季节性蓄热太阳能—土壤耦合热泵系统运行特性及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤耦合热泵在严寒地区实际应用中,由于热泵从土壤中的取热量很大,系统长年运行土壤温度将逐年下降,热泵的供暖性能也将逐年降低,最终导致热泵出力不足。为此,本文基于太阳能移季利用的思想,提出将太阳能、土壤蓄热和土壤耦合热泵技术有机融合的季节性蓄热太阳能-土壤耦合热泵(SGCHPSS)系统,将非采暖季丰富的太阳能转移至冬季使用,同时解决上述问题,从而为严寒地区供暖提供新方法。
     为了了解该系统在严寒地区的实际应用效果和供暖性能,建立了SGCHPSS实验平台,初步给出系统的运行方式和控制方法并进行全年实验研究。通过对太阳能土壤蓄热运行特性、系统供暖运行特性和土壤全年温变特性的实测和分析得出:太阳能季节性土壤蓄热能够有效提高土壤温度,热泵的COP达到4.29,系统全年的性能系数达到6.14,冬季供热量中约87%来自于太阳能。
     考虑到系统的复杂性和时间的限制,对系统的进一步研究不能一一通过实验的方法实现,因此,在实验的基础上建立了该系统中各设备的数学模型,并结合实验中给定的运行方式和控制方法实现系统的动态仿真。通过将系统模拟计算结果与实验结果进行对比,验证了系统模型的正确性。为了减少计算量,忽略了土壤换热器管间的热干扰,将多管土壤换热器模型简化为单管土壤换热器模型。为了验证简化的合理性,将单管模型与多管模型进行了对比验证,结果表明:通过单管土壤换热器模型计算得到的单个钻井蓄热量和取热量与通过多管土壤换热器模型计算得到的单个钻井蓄热量和取热量的最大相对误差分别为5.9%和7.9%,均小于10%,在允许的范围内。
     首先,利用建立的系统数学模型对SGCHPSS系统进行变参数模拟研究,详细分析了改变系统配置参数——太阳能集热器面积、土壤换热器埋管深度和热泵制热量对系统运行特性的影响。模拟结果表明:增加集热器面积和热泵容量都有利于提高热泵和系统的供暖性能,减少运行费用,而土壤换热器埋管深度并不是越深越好,当埋管深度增加至一定程度时热泵和系统的供暖性能提升的幅度很小,同时会使运行费用增加。
     其次,分别对有季节性蓄热和无季节性蓄热情况下系统运行的可持续性进行了分析,得出在严寒地区长年利用土壤耦合热泵为建筑物供暖会出现热泵出力不足,耗电量不断增加,而室温却达不到要求的现象;而SGCHPSS系统可以有效提高土壤温度,使热泵的供暖性能逐年提升,系统的耗电量也逐年减少,同时可以使土壤保持以年为周期的热平衡。然后,针对实验中运行方式存在的问题,提出三种新的可行的运行方式,并与实验运行方式进行了对比分析,得出通过改变运行方式可以提升系统的供暖性能,改变系统中各设备的能量输出比例;对供暖期进行分阶段改变运行方式可以在节约电能的同时改善供暖效果。
     最后,给出系统可能的系统配置和运行方式,利用动态规划法对不同系统配置下的运行方式进行了优化,得出不同系统配置下的供暖期最优运行方式,再以系统费用年值为目标函数对系统配置进行了优化,从而得到在实验条件下的系统最优配置和最优运行方式。该优化方法可以为SGCHPSS系统的工程应用提供指导。
     通过本文的研究,证明了SGCHPSS系统具有很大的节能优势和较好的供暖性能,并为系统的优化设计和运行提供理论基础和技术支持。
During the practical application of ground-coupled heat pump in severe cold area, due to the large heat extraction of the heat pump, the soil temperature would descend year by year for the system operation all the year round. As a result, the heating performance of the heat pump would drop year by year, too. Finally, the heat pump output would be insufficient. Therefore, based on the idea of transferring the solar energy between the seasons, this paper presented the solar-ground coupled heat pump system with seasonal storage (SGCHPSS), which integrated the solar energy, the soil heat storage and the ground-coupled heat pump technology organically. In this way, the abundant solar energy in the non-heating seasons was transferred to winter and the problems mentioned above could be solved. The system provides a new method for space heating in severe cold area.
