地埋管相变回填材料的理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地源热泵系统近年来在我国建筑中得到了广泛应用,回填材料对地埋管换热器传热性能的影响至关重要。本课题探索采用相变材料(PCM)作为地埋管换热系统的回填材料,与普通回填材料进行对比理论分析和实验研究,研究成果将对相变回填材料的实际工程应用有重要的理论参考意义。
     本文对并联双U型和套管式地埋管换热器的传热性能进行了理论分析,选用废动物油和混合酸作为套管式换热器的相变回填材料,与沙土回填进行了对比研究,计算了相变区域内固相和液相的温度分布。结果表明:Ste数越大,相界面的移动速率越快,完全凝固(熔化)的时间越短。流量为180 L/h时,Ste ?0.06时的完全凝固时间为7.73 h,PCM和沙土回填时的热影响半径分别为0.23 m和0.66 m; Ste ?0.15时的完全熔化时间为4.04 h,相应的热影响半径分别为0.18 m和0.50 m。
     本文建立了地埋管换热器传热性能测试系统,进行了并联双U型埋管换热器的现场测试,得到了不同加热功率下的单井供热量、岩土热导率和热影响半径;建立了天津工业大学新校区A区土壤源热泵土壤温度测量系统,可实时监测钻孔内不同深度处逐日、逐月、逐年的温度曲线。
     本文建立了套管式换热器的模拟实验系统,该系统与实际套管式换热器在结构上实现了几何相似、在流动中实现了运行相似。采用不同回填材料与流体流量和入口温度的组合,进行了外进内出流动方式下的对比实验。结果表明:流量为250 L/h时,在PCM完全凝固(熔化)时间内,径向距离0.1 m处的土壤温度下降了0.7℃(取热工况)或上升了3.5℃(放热工况),而径向距离0.3 m的土壤温度无明显变化;当回填材料分别为沙土和PCM时,取热工况下流体的进出口温差为0.16℃和0.10℃;放热工况下为0.24℃和0.08℃。
     本文基于套管式换热器模拟系统的理论分析和实验结果,预测了地埋管换热器采用相变材料回填的工程应用可行性。结果表明地埋管相变回填材料可缩小钻孔间距。若能实现钻孔密封并获得蓄热性能良好且价格低廉的相变材料,地埋管热泵系统采用PCM回填将会有很好的应用前景。
Ground Source Heat Pumps (GSHP) are widely used for heating and cooling buildings, backfill material is essential in improving the thermal performance of Borehole Heat Exchangers (BHE). In this thesis, an analytical study of the thermal performance of BHE with both phase change materials (PCM) and soil backfill material is compared to and verified against an experimental study.
     Thermal performance of BHE’s made of a U tube and a coaxial pipe where waste animal oil and a mixture of capric and lauric acid were used as PCM backfill material based on differential scanning calorimetry (DSC) were studied analytically. Heat transfer in the PCM and soil backfill was analyzed, and the temperature distribution in both solid and liquid phases was calculated.
     The results indicate that the larger the Stefan number is, the faster the phase interface moves, and the smaller the total solidification (melting) time of the PCM backfill is.
     When the mass flow is 180 L/h, the total solidification time is 7h44min with a Stefan number of 0.06, the thermal disturbance distances due to the fluid temperature away from the borehole central line are 0.23 m and 0.66 m with PCM and soil backfill materials, respectively. The total melting time is 4h02min with a Stefan number of 0.12, and the corresponding distances are 0.18 m and 0.50 m, respectively.
     A BHE thermal performance test system was also set up, and an in situ experiment for double U tube carried out, heat output of single borehole, heat conductivity of soil and the thermal disturbance distance under different heating load conditions was measured.
     A real-time monitoring system of soil temperature for GSHP which monitors the daily, monthly and annual temperature distribution was developed at different depths of the borehole at New Campus of Tianjin Technology University.
     A concentric annular pipe borehole heat exchanger laboratory setup was made, mimicking industry geometry and kinetic similarities.
