang L. Genome-wide QTL mapping for three traits related to teat number in a White Duroc x Erhualian pig resource population. BMC Genetics.2009,18:10:6.
    [108]. http://www.animalgenome.org/cgi-bin/QTLdb/SS/index
    [109]. Kim J J, Rothschild M F, Beever J, Zas S R, Dekkers J C M. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci. Journal of Animal Science.2005,83:1229-1240.
    [110]. Wang L, Yu T P, Tuggle C K, Liu H C, Rothschild M F. A directed search for quantitative trait loci on chromosomes 4 and 7 in pigs. Journal of Animal Science.1998,76:2560-2567.
    [111]. Edwards D B, Ernst C W, Tempelman R J, Rosa G. J M, Raney N E, Hoge M D, Bates R O. Quantitative trait loci mapping in an F2 Duroc x Pietrain resource population:Ⅰ. Growth traits. Journal of Animal Science.2008,86:241-253.
    [112]. Sato S, Oyamada Y, Atsuji K, Nade T, Sato S I, Kobayashi E, Mitsuhashi T, Nirasawa K, Komatsuda A, Saito Y, Terai S, Hayashi T, Sugimoto Y. Quantitative trait loci analysis for growth and carcass traits in a Meishan x Duroc F2 resource population. Journal of Animal Science.2003.81:2938-2949.
    [113]. Liu G S, Kim J J, Jonas E, Wimmers K, Ponsuksili S, Murani E, Phatsara C, Tholen E, Juengst H, Tesfaye D, Chen J L, Schellander K. Combined line-cross and half-sib QTL analysis in Duroc-Pietrain population. Mammal Genome.2008,19:429-438.
    [114]. Sanchez M P, Riquet J, lannuccelli N, GogueJ, Billon Y, Demeure O, Caritez JC, Burgaud G, Feve K, Bonnet M, Pery C, Lagant H, Roy P. L, Bidanel J P, Milan D. Effects of quantitative trait loci on chromosomes 1,2,4, and 7 on growth, carcass, and meat quality traits in backcross Meishan x Large White pigs. Journal of Animal Science.2006,84:526-537.
    [115]. Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y,Bourgeois J C, Caritez J, Gruand P, LeRoy H, Lagant,Quintanilla C, Renard J, Gellin L, Ollivier, Chevalet C. Detection of quantitative trait loci for growth and fatness in pigs. Genetics, Selection, Evolution. 2001,33:289-309.
    [116]. Liu G, Jennen D G J, Tholen E, Juengst H, Kleinwachter T, Holker M, Tesfaye D, Un G, Schreinemachers H J, Murani E, Ponsuksili S, Kim J J, Schellander K, Wimmers K. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics.2007,38:241-252.
    [117]. Borchers N, Reinsch N, Kalm E. Teat number, hairiness and set of ears in a Pietrain cross: variation and effects on performance traits. Arch. Tierz.2002,45(5):465-480.
    [118]. Pumfrey R A, Johnson R K, Cunningham P J, Zimmerman D R.Inheritance of teat number and its relationship to maternal traits in swine. Journal of Animal Science.1980,50:1057-1060.
    [119].钱利增,张廷荣,李双福.二花脸猪乳头数的遗传特点.见:笫八次全国动物遗传育种学术讨论会论文集北京:中国农业科学技术出版杜.1995.259.
    [120].周继平.高原瘦肉型猪乳头数遗传规律的研究.青海畜牧兽医杂志2006,36(2):16-17.
    [121].丁家桐,葛红山,姜劝平,刘桂琼,张军强.猪雌激素受体基因与产仔数和乳头数的关系研究.南京农业太学学报.2002,25(2):79-81.
    [122].孟庆利,刘铁铮.雌激素受体基因和骨调素基因对苏钟猪初生重和乳头数量的影响.家畜生态学报.2005,26(1):8-11.
    [123]. Rothschild M F, Jacobson C, Vaske D A, Tuggle C K, Short T H, Sasaki S, Eckardt G R, McLaren D G. A major gene for litter size in pigs. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production.1994,21:225-228.
    [124]. Rothschild M F, Jacobeon C. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. The Proceedings of the National Academy of Science of the USA. 1996,93:201-203.