     To find out the practical effect and heating performance of the system in severe cold area, the experimental platform of SGCHPSS system was established, the tentative operation way and control method of the system were given and the annual experiment was performed. The operating characteristics of solar soil heat storage and system heating as well as the temperature variation characteristics of the soil were tested and analysed. It can be concluded that the soil temperature could be increased effectively via solar seasonal soil heat storage, the COP of the heat pump achieved 4.29, the system annual coefficient of performance reached 6.14 and 87% of the total heat supply in winter came from the solar energy.
     Considering the complexity of the system and time constraints, further study of the system can not be realized though the experimental method one by one. Therefore, the mathematical model of each device in the system was established based on the experiment. Combining the operation way and control method given in the experiment, the system dynamic simulation was realized. To reduce the computional time, the thermal interference between the U-tubes of the ground heat exchanger was neglected. For verifying the rationality of the simplification, the single tube mathematical model was verified by the multi-tube mathematical model. The results show that the maximum relative errors of the heat storage capacity and heat extraction capacity of single borehole, computed separately by the single tube mathematical model and the multi-tube mathematical model, were 5.9% and 7.9%, respectively, which were all in the allowable range of less than 10%. The system mathematical models were further verified through the comparison between the simulation results and the experimental results.
     The system mathematical models established were first used to conduct the simulative study on varing the parameters. Impacts on system operating characteristics caused by varing the system configuration parameters including solar collector area, buried depth of ground heat exchanger and heat output of the heat pump were analyzed in detail. The simulation results show that increasing the solar collector area and the capacity of the heat pump were all favourable for improving the heating performances of the heat pump and the system as well as reducing the operating costs. However, the buried depth of the ground heat exchanger was not the deeper the better. When the buried depth increased to a certain extent, the heating performances of the heat pump and the system were enhanced little, while the operating costs would increase.
     Secondly, the sustainability of the system operation under the conditions of storing heat seasonally or not was analyzed respectively. The following conclusions can be drawn: in severe cold area, if the ground-coupled heat pump was used to heat the building all the year round, the heat output of the heat pump would be insufficient and the power consumption would increase continually, while the indoor temperature could not meet the requirements; the SGCHPSS could raise the soil temperature effectively, the heating performance of the heat pump was improved year by year, the power consumption of the system was also reduced year by year and the annual heat balance could be maintained in the soil. Then, in view of the existing problems of operation way in the experiment, three new and feasible operation ways were put forword and a comparative analysis with that in the experiment was conducted. It can be drawn that the heating performance of the system could be promoted and the proportion of the energy output of each device could be changed by varying the operation way; the heating effect could be improved while saving the electric energy if the heating period was divided into phases to vary the operation way.
     Finally, the possible system configuration and operation way were given, and the dynamic programming method was used to optimize the operation way for different system configuration. By this way, the optimal operation way for the heating period was obtained for different system configuration. Then, the annual cost was taken as the objective function to optimize the system configuration. Consequently, the optimal system configuration and operation way were gained. This optimization method can provide guidance for engineering applications of SGCHPSS system.
     The studies in this paper have proved that the SGCHPSS has great energy-saving advantages and better heating performance, which can provide theoretical basis and technical support for the optimization design and operation of the system.
引文
[1]朱俊生.世界新能源和可再生能源发展[J].太阳能, 2001, (4): 2-4.
    [2] BP. BP世界能源统计2010[R]. BP, 2010: 2-35.
    [3]郑祖义.热泵空调系统的设计与创新[M].武汉:华中理工大学出版社, 1994: 13-16.
    [4]中国建筑业协会建筑节能专业委员会.建筑节能技术[M].北京:中国计划出版社, 1996: 234-252.
    [5]罗运俊.太阳能利用技术[M].北京:化学工业出版社, 2005: 4-7.
    [6]蒋能照,刘道平.水源·地源·水环热泵空调技术及应用[M].北京:机械工业出版社, 2010: 1.
    [7]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社, 2006: 1.
    [8]李传统.新能源与可再生能源技术[M].南京:东南大学出版社, 2005: 6-7.
    [9]王如竹,代彦军.太阳能制冷[M].北京:化学工业出版社, 2007: 1.
    [10]庄迎春.论绿色建筑与地源热泵系统[J].建筑学报, 2004, (3): 48-50.
    [11]江亿.我国建筑能耗趋势与节能重点[J].建设科技, 2006, (7): 10-15.
    [12]李文举,柳青,张艺曼.改善能源结构的节能装置——地源热泵[J].科技信息, 2007, (29): 487.