     A combination of different backfills, fluid mass flows and inlet temperatures of fluid was tested, with fluid inflow into the outer pipe and coming out from the inner pipe were studied. The results show that when the mass flow is 250 L/h, during the complete PCM solidification (melting) time, soil temperature at a distance of 0.1 m from pipe central line decreased 0.7 oC ( heat extraction) or increased 3.5 oC ( heat injection), but soil temperature at a distance of 0.3 m from pipe central line did not change. When the backfill materials are soil or PCM respectively, temperature difference of fluid are 0.16 oC /0.10 oC for heat extraction, and 0.24 oC /0.08 oC for heat injection.
     Feasibility of practical application of PCM as backfill material was examined, based on an analytical experimental study. The results indicate that using PCM could shorten the distance between boreholes. If the borehole can be sealed well, and low price PCM are readily available, the practical application of PCM as backfill material can have a bright future in conjunction with borehole heat exchanger systems.
引文
[1]胡青丹.我国能源短缺的现状及应对之策[J].党政干部论坛,2009(9):36-37.
    [2] Lei H Y, Valdimarsson P. Simulation of district heating in Tianjin, China[J]. GRC Transactions, 2006, 30(1):201-206.
    [3] Dai C S, Chen Y. Classification of shallow and deep geothermal energy[J]. GRC Transactions, 2008, 32(1):317-320.
    [4] Lund J W, Derek H F, Tonya L B. Direct utilization of geothermal energy[C]//Proceedings of WGC World Geothermal Congress. Bali, Indonesia, 2010:1-23.
    [5]郝爱兵,范宏喜.科学合理开发利用浅层地温能[J].水文地质工程地质,2010, 37(2):I0001.
    [6]王沣浩,颜亮.钻孔间距和布置形式对地埋管管群传热影响的研究[J].制冷与空调,2010, 10(5):31-34.
    [7]郭高轩.浅议地埋管热泵系统设计中应考虑的水文地质要素[J].城市地质,2008, 3(1):31-32.
    [8]蔡晶晶,陈汝东,王健.地下水渗流对地埋管传热影响的理论分析[J].流体机械,2009, 37(12):62-67.
    [9] Cube V.热泵的理论与实践[M].北京:中国建筑工业出版社,1986.
    [10] Cane D. Maintenance and service costs commercial building ground-source heat pump system[J]. ASHRAE Transactions, 1998, 104(2):699-706.
    [11] Kavanaugh S P, Kevin G D. Ground-Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings[M]. Atlanta: ASHRAE, 1997.
    [12] Kavanaugh S P. A design method for commercial ground-coupled heat pumps[J]. ASHRAE Transactions, 1995, 101(2):1088-1094.
    [13] Dinse D H. Geothermal systems for school[J]. ASHRAE Transactions, 1998, 40(5):51-54.
    [14] Bose J E. Geothermal Heat Pumps Introductory Guide[M]. Oklahoma: Oklahoma State University Ground Source Heap Pump Publications, 1997.
    [15] NRECA & IGSHPA. Closed-Loop/Geothermal Heat Pump Systems, Design and Installation Standards[M]. Oklahoma: IGSHPA, 1997.
    [16]刘冬生,孙友宏.竖直埋管地源热泵技术[J].世界地质, 2002, 21(4):406-410.
    [17]李元普.美国土一气型地源热泵技术在中国的推广节能与环保[J]. 2002, (12):20-23.
    [18]王勇,付祥钊.地源热泵的套管式地下换热器研究[J].重庆建筑大学学报,1997, (5):13-16.
    [19]杨敏,陈颖,史保新.地埋管换热器非稳态换热性能的实验研究[J].广东工业大学学报,2008, 25(2):22-25.
    [20] Yavuzturk C, Chiasson A D. Performance analysis of U- tube, concentric tube, and standing column well ground heat exchangers using a system simulation approach[J]. ASHRAE Transactions, 2002, 108(1):925-938.
    [21] Eskilson P. Thermal Analysis of Heat Extraction Boreholes[D]. Lund: University of Lund, 1987.
    [22] Claesson J. Heat Extraction from the Ground by Horizontal Pipes-Amathematical Analysis[R]. Stockholm: Swedish Council for building research, 1983
    [23] Sanner B. Ground coupled heat pumps with seasonal cold storage[C]//Proceedings of the International Energy Agency Heat Pump Conference. Zurich, 1993, 301-306.