    [125]. Short T H, Rothschild M F, Southwood O I, McLaren D G, de Vries A, van der Steen H, Eckardt G R, Tuggle C K, Helm J, Vaske D A, Mileham A J, Plastow G S. Effect of the estrogen receptor on reproduction and production traits in four commercial pig lines. Journal of Animal Science. 1997,75:3138-3142.
    [126].赵西彪,杨欢利,刘萍,丁家桐.ESR和FSHfl基因与母猪乳头数的关系研究.遗传育种.2008,(19):4-7.
    [127]. Yuan J F, Jafer O, Affara N A, Gong Y Z, Yang L G, Liu J, Moaeen-ud-Din M, Li W M,.Zhang S J. Association of four new single-nucleotide polymorphisms in follicle-stimulating hormone receptor and zona pellucida glycoprotein with reproductive traits in pigs. Animal 2007, 9:1249-1253.
    [128].朱猛进,钱云,丁家桐,刘红林,姜勋平.母猪FSHβ因多态与乳头数的关系研究.畜牧与兽医2000,(3):12-14.
    [129].朱猛进,丁家桐,姜勋平.母猪FSHβ基因多态与产仔数关系研究.江苏农业研究2001,2:22-23.
    [130].丁家桐,朱猛进,姜勋平.母猪FSHβ基因对仔猪哺乳期生长的影响研究.扬州大学学报(自然科学版).1999,2(4):38-40.
    [131].徐明念,鲁延义.浅析FSHβ基因对种猪乳头数的影响.养猪2009,(10):59.
    [132].曹果清,李根银,王效京,刘宏,刘建华,李步高,周忠孝.猪催乳素受体基因第8内含子多态性检测及效应分析.遗传繁育2009,36(5):102-106.(PRLR)
    [133].张冬杰.猪PRL基因多态性与繁殖性能的关系.中国畜牧兽医2009,36(11):118-119.
    [134].赵秀华,储明星,刘荣志.催乳素基因的研究进展.中国畜牧兽医2007,34(10):28-33.
    [135].梅学华,曾雄.催乳素作用机制的研究进展.畜禽业2008,(228):16-19.
    [136]. Putnovd L, Knoll A, Dvoradk J. A new Hpall PCR-RFLP within the porcine prolactin receptor (PRLR)gene and study Of its effect on litter size and number of teats. Journal of Animal Breed Genetics.2002,119:57-63.
    [137]. Vincent A, Wang L, Tuggle C K. Linkage and physical mapping of prolactin to porcine chromosome 7. Animal Genetics.1998,29(1):27-29.
    [138].袁金锋,龚炎长,彭秀丽,杨利国,刘俊,俸艳萍,张淑君.ZP3基因的变异及其对猪产仔数和乳头数的影响.农业生物技术学报2006,14(4):625-626.
    [139]. Nonneman D J, Wise T H, Ford J J, Kuehn L A, Rohrer G A.Characterization of the AKR1C aldo-keto reductase 1C gene cluster on pig chromosome 10:possible associations with reproductive traits. BMC Veterinary Research.2006,2:28.
    [140]. De Oliveira Peixoto J, Facioni Guimaraes S E, SavioLopes P, Menck Soares M A, Vieira Pires A, Gualberto Barbosa M V, de Almeida Torres R, de Almeida e Silva M. Associations of leptin gene polymorphisms with production Traits in pigs. Journal of Animal Breed Genetics.2006, 123:378-383.
    [141]. http://baike.baidu.com/view/1440359.html?fromTaglist
    [142]. GB 7223-87荣昌猪.
    [143]. http://baike.baidu.com/view/60052.htm
    [144]. http://zhu.d288.com/yzpz/1251672494.html
    [145.刘文忠,周忠孝.猪乳头性状的遗传及其影响因素.养猪.1994,(4):33-34.
    [146].皮晓波,司徒乐愉,荣要先,李祥.大河乌猪乳头数性状遗传研究.养猪2010,(3):76-77.
    [147]. Drickamer L C, Rosenthal T L, Arthur R D. Factors affecting the number of teats in pigs. Journal of reproduction and fertility.1999,115:97-100.
    [148].葛云山,杨锐,刘明智,蔡建,王国良,钱凤娟.二花脸猪乳头性状的初步研究.上海畜牧兽医通讯1985,4.
