磁流变阻尼器对高速列车通过简支箱梁桥时的振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁在我国高速铁路占有很大比重,高速列车过桥时动力响应的课题研究已逐步提上日程。桥梁振动控制作为一种智能主动(或半主动)的方法,基于控制系统和被控结构的联合作用来抵御外部的动力输入,从而有效地减小桥梁的动力响应,进而提高行车的安全稳定性。
     近年来随着智能材料的快速发展,磁流变阻尼器(MRD)作为一种新型的阻尼器受到广泛的关注。它是一种通过实时改变磁流变阀中的磁场强度,来智能调节阻尼出力目的的智能装置.与传统的机械可调阻尼器相比减少了阀门部分的机械装置,其系统更加可靠.本文主要工作如下:
     1)磁流变阻尼器的工作原理及其力学模型。系统的阐述了磁流变阻尼器几种经典的力学模型,本文采用其中能较准确反映其力学性能的修正的现象模型。
     2)车-桥-MRD耦合系统的建立。在选取了MRD的力学模型,并建立了桥梁有限元模型和具有两个转向架四个轮对的列车振动分析模型、轨道不平顺模型的基础上,根据虚功原理推导出车桥系统的动力方程,此方程适用于作匀速运动的车辆与具有任意轨道不平顺函数、各种不同边界条件的桥梁的耦合系统。
     3)车-桥-MRD耦合系统的求解与程序实现。本文基于Fortran95编制了较为通用的车-桥-MRD竖向振动分析程序和轨道不平顺计算程序,该程序可进行车-桥-MRD系统的动力分析,适用于能够用梁单元、桁架单元和索单元模拟的桥梁模型,适用于移动荷载和可简化为弹簧、阻尼器相连的多刚体模型的车辆模型,能够实现匀速车辆作用下的车桥系统的竖向响应分析,也可考虑轨道不平顺的影响,并在MRD作用下分析其及其对车-桥系统的动力响应的影响。
     4)磁流变阻尼器最优控制力的求解。首先利用瞬时最优主动控制求解出结构在外界激励作用下的最优控制力,然后利用本文探讨的双限值半主动控制算法对最优控制力进行过滤,最终得出阻尼器当前最优出力。双限值半主动控制算法是建立在主动控制理论基础之上,再结合阻尼器的当前状态,在参数限值范围内计算出阻尼器的当前最优出力。
     5)MRD对桥梁的减振效果分析。本文采用了一种新的MRD与锚索组成的减振系统,研究了磁流变阻尼器减振系统对高速列车通过简支梁桥时列车、桥梁动力响应的减振效果,计算分析了磁流变阻尼器减振系统对40m和32m简支梁桥动力响应的影响,尤其在共振车速下对桥梁的动力响应有更好的控制效果,可在工程实践中推广应用。同时分析了磁流变阻尼器减振系统对车辆运行平稳性的影响,通过分析MRD对桥梁在不同荷载下的控制效果,验证了磁流变阻尼器在控制桥梁振动方面的可行性。
Among of the high-speed railway constructions of China, bridges are in a large proportion. Dynamic performances of train-bridge interaction system under the loads of high-speed trains and have been put on the agenda. The vibration problem of bridge as a kind of intelligent and active or semi-active strategy, basing on the teamwork of the control system and structure to withstand external power input, in order to decrease the dynamic response of train-bridge, and increase the safety and stability of travelling.
     As the development of smart materials in recent years, as a new type of damper, magneto rheological damper (MRD) attracts widespread attention. It can generate variable and real-time damping force by adjusting the magnetic filed strength. It is more reliable comparing with the traditional mechanical adjustable damper for it takes out the mechanic valve. The major work has been done as follows:
     Firstly,the working-principle and mechanical models of magneto rheological damper. Several classic mechanical models of MRD have been elaborated systemly, and adopted the amended phenomenon-mod- el which which can response the performance of the model correctly.
     Secondly, the train-bridge-MRD interaction system. After choose the model of MRD and simulating the model of the train vehicle on the bridge, the model with two bogies and four wheels, was established for vertical analysis. As the same time, the finite element model of the bridge and the surface roughness model were also built. Then based on the virtual work principle, the dynamical equations of the coupled train-bridge system were deduced. The equations are applicable to the system composed by vehicles with uniformed speeds and bridges with arbitrary surface roughness functions and different constraints.