    [24] Kavanaugh S P. Development of design tools for ground-source heat pump piping[J]. ASHRAE Transactions, 1998(104):932-937.
    [25] Hart D P. Earth-couple Heat Transfer[R]. Houston: National Water Well Association, 1986.
    [26] Sulatisky M T. Ground-source heat pumps in the Canadian prairies[J]. ASHRAE Transactions, 1991, 374-385.
    [27] Carslaw H S, Jaeger J C. Conduction of Heat in Solid[M], London: Oxford University Press, 1986.
    [28] Mei V C, Emerson C J. New approach for analysis of ground-coil design for applied heat pump system[J]. ASHRAE Transactions, 1985, 9(2):1216-1224.
    [29] Yavuzturk C, Spitler J D, Rees S J. A transient two-dimensional finite column model for the simulation of vertical U-tube ground heat exchangers[J]. ASHRAE Transactions, 1999, 105(2):465-474.
    [30] Ingersoll L R. Theory of Earth Heat Exchanger for the Heat Pump[J]. ASHRAE Transactions, 1951, 57(1):167-188.
    [31] Bose J E, Parker J D, Mcquiston F C. Design/dataManual for Closed-Loop Ground-Coupled Heat Pump Systems[R]. Atlanta, ASHRAE, 1985.
    [32] Kavanaugh S P. Simulation and Experimental Verification of Vertical Ground-Coupled Heat Pump Systems[D]. Oklahoma: Oklahoma State University, 1985.
    [33] Mei V C. Performance of a ground-coupled heat pump with multiple dissimilar U-tube coils in series[J]. ASHRAE Transactions, 1986, 92(2):22-25.
    [34]于立强.水-水活塞压缩式热泵机组的性能测试,暖通空调[J]. 1995, 25(1):12-14.
    [35]于立强.垂直埋管地源热泵系统实验研究[C]//国暖通空调制冷学术年会.北京,2000: 470-474.
    [36]王勇,付祥钊,曾淼,等.地源热泵地下管群换热器设计施工问题[J].建筑热能通风空调,2000, 19(1):59-62.
    [37]魏唐棣,胡鸣明,丁勇,等.地源热泵冬季供暖测试及传热模型[J].暖通空调,2000, 30(1):12-14.
    [38]刘宪英,丁勇,胡鸣明.浅埋竖管换热器地源热泵夏季供冷试验研究[J].暖通空调,2000, 30(4):1-4.
    [39]王勇.地源热泵研究[J].国外建筑科学,1997(2):32-39.
    [40]王勇,付祥钊.地源热泵的套管换热器地下换热器研究[J].重庆建筑大学学报,1997(5):13-17.
    [41]刘宪英,王勇,胡鸣明,等.地源热泵地下垂直换热器的试验研究[J].重庆建筑大学学报,1999, 21(5):21-26.
    [42]陈建萍.套管式地源热泵全年运行试验研究与传热模型[D].重庆:重庆大学,2001.
    [43]刘宪英.地源热泵地下套管式换热器传热模型[C]//全国暖通空调制冷学术年会.北京,2000: 153-156.
    [44]李元旦,张旭.土壤源热泵冬季工况启动特性的实验研究[J].暖通空调,2001, 31(1):17-20.
    [45]张旭.太阳能-土壤源热泵及其相关基础理论[R].上海:同济大学,1999.
    [46]李元旦,魏先勋.水平埋管换热器夏季瞬态工况的实验与数值模拟[J].湖南大学学报,1999(2):35-39.
    [47]魏先勋,李元旦.土壤源热泵的研究[J].湖南大学学报, 2000, 27(2):23-28.
    [48]高祖锟.用于供暖的土壤-水热泵系统[J].暖通空调,1995(4):9-12.
    [49]毕月虹,陈林根.土壤热泵用立式双螺旋判官地下温度场数值分析与实验验证[J].应用科学学报,2000, 18(2):167-170.
    [50]李凡,仇中柱,于立强. U型垂直埋管式土壤源热泵埋管周围温度场的理论研究[J].暖通空调,2002, 32(1):17-20.