    [13]江亿.科学发展实现中国特色建筑节能[J].建设科技, 2008, (Z2): 18-21.
    [14]费洪磊.浅谈我国采暖通风的现状与发展[J].山西建筑, 2009, (8): 247-248.
    [15]涂逢祥,邸占英,张振宁.英、法、德三国建筑节能标准近期进展[M].北京:中国建筑工业出版社, 2002: 131-138.
    [16]贠英伟,吴香国,范丰丽.我国建筑节能现状分析及对策[J].重庆科技学院学报(自然科学版), 2006, 8(1): 62-65.
    [17]李新国.埋地换热器内热源理论与地源热泵运行特性研究[D].天津:天津大学博士学位论文, 2004: 1.
    [18]李全林.新能源与可再生能源[M].南京:东南大学出版社, 2008: 3-4.
    [19]章俞昌,潘金文.地源热泵技术的特点及其在空调工程中的应用[J].工程建设与设计, 2003, (8): 20-22.
    [20]徐邦裕,陆亚俊,马最良.热泵[M].北京:中国建筑工业出版社, 1996: 67-68.
    [21]胡松涛,张莉,王刚.太阳能-地源热泵与地板辐射空调系统联合运行方式探讨[J].暖通空调, 2005, 35(3): 41-44.
    [22] Ingersoll L R, Plass H J. Theory of the Ground Pipe Heat Source for the Heat Pump[J]. Heating, Piping & Air Conditioning, 1948, (6): 119-122.
    [23] Ingersoll L R, Zobel O J, Ingersoll A C. Heat Conduction with Engineering, Geological and Other Applications[M]. NewYork: McGraw-Hill, 1954: l-56.
    [24] Cane D. Maintenance and Service Costs of Commercial Building Ground-Source Heat Pump Systems[J]. ASHRAE Transactions, 1998, 104(2): 699-706.
    [25] Kavaragh S P, Rafferty K. Ground-Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings[J]. ASHRAE, 1997: 163-172.
    [26] Kavaragh S P. A Design Method for Commercial Ground-Coupled Heat Pumps[J]. ASHRAE Transactions, 1995, 101(2):1088-1094.
    [27] Bose J E, Parker J D. Ground-Coupled Heat Pump Research[J]. ASHRAE Transactions, 1983, 89(2): 375-390.
    [28] Metz P D. A Simple Computer Program to Model Three-Dimension Underground Heat Flow with Realistic Boundary Conditions[J]. Journal of Solar Energy Engineering, 1983, 105: 42-49.
    [29] Mei V C. Theoretical Heat Pump Ground Coil Analysis with Variable Ground Four-Field Boundary Conditions[J]. AICHE Journal, 1986, 32(7): 662-667.
    [30] Gilby D J, Hopkirk R J. The Coaxial Vertical Heat Probe with Solar Recharge, Numerical Simulation and Performance Evaluation[C]. Proceedings of 2nd WS on SAHPGCS. Vienna, 1985: 443-456.
    [31] Hopkirk R J, Eugster W J, Rybach L. Vertical Earth Heat Probes: Measurements and Prospects in Switzerland[C]. Proceedings of the 4th International Conference on Energy Storage JIGASTOCK. 1988: 367-371.
    [32] Sanner B, Karytsasb C, Mendrinosb D, et al. Current Status of Ground Source Heat Pumps and Underground Thermal Energy Storage in Europe[J]. Geothermics, 2003, 32(4-6): 579-588.
    [33] Tarnawski V R, Leong W H. Computer Analysis, Design and Simulation of Horizontal Ground Heat Exchangers[J]. International Journal of Energy Research, 1993, 17(6): 467-477.
    [34] Piechowski M. Heat and Mass Transfer Model of a Ground Heat Exchanger: Validation and Sensitivity Analysis[J]. International Journal of Energy Research, 1998, 22: 965-979.
    [35] Bernier M A. Ground-Coupled Heat Pump System Simulation[J]. ASHRAE Transactions, 2001, 107: 605-616.
    [36] Gu Y, O'Neal D L. Modeling the Effect of Backfills on U-tube Ground Coil Performance[J]. ASHRAE Transations, 1998, 104(2): 356-365.
    [37] Allan M L, Kavanaugh S P. Thermal Conductivity of Cementitious Grouts and Impact on Heat Exchanger Length Design for Ground Source Heat Pumps[J]. HVAC and Research, 1999, 5(2):87-98.