     Thirdly, the solving and the analysis program of the train-bridge-MRD interaction system. An all-purpose program for vertical dynamic analysis of train-bridge-MRD interaction system and a program for the simulation of surface roughness were developed using FORTRAN 95. Using the dynamic analysis program of train-bridge-MRD interaction system, the dynamic properties analysis of train-bridge-MRD interaction system can be done. It is applicable to the bridge models which can be simulated by beam, truss and cable elements, and moving load and the vehicle models which can be predigested into mass-spring-damper systems. The responses of train-bridge interaction system under high-speed trains with uniformed speeds can be analyzed. Moreover it can take surface roughness and MRD into consideration.
     Fourthly, the solving of the opimal control force of MRD. First,the optimal control of structure under external loads is calculated by instantaneous optimal control, and the dual-threshold control algorithm of the semi-active control strategy of MR damper is built on the basis of the theory of active control, and then combined with the current state of damper; the damping force of model which will be used in the bridge to control structural vibration is calculated by control algorithm limits (semi-active control algorithm).
     Finally, the analysis of the vibration-reducing of the MRD to the bridge. This paper maded a new vibration-reducing model which was made of MRD and anchor. The effects of MRD were studied on vibration suppression of simply supported bridges and vehicles when high-speed trains were moving on the beam. A case study using 40-metre and 32-metre simply supported PC box beam bridges was conducted. The results show that the MRD has better effects on reducing the resonant responses of the bridge. Therefore it is suggested to apply into practice. Besides, the effect of MRD on smooth performance for railway vehicles was discussed. Through the analysis shows, MR dampers for vibration control of bridges are feasible.
引文
[1]周云,谭平.磁流变阻尼控制理论与技术.北京:科学出版社,2007
    [2]周福霖.工程结构减震控制.北京:地震出版社,1997
    [3]夏禾.车辆与结构动力相互作用.科学出版社,2002
    [4]李宏男,霍林生.结构多维减震控制 北京:科学出版社,2008
    [5]杨润林,闫维明等,办主动U型液力阻尼器的结构控制.应用力学学报,2003,20(4):108-111
    [6]周云,刘季.新型耗能(阻尼)减震器的开发与研究.地震工程与工程振动 1998,18(1):77-79
    [7]欧进萍.结构振动控制--主动、半主动和智能控制.北京:科学出版社,2003
    [8]刘季,周云.结构抗震控制的研究与应用状况(上)--基础隔震与耗能减震技术.哈尔滨建筑大学学报,1995,28(4):26-29
    [9]谢凌志,于建华.结构半主动控制的发展动态.建筑结构,2001,21(2):99-101
    [10]Dyke S J,Spence B F Jr,Sain M K,Carlson J D.Seismic response reduction using magneto rheological dampers.Proceedings of the IFAC World Congress,San Francisco,1996
    [11]Dyke S J,Spence B F Jr,Sain M K,Carlson J D.Modeling and control of magneto rheological dampers for seismic response reduction.Smart Materials and Structures,1996
    [12]Dyke S J,Spence B F Jr,Sain M K,Carlson J D.Experimental variation of semi-active structural control strategies using acceleration feedback.Proceedings of the 3rd International Conference on Motion and Vibration Control,1996
    [13]Johnson E A,Ramallo J C,Spencer B F Jr,Sain M K.Intelligent base isolation systems.Proceedings of 2nd World Conference on Structural Control,Kyoto,Japan,1998
    [14]徐龙河.基于磁流变流体阻尼器(MRFD)的半主动结构控制理论的研究[博士学位论文].天津:天津大学,2000