    [51]柳晓雷,王德林,方肇洪.垂直埋管地源热泵的圆柱面传热模型及简化计算[J].山东建筑工程学院学报,2001, 16(1):47-51.
    [52]胡鸣明.浅埋套管式地源热泵地下传热模型及冬季供热试验研究[D].重庆:重庆建筑大学,2000.
    [53]王勇.地源热泵研究[D].重庆:重庆建筑大学,1998.
    [54]魏唐棣.地源热泵地下套管式换热器性能研究[D].重庆:重庆大学,2001.
    [55] Kavanaugh S P, Allen M L. Testing of thermally enhanced cement ground heat exchanger grouts[J]. ASHRAE Transactions, 2000, 105(1):446-450.
    [56] Pahud D, Matthey B. Comparison of the thermal performance of double U-pipe borehole heat exchangers measured in situ[J]. Energy and buildings, 2001, 33(5):503-507.
    [57] Sanner B, Mands E M, Sauer K. Larger geothermal heat pump plants in the central region of Germany[J]. Geothermics, 2003, 32(4):589-602.
    [58] Lenarduzzi F J, Cragg C B, Radhakrishna H S. The importance of grouting to enhance the performance of earth energy systems[J]. ASHRAE Transactions, 2000, 106(1):451-457.
    [59] Sachs H M, Dinse D R. Geology and the ground heat exchanger: What engineers need to know[J]. ASHRAE Transactions, 2000, 106(1):421-433.
    [60]王向岩,马伟彬,黄远峰,等.超强吸水树脂与源土混合作为地源热泵供热系统回填材料的实验研究[J].太阳能学报,2007, 28(1):23-27.
    [61]刘湘云,陈颖.地源热泵埋地换热器回填土的实验研究[J].流体机械,2007, 35(8):60-62.
    [62]庄迎春,孙友宏.直埋闭式地源热泵回填土性能研究[J].太阳能学报2004, 25(2):216-220.
    [63]郑秀华,司刚平,周复宗,等.地源热泵换热孔灌浆材料导热性能实验研究[J].水文地质工程地质,2006, 33(6):101-103.
    [64]周亚素,张旭.土壤源热泵机组冬季供热性能的数值模拟与实验研究[J].东华大学学报:自然科学版,2002, 28(1):5-9.
    [65]陈雁,赵军.饱和地层地埋管钻孔回填料的模拟与实验研究[J].太阳能学报,2009, 30(5):572-576.
    [66]郑红旗,祝合虎,陈九法.地埋管回填材料与地源热泵地下温度场的测试分析[J].流体机械,2009, 7(3):60-63.
    [67]包强,邓启红,牛润卓.回填材料对土壤热泵U型埋管换热器性能的影响[J].建筑热能通风空调,2007, 26(4):64-67.
    [68] Hale D V, Hoover M J, Oneill M J. Phase Change Materials Handbook[R]. USA: NASA Contractor Report CR-61363, 1971.
    [69] Lane G A. Phase change materials for energy storage nucleation to prevent super cooling[J]. Solar energy materials and solar cells, 1991, 27(2):135-160.
    [70] Biswas D R. Thermal energy storage using sodium sulfate decahydrate and Water[J]. Solar, Energy, 1977, 19(1):99-100.
    [71] Marks S. The effect of crystal size on the thermal energy storage capacity of thickened Glauber salt[J]. Solar Energy, 1983, 30(1):45-49.
    [72] Gawron K, Schroeder J. Properties of some salt hydrates for latent heat storage[J]. Energy Research, 1977, 1(1): 351.
    [73] Krichel K. Eigenshaften und Anwendungs Moglichkeiten von Latentwarmespeicher[R]. Berghausen: Institut fuer Chemie fer Treib-und-Explosivstoffe, 1979.
    [74] Feldman D, Banu D, Hawes D. Low chmn esters of stearic acid as phase change materials for thermal energy storage in buildings[J]. Solar Energy Materials and Colar Cells, 1995, 36(3):311-322.
    [75] Athienitis A K. Investigation of the thermal performance of a passice solar test-room with wall latent heat storage[J]. Building and Environment, 1997, 32(5):405-410.