    [38] Lenarduzzi, Frank J. Importance of Grouting to Enhance the Performance of Earth Energy Systems[J]. ASHRAE Transactions, 2000, 106: 424-434.
    [39] Thornton J W, Hughes P J, McDowell T P, etal. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data[J]. ASHRAE Transactions, 1997, 103(2): 660-674.
    [40] Kavanaugh S P. Design Method for Hybrid Ground-Source Heat Pumps[J]. ASHRAE Transactions, 1998, 104(2): 691-698.
    [41] Marzbanrad J, Sharifzadegan Ali, Kahrobaeian, A. Thermodynamic Optimization of GSHPS Heat Exchangers[J]. International Journal of Thermodynamics, 2007, 10(3): 107-112.
    [42] Zogou O, Stamatelos A. Optimization of Thermal Performance of a Building with Ground Source Heat Pump System[J]. Energy Conversion and Management, 2007, 48(11): 2853-2863.
    [43] Sanner B, Reuss M, Mands E, et al. Thermal Response Test Experiences in Germany[C]. Proceedings Terrastock 2000. Stuttgart, 2000: 177-182.
    [44] Sanner B. Prospects for Ground-Source Heat Pumps in Europe[R]. Sittard: Newsletter IEA Heat Pump Center 17/1, 1999: 19-20.
    [45] Van de Ven H. Status and Trends of the European Heat Pump Market[R]. Sittard: Newsletter IEA Heat Pump Center 17/1, 1999: 10-12.
    [46] Coelho L, Cerdeira R,Garcia J. Development of a high efficient ground source heat pump. Proceedings of 6th International Symposium on Heating, Ventilating and Air Conditioning, ISHVAC 2009[C]. United Kingdom, 2009: 644-651.
    [47]吕灿仁.热泵及其在我国应用的前途[J].动力机械, 1957, (2): 13-19.
    [48]高祖锟,高佛佑,田长青,等.土壤热源热泵用于供暖的研究[J].天津商学院学报, 1991, 11(1): 1-9.
    [49]高祖锟,高佛佑,田长青,等.土壤热源热泵的研究(二)——地下温度场的计算机模拟[J].天津商学院学报, 1991, 11(2): 1-7.
    [50]高祖锟.用于供暖的土壤—水热泵系统[J].暖通空调, 1995, 25(4): 9-12.
    [51]高祖琨,高佛佑,毕月虹.利用土壤热进行房间地板采暖和热水供应的研究和设计[J].天津商学院学报, 1996, (4): 6-12.
    [52]魏先勋,李元旦,林玉鹏,等.土壤源热泵的研究[J].湖南大学学报(自然科学版), 2000, 27(2): 62-65.
    [53]张旭.太阳能-土壤热源热泵及其相关基础理论研究[D].上海:同济大学博士后研究报告, 1999.
    [54]李元旦,张旭,周亚素,等.土壤源热泵冬季工况启动特性的实验研究[J].暖通空调, 2001, 31(1): 17-20.
    [55]丁勇,刘宪英,胡鸣明,等.地源热泵地下垂直埋管换热器的试验研究[J].重庆建筑大学学报, 1999, 2l(5): 21-26.
    [56]孙纯武,张素云,刘宪英.水平埋管换热器地热源热泵实验研究及传热模型[J].重庆建筑大学学报, 2001, 23(6): 49-55.
    [57]崔萍,刁乃仁,方肇洪.地热换热器间歇运行工况分析[J].山东建筑工程学院学报, 2001, 16(1): 52-57.
    [58]赵军,戴传山,刘启梁.多孔介质层内同轴管式井下换热器的相似解[J].太阳能学报, 2000, 21(3): 274-278.
    [59]李新国,赵军,朱强.地源热泵供暖空调的经济性[J].太阳能学报, 2001, 22(4): 418-421.
    [60]余延顺.土壤蓄冷与耦合热泵集成系统的蓄冷与释冷特性研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2004.
    [61] Hans Ludwig voncuba, Fritz Steimle. Heat Pump Technology. Butter Worths, London, 1981
    [62] Penrod E B, Prasanna K V. Design of a Flat-Plate Collector for a Solar-Earth Heat Pump[J]. Solar Energy, 1962, 6(1): 9-22.
    [63] Penrod E B, Prasanna K V. A Procedure for Designing Solar-Earth Heat Pumps[J]. Heating, Piping & Air Conditioning, 1969, 41(6): 97-100.
