AP-2α与TES的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AP-2是一个功能重要的转录因子家族,在哺乳动物的胚胎发育过程中,其表达受到严格的时空调控,参与多种组织和器官的细胞分化和形态发生,如神经脊,颅面部,四肢,躯干部,心脏和肾脏的发育。已经被克隆和研究的AP-2家族成员有AP-2α,AP-2β,AP-2γ,AP-2δ与AP-2ε,都能以同源或异源二聚体的形式结合于保守的DNA序列5′-GCCNNNGGC-3′。AP-2α是AP-2家族中最早被克隆和研究最多的一个成员。其功能不仅表现为胚胎发育中的重要调控子,还通过转录调控下游靶基因参与多个生理过程的调节,包括细胞生长,分化,癌变和凋亡等。作为一个多功能的调控因子,AP-2α有多个协同作用的蛋白伙伴。为了找到更多的与AP-2α相互作用的蛋白因子,我们用全长的AP-2α作为诱饵蛋白筛选了HeLa cDNA文库。得到了一个阳性克隆为人类的TESTIN(TES)基因,另一个为actinin(ACTN)基因。两者都是细胞骨架相关的蛋白,都能与actin相互作用。其中TES具有PET-LIM结构,在其C端有先后排列的3个LIM domain,可能与癌症的抑制相关。
     在本论文中,我们重点研究了TES与AP-2α.的相互作用以及TES的功能。我们表达纯化了全长和多种分段的AP-2α与TES蛋白,并制备了相应的抗血清。AP-2α与TES蛋白的相互作用通过体外pull-down与细胞裂解液中的免疫共沉淀实验得到了进一步验证。我们用体外pull-down实验将两者的相互作用定位于两个蛋白的C端。另外,我们还检测了TES蛋白的分子内相互作用,发现其N端通过C端的LIM3在体外相互结合。在荧光素酶报告系统中,我们的结果表明TES的过表达能够抑制AP-2α对ERBB2启动子的转录活性,而且除了全长,TES的C端与N端似乎都有一定的作用。在细胞免疫荧光化学分析中,我们发现本底TES蛋白定位有多种模式,特别是能位于内质网和细胞核中。我们的结果显示TES与AP-2α的表达在细胞核中有部分重叠区域。有趣的是,我们还发现TES过表达引起本底的AP-2α表达水平降低。而对TES进行RNA干扰可以大大提高本底ERBB2基因的转录水平。
     总的来说,我们的研究表明AP-2α与TES存在着体外相互作用,在细胞内可能处于同一复合体中,两者的相互作用可能对AP-2α介导的ERBB2转录激活起到抑制。同时我们的结果也为抑制癌症的功能提供了新的机制-通过抑制AP-2α的转录活性而起作用。而TES蛋白新的细胞内定位表明其功能不仅与细胞骨架相关,还在细胞核等区域内有一定的作用,AP-2α就是TES在细胞核中第一个相互作用的协助伙伴。TES在细胞核中的具体功能将有待进一步深入研究和发现。
AP-2 is a critical transcriptional family temporally and spatially regulated in mammal embryo development including neural crest, cranial face, limbs, heart and kidney. To date, five members of the AP-2 family of transcription factors, AP-2α, AP-2β, AP-2γ, AP-2δand AP-2εhave been identified and all of them can bind as homo- or hetero-dimers to the typical consensus sequence of 5'-GCCNNNGGC-3'. AP-2αis the first gene cloned and the relatively best characterized among the AP-2 gene family. It has been shown that AP-2αis an important regulator that mediates essential events in embryo development and also participate in many biological processes such as cell growth, differentiation, carcinogenesis, or apoptosis through the transcriptional control of multiple target downstream genes. To be a functional regulator, AP-2αis co-operator with a number of partners. To identify more of the interacting co-activators of AP-2α, a HeLa eDNA library was screened by yeast two-hybrid assay using the full length sequence of AP-2αas a bait protein. One of the positive clones was identified by the yeast two-hybrid assay as the human TESTIN (TES) gene and the other was actinin (ACTN). Both proteins can bind with the actin involving in the cytoskeleton. The TES has a PET domain in the NH_2-terminus and 3 tandem LIM domains in the COOH-terminus, which has been reported as a candidate of tumor suppressor. In this study, we put emphasis to the TES function research and the relevance between TES AP-2α. The full-length or truncations of AP-2αand TES proteins were expressed and purified, and then corresponding antiserums are prepeared. The interaction between TES and AP-2αproteins was confirmed by pull-down assay in vitro and co-immunoprecipitation in vivo. Furthermore, we found that the interaction domains between TES and AP-2αlie in the COOH-termini of both proteins. In addition, we also detected the intramolecular interaction between the NH_2- and COOH-terminal of the TES proteins, and