    [76] Neeper D A. Thermal dynamics of wallboard with latent heat storage[J]. Solar Energy, 2000, 68(5):393-403.
    [77] Latif M J, Sallif G. Analysis of solidification and melting of PCM with energy generation[J]. Applied Thermal Engineering, 2006, 26(5-6):568-575.
    [78] Tomasz K. A semi-empirical model for phase composition of water in clay-water systems[J]. Cold Regions Science and Technology, 2007, 49(3): 226-236.
    [79] Romos M, Aguirre-puente J, Cano R P. Soil freezing problem: an exact solution[J]. Soil Technology, 1996, 9(1-2):29-38.
    [80]林坤平,张寅平.电加热相变材料蓄热地板采暖的热性能模拟[J].太阳能学报,2003, 4(5):633-637.
    [81]张洪济,热传导[M].北京:高等教育出版社,1992.
    [82]周传辉.利用相变蓄热材料进行地板辐射采暖的方法[J].建筑热能通风空调,2002, 21(1):42-43.
    [83]张群力,狄洪发,林坤平,等.相变材料蓄能式低温热水采暖地板的性能模拟[J].工程热物理学报,2006, 27(4):641-643.
    [84]陈文振,程尚模,罗臻.水平椭圆管内相变材料接触融化的分析[J].太阳能学报,1995, 16(1):68-71.
    [85]陈文振,程尚模.矩形腔内相变材料接触融化的分析[J].太阳能学报,1993, 14(3): 202-208.
    [86]阮德水.相变贮热材料的DSC研究[J].太阳能学报,1994, 15(1):19-24.
    [87]康艳兵,张寅平,朱颖秋,等.相变蓄热同心套管传热模型和性能分[J].太阳能学报,1999, 20(1):20-25.
    [88]施伟,葛新石.管内流体流动管外PCM发生相变的贮能系统热性能研究[J].太阳能学报,2004, 25(4):497-502.
    [89]钱剑锋,孙德兴.含内热源相变介质在圆管中的凝固分析[J].太阳能学报,2007, 28(8):897-900.
    [90]钱剑锋,孙德兴,张承虎.采集凝固热热泵技术凝固及换热性能的理论分析[J].太阳能学报,2007, 28(11):1200-1205.
    [91]钱剑锋,孙德兴.常壁温下管内相变凝固的准稳态近似[J].哈尔滨工业大学学报,2008, 40(2):230-234.
    [92]周建华,陈明勇,陈钟颀.环形空间内凝固问题的研究[J].计算物理,1996, 13(4):481-488.
    [93]王芳,郑茂余,李忠建,等.相变材料在太阳能地源热泵系统中的应用[J].太阳能学报,2006, 27(12):1231-1234.
    [94] Lei H Y, Li W Y. Research on heat storage of a geothermal greenhouse[J]. GRC Transactions, 2005, 29(1):67-69.
    [95]雷海燕,李惟毅.地热温室蓄热技术[J].农业机械学报, 2005, 36(9):83-85.
    [96]奥齐西克.热传导(俞昌铭译)[M].北京:高等教育出版社,1983.
    [97]李伟.管外与球体内相变蓄热问题的数值模拟与实验研究[D].天津:天津大学,2010.
    [98]李新国.埋地换热器内热源理论与地源热泵运行特性研究[D].天津:天津大学,2004.
    [99]雷海燕,朱家玲.孔隙型地热采灌开发方案的数值模拟研究[J].太阳能学报,2010, 31(12):1633-1638.
    [100] Zhu J L, Lei H Y. Analysis of the doublet well distance effects in a porous medium geothermal reservoir in Tianjin, China[C]//TOUGH Symposium. Berkeley, USA, 2009:1-7
    [101]郭照立,郑楚光.格子Boltzmann方法的原理和应用[M].北京:科学出版社,2009.
    [102] Jiaung W S, Ho J R. Lattice Boltzmann Method for the Heat Conduction Problem with Phase Change Numerical Heat Transfer[J]. An International Journal of Computation and Methodology, 2001, 39(2):167-187.
    [103] Miller W. The lattice Boltzmann method: a new tool for numerical simulation of the interaction of growth kinetics and melt flow[J]. Journal of Crystal Growth, 2001, 230(1-2):263-269.