    [15]Willis.R.The Effect Produced by Causing Weights to Travel Over Elastic Bars,Appendix to the report of the Commissioners Appointed to Inquire into the Application of Iron to Railway Structures.London:H. M.Stationary Office,1849
    [16]Stokes,G.G.Discussions of a Differential Equation Related to the Breaking of Railway Bridges,Trans.Cambridge Phil.Soc.V.8.Part5,1896
    [17]Krylov,A.N.Uber die Erzwungen Scwinggungen Von Gleichformigen Elastischen Staben.Peterburg:Mathematiches Analen,1905,(6):211
    [18]S.Timoshenko.Vibration of Bridges.Transactions ASME,1927(49)-1928(50)
    [19]Inglis,C.E..A Mathematical Treatise on Vibrations in Railway Bridges.Cambridge,1934
    [20]约翰 M.比格斯.姚玲森,程翔云,译.结构动力学.人民交通出版社,1982
    [21]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1993
    [22]李国豪.桁梁桥的扭、稳定和振动.北京:人民交通出版社,1975
    [23]Muchnikov,V.M.Some Methods of Computing Vibration of Elastic Systems Subjected to Moving Loads.Moscow.Gosstroiizdat,1953
    [24]Naleskiewicz,J.J..On the Dynamics of Bridge Girders(in Polish).Archiwum Mechaniki,Stosomanei,1953,(4):517-544
    [25]Hiral,A.,Ito,M..Dynamic Effects Produced by Trains upon Suspension Bridges Lisbon:Symposium on Suspension Bridges,1966
    [26]Hiral,A.,Ito,M..Response of Suspension Bridges to Moving Vehicles,J.of the Faculty of Engineering.University of Yokyo,1967,ⅩⅩⅨ(1)
    [27]Fryba L..Non-Stationary Response of a Beam to a Moving Random Force.J.of Sound&Vibration,1976,46(3)
    [28]Fryba L..Dynamic Interaction of Vehicles with Tracks and Roads.Vehicle System Dynamics,1987,(16):129-138
    [29]Jiro Tajima,M.,Wakui,Y.Y.H..Modal Method for Interaction of Train and Bridge.Computers and Structures,1987,27(1):119-127
    [30]Chu K.H.,Garg V.K..Railway-Bridge Impact:Simplifide Train and Bridge Model.J.of the Strucrural Division,ASCE,1979,105(9):66-75
    [31]Bhatti M.H.,Grag V.K.,Chu,K.H..Dynamic Interaction Betweem Freight Train and Steel Bridge.J.of Dynamic Systems,Measurement,and Control,ASME,1985,107(1):60-66
    [32]Chu K.H.,Grag Y.K.,Bhatti M.H..Impact in Truss Bridge due to Freight Trains.J.of Engrg.Mechanics,ASCE,1985,111(2):159-174
    [33]李国豪.桁梁桥的扭转、稳定和振动.北京:人民交通出版社,1975
    [34]陈英俊.车辆荷载下桥梁真的基本理论的演变.桥梁建设,1975,(2):44-49
    [35]姚忠达,杨永斌.告诉铁路车-桥互制理论.台湾图文技术服务有限公司,2000
    [36]汪建晓,孟光。磁流变液装置及其在机械工程中的应用.机械强度,2001,23(1):50-56
    [37]廖昌荣,余淼,陈伟民,等.磁流变材料与磁流变阻尼器的潜在工程应用.机械工程材料,2001,25(1):31-34
    [38]淘宝祺.智能材料与结构.1997,北京:国防工业出版社
    [39]Spencer B F,Dyke S J,Sain M K,et al.Phenomenological model for magneto rheological dampers.Journal of Engineering Mechanics,1997,123(3):230-238
    [40]Dyke S J.Acceleration feedback control strategies for active and semi-active control systems:modeling,algorithm development and experimental verifications.Indiana:University of Notre Dame,1996
    [41]Jung H J,Spencer B F,Lee I W.Control of seismically excited cable-stayed bridge employing magnet rheological fluid dampers.Journal of structural engineering,2003,129(7):873-883
    [42]Erkus B,Abe M,Fujino Y.Investigation of semi-active contuol for seismic protection of elevated highway bridges.Engineering Structures,2002,(24):281-293
    [43]Satish N,Sanjay S,Iyer R.Seismic response of sliding isolated bridges with MR dampers.Proceedings of the American Control Conference,2004,Chicago,USA:4437-4441
    [44]Liu Y M,Gordaninejad F,Evrensel C A.Comparative study on vibration control of a scaled bridge using fail-sale magneto rheological fluid dampers.Journal of Structural Engineering.2005,131(5):743-751
