基于热电制冷技术的热响应测试系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地源热泵技术是一种利用浅层地热资源的绿色清洁能源技术,在欧美等西方发达国家应用较为广泛。近些年来在国内,地源热泵系统也开始得到了广泛的关注。地源热泵系统的核心技术在于热交换孔与埋管换热器的设计,因此与之密切相关的岩土体热物性参数的确定就显得尤为重要。
     在地源热泵系统发展的初期阶段,通常采用经验数据或采取土样进行室内试验的方法确定热物性参数。随着对地源热泵传热模型研究的深入,目前广泛使用的确定岩土体热物性参数的方法是热响应测试法。
     早期的热响应测试设备主要采用电加热器作为热源,可以完成夏季制冷工况(向地下输送热量)测试,而冬季供暖工况下相关参数只能通过软件模拟推算得出。随后也出现了采用热泵作为冷热源的测试设备,可以进行夏季制冷和冬季供暖两个工况的测试,但是在进行冬季供暖工况的测试时,必须采用热泵作为冷源。由于热泵的运行机理限制,热泵从循环水中提取到的热量需要通过冷凝管和风机排放到环境空气中,因此循环水温度就不可避免的会受到环境温度的影响。同时热泵的制冷效率也会随环境温度产生变化,在不采用辅助热源控制温差的情况下,测试设备的输出功率及循环水温度均会随环境气温变化而呈现出较大的起伏。
     热电制冷是一种利用帕尔帖效应开发出的人工制冷新技术。热电制冷装置具有体积小、无噪音、降温极快及可实现对温度的精确控制等优点,但由于成本及转换效率等问题一直未能普及使用,仅应用于化工、电子技术、生物技术、医疗、军工等特殊领域。
     针对目前热响应测试设备存在的问题,本文将热电制冷技术与热响应测试结合起来,研制了一种新型的热响应测试设备。该设备采用热电制冷装置作为冷热源,配备两套循环管路分别连接热电制冷装置的冷热两侧,实际工作时可选择任何一套循环管路进行热响应测试,或者连接两套管路同时进行两种不同工况的热响应测试。
     热响应测试中,通常夏季制冷工况下循环水平均温度在20~30℃之间,冬季供暖工况下循环水平均温度在3~8℃之间,因此当热电制冷装置的冷端和热端的平均温度按20℃(293K)考虑时,由于目前常见热电制冷元件的热电优值Z一般为(2~3)×10~(-3)K~(-1),ΔTmax可达60~80℃,热响应测试时冷热端的实际温差距离0.5ΔTmax的最优值较为接近。因此选择最佳制冷效率作为测试设备中热电制冷装置的设计工况。
     根据实测数据,研制的热电制冷装置冷端输出功率为-1802~-1744W,平均输出功率-1778W,功率波动范围仅为3.28%;热端输出功率8235~8528W,平均输出功率8387W,功率波动范围仅为3.49%。稳定的输出功率可以减少热响应测试数据在数据处理时的误差,确保了测试结果的准确性。另外由于热电制冷装置不需与外界环境进行热量交换,即可输出稳定的热量和冷量,避免了环境气温变化对循环水温度的影响。
     在改进测试系统硬件的同时,为进一步减少电压波动、环境温度变化等不利因素对测试结果的影响,在现有常热流线热源模型及圆柱热源模型的基础上,进行变热流传热模型的研究,并编写相应数据处理程序,提高计算结果的准确性。
The technology of Ground source heat pump (GSHP) is a green and clean energytechnology for shallow geothermal resources, and has been applied more widely inEurope and the United States and other Western developed countries. In recent yearsin China ground source heat pump system has also get widespread attention. Thecore technology of ground source heat pump system is the design of heat exchangersin the hole, so thermal parameters of rock and soil is very important. In the earlystages of development of ground source heat pump system, commonly usedempirical data or make laboratory test to determine the thermal parameters. With thedeepening study on heat transfer model of ground source heat pump system, thermalresponse test has been used widely to determine rock and soil thermal parameters.The early thermal response test equipment usually use electric heater as the heatsource, and it can only test in refrigeration condition and calculate thermo physicalproperties in heating condition through software simulation. Subsequently, sometest equipment which used heap pump as the heat source and can test in refrigerationand heating condition were developed. But during the testing of the heatingconditions, heat pump was used as cold source. For the operation mechanism of heatpump, heat pump had to extract heat from the circulating water through thecondenser and fan discharge to the ambient air, the temperature of circulating waterwill inevitably be subject to the influence of environmental temperature. Change ofthe ambient temperature could influence of the cooling efficiency of the heat pumpwill not control the temperature by auxiliary heat source, the output power of testequipment and circulating water temperature will be fluctuated by environmentaltemperature.