    [64] Metz P D. The Use of Ground Couple Tanks in Solar Assisted Heat Pump System. Transaction of ASME[J]. Journal of Solar Energy Engineering, 1982, 104(4):366-372.
    [65] Andrews J W, Kush E A, Metz P D. Solar-Assisted Heat Pump System for Cost-Effective Space Heating and Cooling[R]. New York: Brookhaven National Laboratory, 1978: 138.
    [66] Parker J D,Frierson B. Performance Monitoring of Ground-Coupled Solar-Assisted Heat Pump Systems[R]. Stillwater: Oklahoma State University, 1981: 37.
    [67] Chiasson A D, Yavuzturk C. Assessment of the Viability of Hybrid Geothermal Heat Pump Systems with Solar Thermal Collectors[J]. ASHRAE Transactions, 2003, 109(2): 487-500.
    [68] Trillat-Berdal V, Souyri B, Fraisse G. Experimental Study of a Ground-Coupled Heat Pump Combined with Thermal Solar Collectors[J]. Energy and Buildings, 2006, 38(12): 1477-1484.
    [69] Trillat-Berdal V, Souyri B, Achard G. Coupling of Geothermal Heat Pumps with Thermal Solar Collectors[J]. Applied Thermal Engineering, 2007, 27(10): 1750-1755.
    [70] Ozgener O, Hepbasli A. Experimental Performance Analysis of a Solar Assisted Ground-Source Heat Pump Greenhouse Heating System[J]. Energy and Buildings, 2005, 37(1): 101-110.
    [71] Ozgener O, Hepbasli A. Experimental Investigation of the Performance of a Solar-Assisted Ground-Source Heat Pump System for Greenhouse Heating[J]. International Journal of Energy Research, 2005, 29(3): 217-231.
    [72] Ozgener O, Hepbasli A. Exergoeconomic Analysis of a Solar Assisted Ground-Source Heat Pump Greenhouse Heating System[J]. Applied Thermal Engineering, 2005, 25(10): 1459-1471.
    [73] Ozgener O, Hepbasli A. A Parametrical Study on the Energetic and Exergetic Assessment of a Solar-Assisted Vertical Ground-Source Heat Pump System Used for Heating a Greenhouse[J]. Building and Environment, 2007, 42(1): 11-24.
    [74] Kjellsson E, Hellstr?m G, Perers B. Optimization of Systems with the Combination of Ground-Source Heat Pump and Solar Collectors in Dwellings. Energy, 2010, 35(6): 2667-2673.
    [75] Bakirci K, Ozyurt O, Comakli K, et al. Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications[J]. Energy, 2011, doi:10.1016/j.energy.2011.03.011
    [76]毕月虹,陈林根.太阳能-土壤热源热泵的性能研究[J].太阳能学报, 2000, 21(2): 214-219.
    [77] Bi Y H, Guo T W, Zhang L. Solar and Ground Source Heat-Pump System[J]. Applied Energy, 2004, 78(2): 231-245.
    [78]冯健美,屈宗长,王迪生.土壤热源热泵的技术经济性能分析[J].流体机械, 2001, 29(11): 48-51.
    [79]余延顺,廉乐明.寒区太阳能-土壤源热泵系统太阳能保证率的确定[J].热能动力工程, 2002, 17(7): 393-395.
    [80]余延顺,廉乐明.寒冷地区太阳能-土壤源热泵系统运行方式的探讨[J].太阳能学报, 2003, 24(1): 111-115.
    [81]杨卫波,董华,周恩泽,等.太阳能-土壤源热泵系统联合运行模式的研究[J].流体机械, 2004, 32(2): 41-48.
    [82]杨卫波,施明恒,董华.太阳能-土壤源热泵系统(SESHPS)交替运行性能的数值模拟[J].热科学与技术, 2005, 4(3): 228-232.
    [83]涂爱民,董华,杨卫波,等.基于圆柱源理论模型的U型埋管换热器的模拟研[J].太阳能学报, 2006, 27(3): 259-264.
    [84]杨卫波,施明恒.基于遗传算法的太阳能-地热复合源热泵系统的优化[J].暖通空调, 2007, 37(2): 12-17.
    [85] Yumrutas R,ünsal M. Analysis of Solar Aided Heat Pump Systems with Seasonal Thermal Energy Storage in Surface Tanks[J]. Energy, 2000, 25(12): 1231-1243.