    [104] Chatterjee D, Suman C. An enthalpy-based Lattice Boltzmann model for diffusion dominated solid-liquid phase transformation[J]. Physics Letters, 2005, 341(A):320-330.
    [105] Wang J K. A Lattice Boltzmann algorithm for liquid-solid conjugate heat transfer[J]. International Journal of Thermal Sciences, 2007, 46(3): 228-234.
    [106] Semma E A, Ganaoui M E, Bennacer R. Lattice Boltzmann method for melting/solidification problems[J]. Melting and solidification: processes and models, 2007, 335(5-6): 295-303.
    [107] Huber C, Parmigiani A, Chopard B, et al. Lattice Boltzmann model for melting with natural convection[J]. International Journal of Heat and Fluid Flow, 2008, 29(1):1469-1480.
    [108] Chen S, Tolke J, Geller S, et al. Lattice Boltzmann model for incompressible axisymmetric flows[J]. Physical Review, 2008, 78(4):1-8.
    [109] Chen S, Tolke J. Simulation of buoyancy-driven flows in a vertical cylinder using a simple lattice Boltzmann model[J]. Physical Review, 2009, 79(1):1-8.
    [110] Nestler B, Aksi A, Selzer M. Combined Lattice Boltzmann and phase-field simulations for incompressible fluid flow in porous media[J]. Mathematics and Computers in Simulation, 2010, 80(1):1458-1468.
    [111] Zheng L, Shi B C, Guo Z L, et al. Lattice Boltzmann equation for axisymmetric thermal flows[J]. Computers & Fluids, 2010, 39(6):954-952.
    [112] Gu Y, Dennis L O. Modeling the effect of backfills on U-Tube ground coil performance[J]. ASHRAE Transactions, 1998, 104(2):89-94.
    [113] Pahuda D, Matthey B. Comparison of the thermal performance of double U-pipe BHE measured in situ[J]. Energy and Buildings, 2001, 33(5):503-507.
    [114] Zhang Q. Measurement of Thermal Conductivity for three borehole fill materials used for GSHP[J]. ASHRAE Transactions, 1997, 106(2):434-441.
    [115]王勇.地源热泵研究(1)-地下换热器性能研究[D].重庆:重庆建筑大学,1997.
    [116] Hartley J G, Black W Z, Bush R A. Measurements, Correlations and Limitations of Soil Thermal Stability, Underground Cable Thermal Backfill[M]. Canada: Pergamon Press, 1982.
    [117] Popiel C O, Wojtkowiak B. Measurements of temperature distribution in ground[J]. Experimental Thermal and Fluid Science, 2001, 25(5):301-309.
    [118]雷海燕,朱家玲.滨海新区东营组地热热储回灌优化方案的研究[J].太阳能学报,2009, 30(12):1678-1682.
    [119] Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M]. Great Britain: Oxford Science Publications, 1986.
    [120] Signhild G. Thermal Response Test[D]. Sweden: Lund University of Technology, 2002.
    [121] Eklof C, Gehlin S. TED-A Mobile Equipment for Thermal Response Test[D]. Sweden: Lund University of Technology, 1996.
    [122] Gehlin S. Thermal Response Test, In-Situ Measurements of Thermal Properties in Hard Rock[D]. Sweden: Lund University of Technology, 1998.
    [123] Sanner B, Reuss M. Thermal response test in Deutchland-experience with thermal response test in Germany[C]//Proceedings of Terrastock. Stuttgart, Germany, 2000:177-182.
    [124] Cruickshanks F, Bardsley J. In-Situ measurement of thermal properties of cunard formation in a borehole[C]//Proceedings of Terrastock. Germany, 2000:171-175.
    [125] Crank J. Free and Moving Boundary Problems[M]. Oxford: Clarendon Press, 1984.
    [126]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009.
    [127]周建华,陈明勇,陈钟颀.环形空间内凝固问题的研究[J].计算物理,1996, 13(4):481-488.
    [128]张寅平,胡汉平,孔祥东,等.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [129] Chen M Y,Zhang Y W,Cheng Z Q. Freezing of cylindrically shaped food stuffs with boundary condition of the third kind[C]//Multiphase Flow and Heat Transfer, 3rd International Symposium. Xi’an, China, 1994:126-133.