     Thermoelectric refrigeration is a new artificial refrigeration technology based onPeltier effect. Thermoelectric refrigeration unit has the advantages of small size, no noise, high cooling rate and easy to control. However, because of the high cost andlow conversion efficiency, thermoelectric refrigeration unit has not been acceptwidely, and only used in chemical industry, electronics, biotechnology, medical,military, and other special areas.
     Aiming at the problem of current thermal response test equipment, thermoelectricrefrigeration unit and thermal response test were combined to develop a new kind oftest equipment. It use thermoelectric refrigeration unit as refrigeration/heating source,has two circulation loops which connect to two side of thermoelectric refrigerationunit. So it can output heat and refrigeration at the same time, and can do thermalresponse test in two conditions.
     In thermal response test, the average temperature of circulating water usually biswithin 20 ~ 30°C in cooling condition, and 3 ~ 8°C in heating condition, so whenthe average temperature of cold side and heat side of thermoelectric coolingequipment is considered at 20°C (at 293 K), the figure of merit Z of commonthermoelectric cooling element in general ( 2 ~ 3 )×10~(-3)K~(-1),ΔTmax up to 60 ~ 80°C. The actual temperature difference between hot and cold side is nearly to0.5ΔTmax. Therefore, choose the best cooling efficiency thermoelectric coolingdevice as test equipment design conditions.
     According to the measured data, the cold output power of developed thermoelectriccooling device is within -1802 ~ -1744 W, average output power is -1778 W, powerfluctuation range is only 3.28%; the heat output power of developed thermoelectriccooling device is within 8235 ~ 8528 W, average output power is 8387 W, powerfluctuation range is only 3.49%. Stable output can reduce the error of data processingin thermal response testing, guarantee the accuracy of test results. In addition thethermoelectric cooling device can output stable cold and heat without external heatexchange with environment, to avoid environmental impact of temperature on thetemperature of circulating water.
     In order to reduce the harmful effect such as voltage fluctuations, change of environment temperature and so on, some research on variable heat flux model werestudied on the base of constant heat flux line source model and constant heat fluxcolumn source model. The corresponding data processing program were developedto improve the accuracy of the calculation results.
引文
[1] Ball D A, Fischer R D, Hodgett D L. Design methods for ground-source heatpumps[R].Battelle Columbus Laboratories, Columbus, OH, 1983.
    [2] Spitler J D. Editorial: Ground-Source Heat Pump System Research—Past,Present, and Future[J]. HVAC&R Research, 2005,11(2):165-167.
    [3] Ragnarsson. Geothermal Energy–Its Global Development Potential &Contribution to Mitigation of Climate Change[Z]. Madrid: 2009.
    [4]马宏权,龙惟定,朱东凌.地源热泵的应用进展[J].建筑热能通风空调,2009,27(6):24-28.
    [5]北京市国土资源局.关于地源热泵项目的申报程序及有关管理要求的说明
    [Z].2006.
    [6]王相乙.浅谈沈阳市再生水源热泵利用及存在问题分析[J].环境保护科学,2009,35(5).
    [7]汪训昌.关于对地源热泵系统工程推行与实施监测和监管机制的建议[J].地温资源与地源热泵技术应用论文集(第二集),2008.
    [8]王秉忱,田廷山,赵继昌,等.我国地温资源开发与地源热泵技术应用,发展及存在问题[J].2009(001):23-27.
    [9] Kavanaugh S P. Field tests for ground thermal properties--Methods and impacton ground-source heat pump design[J]. 2000.