    [86] Lund P D. Computional Simulation of District Solar Heating Systems with Seasonal Thermal Energy Storage[J]. Solar Energy, 1986, 36(5): 397-408.
    [87] Lund P D. A General Design Methodology for Seasonal Storage Solar Systems[J] Solar Energy, 1989, 42(3): 235-251.
    [88] Peltola S S, Lund P D. Comparison of Analytical and Numerical Modeling Approaches for Sizing of Seasonal Storage Solar Heating Systems[J]. Solar Energy, 1992, 48(4): 267-273.
    [89] Lund P D, Ostman M B. Numerical Model for Seasonal Storage of Solar Heat in the Ground by Vertical Pipes[J]. Solar energy, 1985, 34(4-5): 351-366.
    [90] Mazzarella L, Pedrocchi E. Monitoring a Solar-assisted Heat Pump with Seasonal Ground Coupled Storage: Analysis of the First Results[C]. Proceedings of the First European Symposium on Air Conditioning and Refrigeration. Brussels: Expoclima, 1986: 199-209.
    [91] van den Brink G J, Hoogendoorn C J. Ground Water Flow Heat Losses for Seasonal Heat Storage in the Soil[J]. Solar energy, 1983, 30(4): 367-371.
    [92] Chung M, Park J U, Yoon H K. Simulation of a Central Solar Heating System with Seasonal Storage in Korea[J]. Solar Energy, 1998, 64(4-6): 163-178.
    [93]韩敏霞.太阳能土壤跨季节蓄热—地源热泵组合理论与实验研究[D].天津:天津大学硕士学位论文, 2007: 5.
    [94] Schmidt T, Mangold D, Müller-Steinhagen H. Central Solar Heating Plants with Seasonal Storage in Germany[J]. Solar Energy, 2004, 76(1-3): 165-174.
    [95] Lund P D, ?stman M B. A numerical model for seasonal storage of solar heat in the ground by vertical pipes[J]. Solar Energy, 1985, 34(4-5): 351-366.
    [96] Inalli M, Unsal M, Tanyildizy V. A Computer Model of a Domestic Solar Heating System with Underground Spherical Thermal Storage[J]. Energy, 1997, 22(12): 1163-1172.
    [97] Inalli M. Design Parameter for Solar Heating System with an Underground Cylindrical Tank[J]. Energy, 1998, 23(12): 1015-1027.
    [98] Yumrutas R,ünsal M. A Computational Model of a Heat Pump System with a Hemispherical Surface Tank as the Ground Heat Source[J]. Energy, 2000, 25(4): 371-388.
    [99] Nordell B, Hellstr?m G. High Temperature Solar Heated Seasonal StorageSystem for Low Temperature Heating of Buildings[J]. Solar Energy, 2000, 69(6): 511-523.
    [100] Lundh M, Dalenb?ck J -O. Swedish Solar Heated Residential Area with Seasonal Storage in Rock: Initial Evaluation[J]. Renewable Energy, 2008, 33(4): 703-711.
    [101] Pahud D. Central Solar Heating Plants with Seasonal Duct Storage and Short-Term Water Storage: Design Guidelines Obtained by Dynamic System Simulations[J]. Solar Energy, 2000, 69(6): 495-509.
    [102] Meli? M, Sp?te F. The Solar Heating System with Seasonal Storage at the Solar-Campus Jülich[J]. Solar Energy, 2000, 69 (6): 525-533.
    [103] Bauer D, Marx R, Nu?bicker-Lux J, et al. German Central Solar Heating Plants with Seasonal Heat Storage[J]. Solar Energy, 2010, 84(4): 612-623.
    [104] Wong B, Snijders A, McClung L. Recent Inter-seasonal Underground Thermal Energy Storage Applications in Canada[C]. 2006 IEEE EIC Climate Change Technology Conference. Ottawa: Inst. of Elec. and Elec. Eng. Computer Society, 2006: 1-7.
    [105] Olszewski P. The Possibility of Using the Ground as a Seasonal Heat Storage-The Numerical Study[C]. Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004. Charlotte: American Society of Mechanical Engineers, 2004: 437-441.
    [106]马文麒,李申生.太阳池和池下土壤的跨季度蓄热[J].太阳能学报, 1984, 5(4): 358-367.
    [107]王凯旋, Hahne E.太阳能地层钻孔贮热体夏季贮热过程的研究[J].太阳能学报, 1996, 17(4): 308-313.