    [45]Sahasrabudhe S,Nagarajaiah S.Experimental study of sliding base-isolated buildings with magneto rheological dampers in neat-fault earthquakes.Journal of Structural Engineering,2005,131(7):1025-1034
    [46]Christenson R E,Spencer B F,Johnson E A.Experimental verification of smart cable damping.Journalof Engineering-Mechanics,2006,123(3):268-278
    [47]Park K S,Jung H J,Spencer B F,et al.Hybrid control systems for seismic protection of a phase benchmark cable-stayed bridge.Journal of Structural Control,2003,10(3-4):231-247
    [48]Magneto rheological fluid and smart damper for structural vibration control.地震工程与工程振动,2001,21(4):1-7
    [49]欧进萍,关新春.磁流变耗能器及其性能.地震工程与工程振动,1999,19(4):76-81
    [50]欧进萍,何政,吴斌等.钢筋混凝土结构基于地震损失性能的设计.地震工程与工程振动,1999,19(1):21-30
    [51]欧进萍,关新春.磁流变耗能器及其性能.地震工程与工程振动,1998,18(3):74-81
    [52]关新春,李金海,欧进萍.大吨位磁流变液阻尼器的性能试验研究.高技术通讯,2005,15(8):49-54
    [53]关新春,李金海,欧进萍.足尺磁流变液耗能器的性能与试验研究.工程力学,2005,22(6):207-211
    [54]关新春,李金海,欧进萍.三阶段活塞式磁流变液减振磁路的试验研究.2004,20(1):60-62
    [55]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定.振动与冲击,2001,20(1):5-8
    [56]Xu Z D,Shen Y P.A new intelligent control strategy for the structure with magneto rheological dampers.Journal of Intelligent Material Systems and Structures,2003,14(1):35-42
    [57]周云,徐龙河,李忠献.磁流变阻尼器半主动控制结构的地震反应分析.土木工程学报,2001,34(5):10-14
    [58]周云,徐龙河,李忠献.半主动磁流变阻尼控制结构的地震反应分析.地震工程与工程振动,2000,20(2):107-111
    [59]陈政清.2005.斜拉索风雨振现场观测与振动控制.建筑科学与工程学报,2005,22(4):5-10
    [60]G.Yang,B.F.Spencer Jr.,J.D.Carlson,M.K.Sain Large-scale MR fluid dampers:modeling and dynamic performance considerations.Engineering Structures 2002,(24):309-323
    [61]司鹄,彭向和.磁流变流体的磁流变效应.重庆大学学报,2003,26(5): 72-75
    [62]王修勇,陈政清,何旭辉等.洞庭湖大桥风雨振减振试验研究.中国公路学报,2003,16(2):52-56
    [63]Yang G Q,Spencer B F,Jung H J,et al.Dynamic modeling of large-scale magneto rheological damper systems for civil engineering applications.Journal of Engineering Mechanics.2004,130(9):1107-1114
    [64]Stanway R,Sproston J L,Stevens N G.Non-linear modeling of an electro theological vibration damper.Journal of Electrostatics,1987,20(2):127-184
    [65]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证.地震工程与工程振动,2002,22(4):144-150
    [66]Gamota D R,Filsko F E.Dynamic mechanical studies of electro rheological material:Moderate frequencies.Journal of Rheology,1991,35(3):399-425
    [67]Wen Y K.Method of random vibration of hysteretic systems.Journal of Engineering Mechanics Division,1976,102(2):249-263
    [68]Yoshioka H,Ramallo J C,Rpencer B F."Smart" base isolation strategies employing magneto theological dampers.Journal of Engineering Mechanics,2002,128(5):540-551
    [69]徐赵东,李爱群,等.磁流变阻尼器带质量元素的温度唯象模型.工程力学,2005,22(4):144-148
    [70]Yang G-Q.Large scale magneto rheological fluids damper for vibration mitigation:modeling,testing and control.Indiana:University of Notre Dame,1999
    [71]Yang J N,Kin J H,Anil K A.Resetting semi-active stiffness damper for seismic response control.Journal of Structural Engineering,2000,126(12):1427-1433
    [72]杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究:[博士学位论文].长沙:中南大学,2004
    [73]Jansen L M,Dyke S J.Semi-active contuol strategier for MR damper for seismic response control.Journal of engineering mechanics,2000,126(8):795-803