found the detailed region responsible for binding with the NH_2-terminus was LIM3 in the COOH-terminus of TES. In the luciferase reporter analysis, overexpression of TES suppressed the transcriptional activity of AP-2αover the promoter of ERBB2 gene. It is a puzzle that the two termini of TES also had some function upon the transcriptional activity of AP-2α. In the cellular immunofluorescence assays, we showed a variable endogenous TES localization especially in the nucleus and ER. Further, we demonstrated that TES and AP-2αwere partially co-localized in thenucleus. Moreover, it is interesting that the TES overexpression leads to a decreased level of AP-2αprotein. While transfection of siRNA specifically against TES gene resulted in a significant increase of ERBB2 transcription. Taken together, our studies revealed that AP-2αis physically associated with TES in vitro and formed a complex with TES in vivo. And their interaction may be involving an inhibitory mechanism over AP-2-mediated transactivation of ERBB2 gene. At the same time, we also suggest a new role of TES as a tumor suppressor by suppressing the transcriptional activity of AP-2α. Whereas the novel cellular localization of TES protein implicates that TES functions more than a cytoskeleton associated protein, and its first physical and functional partner in nucleus may be AP-2α.
引文
1 Imagawa M, Chiu R, Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 1987; 51: 251-260.
    2 Buettner R et al. [Molecular cloning of a new AP-2 transcription factor, AP-2beta, and its function in cell differentiation]. Verh Dtsch Ges Pathol 1994; 78: 38-42.
    3 Maeda S et al. Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. J Hum Genet 2005; 50: 283-292.
    4 Moser M et al. Cloning and characterization of a second AP-2 transcription factor: AP-2 beta. Development 1995; 121: 2779-2788.
    5 Bekman E, Henrique D. Embryonic expression of three mouse genes with homology to the Drosophila melanogaster prickle gene. Gene Expr Patterns 2002; 2: 73-77.
    6 Zhao F, Lufkin T, Gelb BD. Expression of Tfap2d, the gene encoding the transcription factor AP-2δ, during mouse embryogenesis. Gene Expr Patterns 2003; 3: 213-217.
    7 Zhao F et al. Cloning and characterization of a novel mouse AP-2 transcription factor, AP-2δelta, with unique DNA binding and transactivation properties. J Biol Chem 2001; 276: 40755-40760.
    8 Wang HV et al. Identification and embryonic expression of a new AP-2 transcription factor, AP-2 epsilon. Dev Dyn 2004; 231: 128-135.
    9 Feng W, Williams T. Cloning and characterization of the mouse AP-2 epsilon gene: a novel family member expressed in the developing olfactory bulb. Mol Cell Neurosci 2003; 24: 460-475.
    10 Ohtaka-Maruyama C, Hanaoka F, Chepelinsky AB. A novel alternative spliced variant of the transcription factor AP2alpha is expressed in the murine ocular lens. Dev Biol 1998; 202: 125-135.
    11 Oulad-Abdelghani M et al. AP-2.2: a novel AP-2-related transcription factor induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Exp Cell Res 1996; 225: 338-347.
    12 Chazaud C et al. AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech Dev 1996; 54: 83-94.
    