    [10] Mogensen P. Fluid to duct wall heat transfer in duct system heat storages[J].1983(16):652-657.
    [11]王庆华.浅层岩土体热物理性质原位测试仪的研制及传热数值模拟[J].2009.
    [12] Ekl f C, Gehlin S. TED-a mobile equipment for thermal response test: testingand evaluation[J]. 1996.
    [13] Gehlin S, Nordell B. Thermal response test-a mobile equipment for determiningthermal resistance of borehole[J]. 1997:103-108.
    [14] AUSTIN III W A. Development of an in situ system for measuring groundthermal properties[J]. 1998.
    [15] Sanner B, Hellstr m G, Spitler J, et al. Thermal response test–current statusand world-wide application: Proceedings World Geothermal Congress, 2005[C].
    [16] Sanner B, Reuss M, Mands E, et al. Thermal response test-experiences inGermany: Proceedings of Terrastock, 2000[C].
    [17] Sanner B, Mands E, Sauer M, et al. Thermal Response Test, a routine method todetermine thermal ground properties for GSHP design[J]. 2008:4-35.
    [18] Bose J E, Smith M D, Spitler J D. Advances in ground source heat pumpsystems-an international overview: 7th IEA Heat Pump Conference. 1: 313,2002[C].
    [19] Lund J, Sanner B, Rybach L, et al. Geothermal (ground-source) heat pumps: aworld overview[J]. 2004,25:1-10.
    [20] Rybach L, Sanner B. Ground source heat pump systems, the Europeanexperience[J]. 2000,21:16-26.
    [21] Sanner B. Current status of ground source heat pumps in Europe: Futurestock2003 Conference, Warsaw, Poland, 2003[C].
    [22] Cekerevac C, Laloui L, Vulliet L. A novel triaxial apparatus forthermo-mechanical testing of soils[J]. 2005,28(2):161-170.
    [23]李晓东,于明志,李雨桐.基于地源热泵的便携式岩土热物性测试仪的研制与应用[J].2004,30(5):28-29.
    [24]马志同.浅层岩土热物性参数测量仪的研制[D].中国地质大学(北京),2006.
    [25]刘立芳.热反应实验及其应用的研究[D].北京工业大学,2007.
    [26]齐承英.恒温法岩土体热物性测试仪简介(发言资料):地埋管换热器热响应试验测试仪应用研讨会,北京,2009[C].中国地质环境监测院和中国资源综合利用协会地温资源综合利用专业委员会,.
    [27]周亚素彭孝芳Author朱汉宝Author.U管埋地换热器周围土壤传热性能测试方法[J].制冷与空调(四川),2007(03):53-58.
    [28]胡平放,孙启明,於仲义,等.地源热泵用岩土热物性测试方法的研究:2008铁路暖通空调学术年会,中国江苏苏州,2008.
    [29]楼洪波,毕文明.地埋管地源热泵系统地下换热器热(冷)响应测试车研制:地温能与热泵技术应用高层论坛——水/地源空调及地热泵采暖与地下能源的平衡会议,中国北京,2007.
    [30]毕文明,楼洪波,尹恒,等.浅层地热能冷、热响应测试仪测试及试验数据分析:第二届“地温资源开发与地源热泵技术应用论坛”大会,中国陕西西安,2008.
    [31] Ingersoll L R, Plass H J. Theory of the ground pipe heat source for the heatpump[J]. ASHVE transactions, 1948,47:339-348.
    [32] Ingersoll L R. Heat conduction: with engineering, geological, and otherapplications[M]. University of Wisconsin Press, 1954.
    [33] Hart D P, Couvillion R. Earth coupled heat transfer[J]. National Water WellAssociation, 1986:372-379.
    [34] Lund J, Sanner B, Rybach L, et al. Geothermal (ground-source) heat pumps: aworld overview[J]. GHC Bulletin, 2004,25:1-10.
    [35] Bose J E, Extension O S U E. Closed-loop ground-coupled heat pump designmanual[M]. The University, 1984.