    [130]宋又王.用奇异摄动法解圆柱体的凝固问题[J].工程热物理学报,1981, 2(4):359-365.
    [131] Alvaro V. Heat transfer in square cavities with partially active vertical walls[J]. International Journal of Heat and Mass Transfer, 1989, 32(8):1567-1574.
    [132] Behan A, Kraus A D. 978-0-471-39015-2 Heat Transfer Handbook[S]. Londan: John Wiley, 2003.
    [133] Grants I, Gerbeth G. Linearized solution of quasi-steady Stefan problem in vertical gradient freeze configuration[J]. Journal of Crystal Growth, 1999, 207(1-2):138-147.
    [134] Glasner K B. A boundary integral formulation of quasi-steady fluid wetting[J]. Journal of Computational Physics, 2005, 207(2):529-541.
    [135]连之伟.热质交换原理与设备[M].北京:高等教育出版社,2004.
    [136] Stephan K, Holzknecht B. Perturbation solutions for solidification problems[J]. International Journal of Heat Mass Transfer, 1976, 19(1):597-602.
    [137] Caldwell J M, Kwan Y Y. On the perturbation method for the Stefan problem with time-dependent boundary conditions[J]. International Journal of Heat Mass Transfer, 2003, 46(1):1497-1501.
    [138] Chinglun H, Yenping S. A perturbation method for spherical and cylindrical solidification[J]. Chemical Engineering Science, 1975, 30(8):897-906.
    [139] Mogensen P. Fluid to duct wall heat transfer duct system heat storages[C]//Proceedings of International Conference On subsurface heat storage in theory and practice. Stockholm, Sweden, 1983:652-657.
    [140] Austin W A. Development of an in situ system for measuring ground thermal properties[J]. ASHRAE Transactions, 106(1):365-379.
    [141] Gehlin S. Influence on thermal response test by groundwater flow in vertical fractures in hard rock[J]. Renewable Energy, 2003, 28(14):2221-2238.
    [142] Smith M, Perry R. Borehole grouting: Field studies and thermal performance testing[J]. ASHRAE Transactions, 1999, 105(1):451-457.
    [143] Witte H, Geider D V, Spitler J. In-situ thermal conductivity testing: A dutch perspective[J]. ASHRAE Transactions, 2002, 108(1):263-273.
    [144]田胜元.实验设计与数据处理[M].北京:中国建筑工业出版社,1988.
    [145]李晶.相变蓄热材料及其相变特性的研究[D].北京:北京工业大学,2005.
    [146]陈则韶,葛新石,顾毓沁.量热技术及热物性测量[M].合肥:中国科学技术大学出版社,1991.
    [147]吉冈甲子狼,获野一善.物理化学计算[M].郑州:河南科学技术出版社,1988.
    [148]张寅平,苏跃红,葛新石. (准)共晶系相变材料融点及融解热的理论预测[J].中国科学技术大学学报,1995, 25(4):474-478.
    [149]吕石磊.相变墙房间热性能研究硕士论文[D].沈阳:沈阳建筑工程学院,2004.
    [150] Austin. Thermal Conductivity of Some Common Materials[EB/OL]. http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html, 2011-03-10.
    [151] Wikipedia. Thermal conductivity[EB/OL]. http://www.ask.com/wiki/Thermal_conductivity, 2010-05-25.
    [152] Kuntner J, Chabicovsky R, Jakoby B. Oil Condition Monitoring Using a Thermal Conductivity Sensor, Industrial Sensor Systems[R]. Austria: Institute of Sensor and Actuator Systems Vienna University of Technology, 2004.
    [153]魏紫娟.土壤源热泵套管式垂直埋地换热器的传热研究[D].成都:西南交通大学,2005.
    [154]庄迎春,孙友宏.地源热泵地下直埋式换热器的施工[J].探矿工程,2002(3):10-11.
    [155]胡鸣明.浅埋套管式地热源热泵传热模型及冬季供热试验研究[D].重庆:重庆建筑大学,2000.
    [156]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700