    [108]王凯旋.地层钻孔贮热体夏季贮热过程的温度场分析[J].东北大学学报(自然科学版), 1996, 17(6): 624-627.
    [109] Zheng M Y, Wang D M, Zhi Y S. The Study of Heating and Cooling Technique with Solar Energy in Severe Cold Area[C]. Energy and the Environment-Proceedings of the International Conference on Energy and the Environment. Shanghai: Shanghai Scientific and Technical Publishers, 2003: 186-191.
    [110] Zheng M Y, Zhi Y S, Lin Y. Study of Heating and Cooling System with Solar Heat Soil Storage in Severe Cold Area[C]. Proceeding of the 2003 4th International Symposium on Heating, Ventilating and Air Conditioning. Beijing: Tsinghua University, 2003: 1123-1128.
    [111]智艳生.严寒地区太阳能土壤蓄热供暖供热实验研究与数值模拟[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2003: 18-61.
    [112]陈朋,于国清,孟凡兵.小型别墅季节蓄热型太阳能供热技术研究[J].建筑热能通风空调, 2005, 24(6): 6-8.
    [113]于国清,陈朋,冯传真.季节蓄热型太阳能热泵系统的模拟分析[J].建筑节能, 2207, 35(7): 43-46
    [114]韩敏霞.太阳能土壤跨季节蓄热-地源热泵组合理论与实验研究[D].天津:天津大学硕士学位论文, 2007.
    [115]赵军,陈雁,李新国.基于跨季节地下蓄热系统的模拟对热储利用模式的优化[J].华北电力大学学报, 2007, 34(2): 74-77.
    [116]崔俊奎,赵军,李新国,等.跨季节蓄热地源热泵地下蓄热特性的理论研究[J].太阳能学报, 2008, 29(8): 920-926.
    [117]赵军,曲航,崔俊奎,等.跨季节蓄热太阳能集中供热系统的仿真分析[J].太阳能学报, 2008, 29(2): 214-219.
    [118]李新国,赵军,王一平,等.太阳能、蓄热与地源热泵组合系统的应用与实验[J].太阳能学报, 2009, 30(12): 1658-1661.
    [119]李伟,李新国,赵军,等.土壤蓄热特性与模拟研究[J].太阳能学报, 2009, 3(11): 1491-1495.
    [120]陈胜华.太阳能—土壤源热泵耦合系统实验研究[D].天津:天津大学硕士学位论文, 2009.
    [121]杨卫波,施明恒,陈振乾.太阳能—U形埋管土壤蓄热特性数值模拟与实验验证[J].东南大学学报(自然科学版), 2008, 38(4): 651-656.
    [122]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社, 2006: 86.
    [123]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社, 2005: 15-21.
    [124] Pahud D. Geothermal Energy and Heat Storage[M]. SUPSI-DCT-LEEE, Laboratorio di Energia, Ecologia ad Economia, 2002: 133.
    [125] Arif H, Ozay A, Ebru H. Experimental Study of a Closed Loop Vertical Ground Source Heat Pump System[J]. Energy Conversion and Management, 2003, 44 (4): 527-548.
    [126]韩宗伟,郑茂余,孔凡红.严寒地区太阳能—季节性土壤蓄热热泵供暖系统的模拟研究[J].太阳能学报, 2008, 29(5): 574-580.
    [127]张文雍.严寒地区太阳能—土壤耦合热泵季节性土壤蓄热特性研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2010: 53-56, 40-52, 75, 110.
    [128]韩宗伟.太阳能热泵潜热蓄热供暖系统性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2008: 46-47.
    [129]岑幻霞.太阳能热利用[M].北京:清华大学出版社, 1997: 22-23.
    [130] Bose J E. Closed-loop Ground-coupled Heat Pump Design Manual[M]. Stillwater: Oklahoma State University, Engineering Technology Extension, 1984: 20-60.
    [131]张之駓,李建德.动态规划及其应用[M].北京:国防工业出版社, 1994: 19.
    [132]刘光中.动态规划——理论及其应用[M].成都:成都科技大学出版社, 1991: 1-3.
    [133]于斌,刘姝丽,韩中庚.动态规划求解方法在MATLAB实现及应用[J].信息工程大学学报, 2005, 6(3):95-98.
    [134]毛会敏.土壤源热泵空调系统的设计与经济性分析[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2006: 49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700