    [36] Cane R, Forgas D A. Modeling of ground-source heat pump performance[J].ASHRAE transactions, 1991(pt 1):909-925.
    [37]刁乃仁,方肇洪.地埋管地源热泵技术[M].高等教育出版社,2006.
    [38] Kavanaugh S P. Simulation and experimental verification of verticalground-coupled heat pump systems[R].Oklahoma State Univ., Stillwater (USA),1985.
    [39] Carslaw H S, Jaeger J C. Conduction of heat in solids[J]. Oxford: ClarendonPress, 1959, 2nd ed., 1959,1.
    [40] Eskilson P. Thermal analysis of heat extraction boreholes[M]. Department ofMathematical Physics, University of Lund, 1987.
    [41] Hellstr m G. Duct ground heat storage model, Manual for Computer Code[J].Department of Mathematical Physics, University of Lund, Sweden, 1989.
    [42] Yavuzturk C. Modeling of vertical ground loop heat exchangers for groundsource heat pump systems[D]. Oklahoma State University, 1999.
    [43] Hellstr m G, Physics U O L D. Ground Heat Storage: Thermal Analyses ofDuct Storage Systems.-1: Theory[M]. 1991.
    [44] Muraya N K. Numerical modeling of the transient thermal interference ofvertical U-tube heat exchanges[D]. Texas A&M University, 1994.
    [45] Muraya N K, O'Neal D L, Heffington W M. Thermal interference of adjacentlegs in a vertical U-tube heat exchanger for a ground-coupled heat pump[J].Ashrae Transactions, 1996,102(2):12-21.
    [46] Rottmayer S P, Beckman W A, Mitchell J W. Simulation of a single verticalU-tube ground heat exchanger in an infinite medium[J]. Ashrae Transactions,1997,103(pt 2):651-659.
    [47] Shonder J A, Beck J V. Determining effective soil formation thermal propertiesfrom field data using a parameter estimation technique[R].Oak Ridge NationalLab., TN (United States), 1998.
    [48]刘宪英,胡鸣明,魏唐棣.地热源热泵地下埋管换热器传热模型的综述[J].重庆建筑大学学报,1999(04).
    [49]魏紫娟,秦萍.土壤源热泵地下垂直埋管换热器常用传热模型的研究[J].制冷与空调(四川),2004(3):17-21.
    [50]苏晓,龚东巧.地热换热器孔外传热模型研究进展[J].应用能源技术,2006(01):29-33.
    [51]何雪冰,丁勇,刘宪英.地源热泵埋管换热器传热模型及其应用[J].重庆建筑大学学报,2004(02):76-80.
    [52]杨卫波,施明恒.基于垂直U型埋管换热器的圆柱源理论及其应用研究[J].制冷学报,2006(05):51-57.
    [53]杨卫波,施明恒.地源热泵中U型埋管传热过程的数值模拟[J].东南大学学报(自然科学版),2007(01):78-83.
    [54]曾和义,刁乃仁,方肇洪.地源热泵竖直埋管的有限长线热源模型[J].热能动力工程,2003(02):166-170.
    [55]曾和义,方肇洪.双U型埋管地热换热器的传热模型[J].山东建筑工程学院学报,2003(01):11-17.
    [56]柳晓雷,王德林,方肇洪.垂直埋管地热换热器的传热模型与计算[J].建筑热能通风空调,2001(02):1-3.
    [57]柳晓雷,王德林,方肇洪.垂直埋管地源热泵的圆柱面传热模型及简化计算[J].山东建筑工程学院学报,2001(01):47-51.
    [58]崔萍,刁乃仁,方肇洪,等.地热换热器U型埋管的传热模型及热阻计算[J].暖通空调,2003(06):108-110.
    [59]任晓红,孙纯武,胡彦辉.U型埋管换热器三维数值模拟和供热实验研究[J].重庆建筑大学学报,2004(05):90-95.
    [60]包强.土壤耦合热泵U型埋管换热器数值模拟[D].中南大学,2007.
    [61]黄俊惠,时晓燕,唐志伟.地源热泵U型管地下换热器的准三维模型[J].中国农业大学学报,2004(05):51-54.