    [149].朱猛进,丁家桐,刘榜,余梅,樊斌,熊统安,彭中镇,李奎.母猪乳头的对称性对仔猪哺乳期生长性能的影响.黑龙江畜牧兽医.2005,(1):23-24.
    [150]. Toro M, Dobao M, Rodrignez J, Sili L Heritability of a canalized trait:teat number in Iberian pigs. Genetics, Selection, Evolution.1986:173-184.
    [151]. Norris J D, Fan D, Sherk A, McDonnell D P. A negative coregulator for the human ER. Molecular Endocrinology.2002,16:459-468.
    [152]. http://www.genecards.org/cgi-bin/carddisp.pl?gene=PDIA2 PDIA2
    [153]. Zhang P J, Zhao J, Li H Y, Man J H, He K, Zhou T, Pan X, Li A L, Gong W L, Jin B F, Xia Q, Yu M, Shen B F, Zhang X M. CUE domain containing 2 regulates degradation of progesterone receptor by ubiquitin-proteasome. EMBO Journal.2007,26(7):1831-1842.
    [154]. Taniguchi F, Couse J F, Rodriguez K F, Emmen J M A, Poirier D, Korach K S. Estrogen receptor-a mediates an intraovarian negative feedback loop on thecal cell steroidogenesis via modulation of CYP17A1 (cytochrome P450, steroid 17a-hydroxylase/17,20 lyase) expression.FASEB Journal.2007,21(2):586-595.
    [155]. Qiu H, Xia T, Chen X D, Gan L, Feng S Q, Lei T, Dai M H, Yang Z Q. Characterization of pig INSIG1 and assignment to SSC18. Animal Genetics.2005,36(3):284-286.
    [156]. Patsialou A, Wilsker D, Moran E. DNA-binding properties of ARID family proteins. Nucleic Acids Research.2005,33(1):66-80.
    [157]. Goncalves M A, Janssen J M, Nguyen Q G, Athanasopoulos T, Hauschka S D, Dickson G, de Vries A A. Transcription Factor Rational Design Improves Directed Differentiation of Human Mesenchymal Stem Cells Into Skeletal Myocytes. Molecular Therapy.2011, doi:10.1038/mt.2010.308
    [158]. Ilagan R M, Genheimer C, Quinlan S F, Guthrie K I, Sangha N, Ramachandrannair S, Kelley R, Presnell S C, Basu J, Ludlow J W. Smooth muscle phenotypic diversity is mediated through alterations in Myocardin gene splicing. Journal of Cell Physiology.2010, DOI:10.1002/jcp.22622
    [159]. Choudhary C, Kumar C, Gnad F, Nielsen M L, Rehman M, Walther T C, Olsen J V, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009,325(5942):834-40.
    [160]. Raharijaona M, Le Pennec S, Poirier J, Mirebeau-Prunier D, Rouxel C, Jacques C, Fontaine J F, Malthiery Y, Houlgatte R, Savagner F. PGC-1-related coactivator modulates mitochondrial-nuclear crosstalk through endogenous nitric oxide in a cellular model of oncocytic thyroid tumours. PLoS One.2009,4(11):e7964.
    [161]. Schroder A L, Pelch K E, Nagel S C. Estrogen modulates expression of putative housekeeping genes in the mouse uterus. Endocrine.2009,2:211-219.
    [162]. Galceran J, de Graaf K, Tejedor F J, Becker W. The MNB/DYRK1A protein kinase:genetic and biochemical properties. Journal of neural transmission, Supplementum.2003,67:139-148.
    [163]. Li Y, Bavarva J H, Wang Z, Guo J, Qian C, Thibodeau S N, Golemis E A, Liu W. HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene. 2011,doi:10.1038/onc.2010.632.
    [164]. Wolter B F, Ellis M. The effects of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Can. Journal of Animal Science.2001,81:363-369.
    [165]. Alfonso L, Haley C S. Power of different F2 schemes for QTL detection in livestock. Animal Science.1998,66:1-8.
    [166]. Rothschild M F, Messer L, Day A, Wales R, Short T, Southwood O, Plastow G. Investigation of the retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs. Mammalian Genome.2000, 11(1):75-77.
    [167].邵玉娟.猪繁殖性状相关候选基因MAN2B2, MSR和RGS12的遗传效应分析.[硕士学位论文].华中农业大学,2005.