    [74]Leitman G.Semi-active control for vibration attenuation.Journal of Intelligent Material Systems and Struct.1994(5):841-846
    [75]McClamroch N H.Closed loop structural control using electro theological dampers.Proceedings of American Control,Conference,1995,Washington D C,USA:4173-4177
    [76]徐龙河,周云,李忠献.半主动磁流变阻尼控制方法的比较与分析.世界地震工程,2000,16(9):95-100
    [77]徐龙河,周云,李忠献.MRFD半主动控制系统的时滞与补偿.地震工程与工程振动,2001,21(3):127-131
    [78]李忠献,姜南,徐龙河,等.不同控制策略下安装MRD的模型结构振动台试验与分析.建筑结构学报,2004,25(6):15-21
    [79]李忠献,徐龙河,姜南等.基于MRF-04F阻尼器的结构减震控制模型试验.地震工程与工程振动,2004,24(1):148-153
    [80]张春巍,欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真分析.世界地震工程,2003,19(1):37-43
    [81]Kamagata S,Kobori T.Autonomous adaptive control of active variable stiffness system for seismic ground motion.Proceeding of 1st World Conference on Structural Contuol,Los Angeles,YSA,2002,(2):4-33
    [82]徐赵东,沈亚鹏.磁流变阻尼结构的双态空盒子和三态控制弹塑性分析.西安交通大学学报,2003,27(7):754-758
    [83]Gluck J,Ribakov Y,Dancygier A.Predictive active contuol of MDOF structures.Earthquake engineering and structural dynamics 2000,29(1):109-125
    [84]Gluck J,Ribakov Y,Dancygier A.Selective contuol of base isolated structures weith CS dampers.Earthquake engineering and structural dynamics,2000,(29):593-606
    [85]Schurter K C,Roschke P N.Neuron-fuzzy control of structures using magneto theological dampers.Proceeding of the American Control Conference,Arlington,USA,2001,7:1097-1102
    [86]Chang C C,Zhou L.Neural network emulation of inverse dynamics for a magneto theological- damper.Journal of Structural Engineering,2002,128(2):231-239
    [87]郭迎庆.磁流变阻尼结构的智能减震控制研究.西安:西安建筑科技大学,2003
    [88]Choi K M,Cho S W,Jung H J,et al.Semi-active fuzzy contuol for seismic response reduction using magneto rheological dampers. Earthquake Engineering and Structural Dynamics,2004,33:723-736
    [89]陈静.结构振动逻辑控制.北京:国防工业出版社.2005
    [90]陈静,翟伟廉.2002.基于布尔代数的MR阻尼器半主动控制算法.武汉理工大学学报,24(7):62-64
    [91]Yang J N,Wu J C,Renhorn A M and Riley M.Control of sliding-isolated buildings using sliding-mode control[A].Journal of Structural Enginering,ASCE,1996,122
    [92]Norion Iwata,Katsuhiko Hata.Application of MR damper to base-isolated structure.Proceedings of 9th World Conference on Smart Structure and Materials,SPAIN,2002
    [93]曾庆元等.列车-桥梁时变系统振动分析理论及应用.北京:中国铁道出版社,1999
    [94]刘晶波,杜修力.结构动力学,北京:机械工业出版社,2005
    [95]李国豪.桥梁结构稳定与振动,北京:中国铁道出版社,1996
    [96]李小珍,强士中.列车一桥梁耦合振动研究的现状与发展趋势.铁道学报,2002,24(5):112-120
    [97]王福天.车辆系统动力学.北京:中国铁道出版社,1994
    [98]夏禾,张楠.车辆与结构动力相互作用(第二版).北京:科学出版社,2005
    [99]R.W.克拉夫,J.彭津.结构动力学,北京:科学出版社,1981
    [100]Guo W.H.Dynamic analysis of coupled road vehicle and long span cable-stayed bridge systems under cross winds[博士学位论文].Hong Kong:The Hong Kong Polytechnic University,2003
    [101]Bathe K.J.Finite Element Procedures(2nd).New Jersey:Prentice Hall,1996
    [102]Xu Y.L.,Guo W.H.Dynamic analysis of cable-stayed bridge under a group of moving heavy vehicles,in International Symposium on Modern Concrete Composites & Infrastructures.2000.Beijing,China
    [103]肖杰.公路车桥耦合振动分析及可视化程序设计:[硕士学位论文].长沙:中南大学,2004
    [104]徐士良.FORTRAN常用算法程序集(第二版),北京:清华大学出版社,1995
    [105]彭国伦.FORTRAN95程序设计,北京:中国电力出版社,2002
    [106]张汝清,董明.结构计算程序设计,重庆:重庆出版社,1988
    [107]司学通.跨座式轻轨车与汽车同时作用下的公轨两用特大桥梁动力响应及行车舒适性研究[硕士学位论文].长沙:中南大学,2007
    [108]路萍.高速列车通过桥梁时的变速效应和振动控制研究:[硕士学位论文].长沙:中南大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700