    [62]李芃,仇中柱,于立强.垂直埋管式土壤源热泵埋管周围土壤温度场的数值模拟[J].建筑热能通风空调,2000(04):1-4.
    [63]张玲,陈光明,黄奕沄.垂直埋管热湿传递线源模型的建立及其计算条件[J].太阳能学报,2007(2):141-145.
    [64]范蕊,马最良.地埋管换热器传热模型的回顾与改进[J].暖通空调,2006(4):25-29.
    [65]李斌.热渗共同作用下的地下埋管换热器实验研究[D].哈尔滨工业大学,2006.
    [66]王庆鹏.地下水渗流对地源热影响的研究[D].北京工业大学,2007.
    [67]刘清.采暖制冷技术中的热电效应[J].武汉工程职业技术学院学报,2008(02):17-21.
    [68] Ioffe A F, Stil'Bans L S, Iordanishvili E K, et al. Semiconductor thermoelementsand thermoelectric cooling[J]. Physics Today, 1959,12:42.
    [69] On T C, Egli P H. Thermoelectricity[M]. John Wiley and Sons, Inc., 1960.
    [70] Whelan P M, Hodgson M J, Robinson T. Essential principles of physics[M].John Murray, 1987.
    [71] Pollock D D. The theory and properties of thermocouple elements[M]. ASTMInternational, 1971.
    [72]陈欣.HgTe高压cinnabar相热电效率的第一性原理研究[D].吉林大学,2009.
    [73]李涛.基于热电效应的热回收应用技术研究和设备开发[D].湖南大学,2010.
    [74] Wood C. Materials for thermoelectric energy conversion[J]. Reports on progressin physics, 1988,51:459.
    [75]王一.高压提高PbTe热电效率的第一性原理研究[D].吉林大学,2008.
    [76] Thomson W. Elements of a mathematical theory of elasticity[J]. PhilosophicalTransactions of the Royal Society of London, 1856,146(1/2):481-498.
    [77] Telkes M. The Efficiency of Thermoelectric Generators. I.[J]. Journal ofApplied Physics, 1947,18(12):1116-1127.
    [78] Vedernikov M V, Iordanishvili E K. AF Ioffe and origin of modernsemiconductor thermoelectric energy conversion, 1998[C]. IEEE.
    [79]章毛连,谈欣柏.半导体制冷技术及其应用[J].安徽农业技术师范学院学报,1996(04):56-60.
    [80]倪美琴,陈兴华,庄斌舵.关注半导体制冷研究与发展[J].制冷与空调,2001(01):42-44.
    [81]龚定农,林沛勋,龚锡阳,等.Te-Bi-Se稀散元素化合物半导体制冷材料的合成及应用研究[J].辽宁大学学报(自然科学版),1999(04):365-368.
    [82]钟广学.半导体致冷器件及其应用[M].科学出版社,1989.
    [83]罗清海.热电制冷系统热力学优化分析及节能应用和开发[D].湖南大学,2005.
    [84]高远,李杏英,蒋玉思,等.半导体制冷材料的发展[J].广东有色金属学报,2003(01):34-36.
    [85]宣向春,王维扬.半导体制冷器的进展[J].半导体技术,1999(01):14-18.
    [86]丁素英.半导体制冷技术研究[J].潍坊学院学报,2001(02):38-40.
    [87]刘华军,李来风.半导体热电制冷材料的研究进展[J].低温工程,2004(01):32-38.
    [88]马乔矢.半导体制冷技术的应用和发展[J].沈阳建筑工程学院学报,1999(01):83-87.
    [89]朴东胜王锦侠.家用半导体制冷采暖系统的研究[J].上海机械学院学报,1994(03):25-32.
    [90]陈振林,孙中泉.半导体制冷器原理与应用[J].微电子技术,1999(05):63-65.
    [91]陈晓航,陈旭阳,周颖慧.新型热驱动半导体制冷器性能的优化分析[J].低温与超导,2003(01):52-55.
    [92] DiSalvo F J. Thermoelectric cooling and power generation[J]. Science,1999,285(5428):703-706.