    [168].李永辉.NCOA1基因与猪产仔性状的相关及序列分析.[硕士学位论文].湖南农业大学,2005.
    [169].丁能水,任冬仁,郭源梅,任军,颜瑛,麻俊武,陈克飞,黄路生.猪前列腺素内过氧化物酶2(PTGS2)基因的遗传变异及其与繁殖性状相关性研究(英文).遗传学报.2006,(3):213-219.
    [170].张淑君,熊远著,邓昌彦,郑嵘,蒋思文,肖森木,夏瑜,徐建祥,刘晓华,王春芳,阮征,宫时玉.卵泡刺激素受体基因作为产仔数候选基因的研究.华中农业大学学报.2002,(6):506-508.
    [171]. Santana B A A, Biase F H, Antunes R C, Borges M, Franco M M, Goulart L R. Association of the estrogen receptor gene PvuII restriction polymorphism with expected progeny differences for reproductive and performance traits in swine herds in Brazil. Genetics and Molecular Biology. 2006,2:273-277.
    [172]. Linville R C, Pomp D, Johnson R K, Rothschild M F. Candidate gene analysis for loci affecting litter size and ovulation rate in swine. Journal of Animal Science.2001,79 (1):60-67.
    [173]. Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. American Journal of Physiology-Endocrinology and Metabolism.2009,296(6):E1195-E1209.
    [174]. Ruan H, Pownall H J. Overexpression of 1-acyl-glycerol-3-phosphate acyltransferase-alpha enhances lipid storage in cellular models of adipose tissue and skeletal muscle. Diabetes.2001, 50:233-240.
    [175]. Borden K L B. RING domains:master builders of molecular scaffolds? Journal of Molecular Biology.2000,295:1103-1112.
    [176]. Didier C, Broday L, Bhoumik A, Israeli S, Takahashi S, Nakayama K, Thomas S M, Turner C E, Henderson S, Sabe H, Ronai Z. RNF5, a RING Finger Protein That Regulates Cell Motility by Targeting Paxillin Ubiquitination and Altered Localization. Molecular and Cellular Biology. 2003,23(15):5331-5345.
    [177]. Wu J, Iwata F, Grass J A, Osborne C S, Elnitski L, Fraser P, Ohneda O, Yamamoto M, Bresnick E H. Molecular Determinants of NOTCH4 Transcription in Vascular Endothelium. Molecular and Cellular Biology.2005,25(4):1458-1474.
    [178]. Lange M, Kaynak B, Forster U B, Tonjes M, Fischer JJ, Grimm C, Schlesinger J, Just S, Dunkel I, Krueger T, Mebus S, Lehrach H, Lurz R, Gobom J, Rottbauer W G, Abdelilah-Seyfried S, Sperling S. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Development. 2008, 22(17):2370-2384.
    [179]. Cheng J B, Levine M A, Bell N H, Mangelsdorf D J, Russell D W. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. The Proceedings of the National Academy of Science of the USA.2004,101(20):7711-7715.
    [180].李飞,高金明.维生素D、维生素D受体与支气管哮喘.中华哮喘杂志.2010,4(1):31-36.
    [181]. Qiu H F, Xu X W, Rothschild M F, MartinY, Liu B. Investigationof LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome2. Molecular Biology Reports.2010,37(l):629-636.
    [182]. Ahmad F, Lindh R, Tang Y, Weston M, Degerman E, Manganiello V C. Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and its interaction with PKB. Biochemistry Journal. 2007, 404:257-268.
    [183]. Choi Y H, Park S, Hockman S, Zmuda-Trzebiatowska E, Svennelid F, Haluzik M, Gavrilova O, Ahmad F, Pepin L, Napolitano M. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. The Journal of Clinical Investigation.2006, 116:3240-3251.
    [184]. Hong B, Wu K, Brockenbrough J S, Wu P, Aris J P. Temperature sensitive nop2 alleles defective in synthesis of 25S rRNA and large ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Research.2001,29(14):2927-2937.
    [185]. Andersson O, Korach-Andre M, Reissmann E, Ibanez C F, Bertolino P. Growth/differentiation factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity. The Proceedings of the National Academy of Science of the USA.2008,105(20): 7252-7256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700