    [93]谢玲.小型热电制冷(除湿)器的开发与研究[D].湖南大学,2007.
    [94]洪万亿.热电制冷器最佳工作状态的研究[D].福州大学,2006.
    [95] Rowe D M, Bhandari C M. Modern thermoelectrics[M]. Prentice Hall, 1983.
    [96] Wood C. Materials for thermoelectric energy conversion[J]. Reports on progressin physics, 1988,51:459.
    [97]高敏,电子技术,张景韶,等.温差电转换及其应用[M].兵器工业出版社,1996.
    [98]罗清海,汤广发,李涛.半导体制冷空调的应用与发展前景[J].制冷与空调,2005(06):5-9.
    [99] Stockholm J. Large-scale cooling: integrated thermoelectric elementtechnology[J]. CRC Handbook of Thermoelectrics, CRC Press, Inc, 1995.
    [100] Purcupile J C, Stillwagon R E, FranSeen R E. Development of a two-tonthermoelectric environmental control unit for the US army[J]. ASHRAETransactions, 1968,74(2):53-69.
    [101] Mole C J, Meenan D F. Direct transfer thermoelectric cooling[J]. ASHRAETransactions, 1964,70(1):130-138.
    [102] Anderson J R, Wright P E. Performance estimation of a thermoelectric airconditioner[J]. ASHRAE Transactions, 1964,70(1):149-155.
    [103] Hudelson G D, Gable G K, Beck A A. Development of a thermoelectric airconditioner for submarine application[J]. ASHRAE Transactions,1964,70(1):156-162.
    [104]洪启丰.加压仓热电空调器的设计和应用[J].制冷学报,1985,2(25):2.
    [105] Crouthamel M S, Pans J F, Shelpuk B. Nine-ton thermoelectric air-conditioningsystem[J]. ASHRAE Transactions, 1964,70(1):139-147.
    [106] Mole C J, Purcupile J C. Recent developments on direct transfer thermoelectriccooling for shipboard use, 1968[C].
    [107] Stockholm J G, Pujol-Soulet L, Sternat P. Prototype thermoelectric airconditioning of a passenger railway coach, 1982[C].
    [108] Mei V C, Chen F C, Mathiprakasam B, et al. Study of solar-assistedthermoelectric technology for automobile air conditioning[J]. Journal of solarenergy engineering, 1993,115:200.
    [109] Ruth D W. Simulation modeling of automobile comfort cooling requirements[J].ASHRAE Journal, 1975,5:53-55.
    [110] Mei V C, Chen F C, Mathiprakasam B. Comparison of thermoelectric and vaporcycle technologies for groundwater heat pump application[J]. Journal of solarenergy engineering, 1989,111:353.
    [111]罗清海,汤广发,唐海兵.建筑节能中的能源回收新技术[J].低温建筑技术,2004(01):67-69.
    [112]罗清海,汤广发,龚光彩,等.建筑热水节能中的热泵技术[J].给水排水,2004(05):63-66.
    [113] Elfving T M. Study of design problems and mode of operation forthermoelectric refrigerators[J]. ASHRAE Transactions, 1963,69(1):198-206.
    [114] Stoecker W F, Chaddock J B. Transient performance of a thermoelectricrefrigerator under step-current control[J]. ASHRAE Transactions,1963,69(1):380-387.
    [115] Dai Y J, Wang R Z, Ni L. Experimental investigation on a thermoelectricrefrigerator driven by solar cells[J]. Renewable energy, 2003,28(6):949-959.
    [116] Lee J S, Rhi S H, Kim C N, et al. Use of two-phase loop thermosyphons forthermoelectric refrigeration: experiment and analysis[J]. Applied thermalengineering, 2003,23(9):1167-1176.
    [117] Omer S A, Riffat S B, Ma X. Experimental investigation of a thermoelectricrefrigeration system employing a phase change material integrated with thermaldiode (thermosyphons)[J]. Applied thermal engineering,2001,21(12):1265-1271.
    [118]罗清海,汤广发,王静伟,等.热电热泵干衣机的研制及实验研究[J].节能技术,2004(04):30-32.
    [119]迟泽涛,贾立业,马兴成.半导体制冷去湿[J].制冷学报,1997(03):45-48.
    [120] Highgate D J, Probert S D. Higher energy-efficiency, readily transportableincubators[J]. Applied Energy, 1990,35(2):135-149.
    [121] Haynes D H, Monaghan W P. Blood storage and transport in the field using aportable thermoelectric refrigerator: assessment of potential use.[J]. Militarymedicine, 1984,149(4):184.
    [122] Trelles J P, Dufly J J. Numerical simulation of porous latent heat thermal energystorage for thermoelectric cooling[J]. Applied thermal engineering,2003,23(13):1647-1664.
    [123] Hoehn A, Freeman J B, Jacobson M, et al. Incubator Designs for SpaceflightApplication Optimization and Automation[J]. 1999.
    [124]陈旭,李元山,毕人良.电子设备冷却中热电制冷的设计与应用[J].制冷学报,2001,3:69-72.
    [125] Belady C. Cooling and power consideration for semiconductors into the nextcentury, 2001[C]. ACM.
    [126] Riffat S B, Ma X. Thermoelectrics: a review of present and potentialapplications[J]. Applied Thermal Engineering, 2003,23(8):913-935.
    [127] Min G, Rowe D M. Cooling performance of integrated thermoelectricmicrocooler[J]. Solid-State Electronics, 1999,43(5):923-929.
    [128] Wijngaards D, Kong S H, Bartek M, et al. Design and fabrication of on-chipintegrated polySiGe and polySi Peltier devices[J]. Sensors and Actuators A:Physical, 2000,85(1-3):316-323.
    [129] Maruyama S, Nino E, Ruocco G. Analysis of a thermoelectrical device foractive heat transfer control[J]. International journal of thermal sciences,2001,40(10):911-916.
    [130] Gregory N. Thermoelectric cooling for NMR sample temperature control[J].Journal of Magnetic Resonance, 1997,124:228-231.
    [131]于明志,彭晓峰,方肇洪,等.基于线热源模型的地下岩土热物性测试方法[J].太阳能学报,2006(03):279-283.
    [132]赵军,段征强,宋著坤,等.基于圆柱热源模型的现场测量地下岩土热物性方法[J].太阳能学报,2006(09):934-936.
    [133] Deerman J D. Simulation of vertical U-tube ground-coupled heat pump systemsusing the cylindrical heat source solution[J]. ASHRAE Transaction: Research,1990,3472:287-295.
    [134]王景刚,马一太,张子平,等.地源热泵的运行特性模拟研究[J].工程热物理学报,2003(03):361-366.
    [135] Yavuzturk C, Spitler J D. A short time step response factor model for verticalground loop heat exchangers[J]. Ashrae Transactions, 1999,105(2):475-485.
    [136] Bernier M A. Ground-coupled heat pump system simulation[J]. AshraeTransactions, 2001,107:605-616.
    [137] Wagner R, Clauser C. Evaluating thermal response tests using parameterestimation for thermal conductivity and thermal capacity[J]. Journal ofGeophysics and Engineering, 2005,2:349.
    [138] Nelder J A, Mead R. A simplex method for function minimization[J]. Thecomputer journal, 1965,7(4):308-313.
    [139] Shonder J A, Beck J V. Determining effective soil formation thermal propertiesfrom field data using a parameter estimation technique[R].Oak Ridge NationalLab., TN (United States), 1998.
    [140] Yavuzturk C, Spitler J D, Rees S J. A transient two-dimensional finite volumemodel for the simulation of vertical U-tube ground heat exchangers[J].ASHRAE transactions, 1999,105(2):465-474.
    [141] Spitler J D, Yavuzturk C, Rees S J. In situ measurement of ground thermalproperties, 2000[C].
    [142]黄昆,谢希德.半导体物理学[M].科学出版社,1958.
    [143]蔡德坡.半导体制冷热端的分析与实验研究[D].南昌大学,2010.
    [144] Reid R S, Merrigan M A, Sena J T. Review of liquid metal heat pipe work atLos Alamos, 1991[C].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700