    13 Meier P et al. Alternative mRNAs encode multiple isoforms of transcription factor AP-2 during murine embryogenesis. Dev Biol 1995; 169: 1-14.
    
    14 Buettner R et al. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2. Mol Cell Biol 1993; 13: 4174-4185.
    
    15 Knight RD et al. lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 2003; 130: 5755-5768.
    
    16 Meulemans D, Bronner-Fraser M. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns. Development 2002; 129: 4953-4962.
    
    17 Damberg M et al. Levels of transcription factors AP-2alpha and AP-2beta in the brainstem are correlated to monoamine turnover in the rat forebrain. Neurosci Lett 2001; 313: 102-104.
    
    18 Bauer R, McGuffin ME, Mattox W, Tainsky MA. Cloning and characterization of the Drosophila homologue of the AP-2 transcription factor. Oncogene 1998; 17: 1911-1922.
    
    19 Shen H et al. Chicken transcription factor AP-2: cloning, expression and its role in outgrowth of facial prominences and limb buds. Dev Biol 1997; 188: 248-266.
    
    20 Zhang J et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 1996; 381: 238-241.
    
    21 Winning RS, Shea LJ, Marcus SJ, Sargent TD. Developmental regulation of transcription factor AP-2 during Xenopus laevis embryogenesis. Nucleic Acids Res 1991; 19: 3709-3714.
    
    22 Mitchell PJ et al. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 1991; 5: 105-119.
    
    23 Gee MS, Sarkisian CJ, el-Deiry WS. Identification of a novel AP-2 consensus DNA binding site. Biochem Biophys Res Commun 1998; 243: 307-316.
    
    24 Williams T, Tjian R. Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science 1991; 251: 1067-1071.
    
    25 Williams T, Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev 1991; 5: 670-682.
    
    26 Williams T, Admon A, Luscher B, Tjian R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev 1988; 2: 1557-1569.
    27 Kannan P et al. N-ras oncogene causes AP-2 transcriptional self-interference, which leads to transformation. Genes Dev 1994; 8: 1258-1269.
    28 Dingwell KS, Smith JC. Tes regulates neural crest migration and axial elongation in Xenopus. Dev Biol 2006; 293: 252-267.
    29 Mahapatra NR et al. Molecular basis of neuroendocrine cell type-specific expression of the chromogranin B gene: crucial role of the transcription factors CREB, AP-2, Egr-1 and Spl. J Neurochem 2006; 99: 119-133.
    30 Ozturk A et al. Proteomic identification of AP2 gamma as a rat placental lactogen Ⅱ trophoblast cell-specific enhancer binding protein. Endocrinology 2006; 147: 4319-4329.
    31 Benson LQ et al. Expression of MXI1, a Myc antagonist, is regulated by Sp1 and AP2. J Biol Chem 1999; 274: 28794-28802.
    32 Zhang L et al. AP-2 may contribute to IGF-Ⅱ overexpression in rhabdomyosarcoma. Oncogene 1998; 17: 1261-1270.
    33 Shi D, Kellems RE. Transcription factor AP-2gamma regulates murine adenosine deaminase gene expression during placental development. J Biol Chem 1998; 273: 27331-27338.
    34 Ohtaka-Maruyama C, Wang X, Ge H, Chepelinsky AB. Overlapping Sp1 and AP2 binding sites in a promoter element of the lens-specific MIP gene. Nucleic Acids Res 1998; 26: 407-414.
    35 Huang S et al. Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. Embo J 1998; 17: 4358-4369.
    36 Ebert SN et al. Glucocorticoid-dependent action of neural crest factor AP-2: stimulation of phenylethanolamine N-methyltransferase gene expression. J Neurochem 1998; 70: 2286-2295.
    37 Zeng YX, Somasundaram K, el-Deity WS. AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet 1997; 15: 78-82.
    38 Wang D, Shin TH, Kudlow JE. Transcription factor AP-2 controls transcription of the human transforming growth factor-alpha gene. J Biol Chem 1997; 272: 14244-14250.
    39 Gao B, Chen J, Johnson C, Kunos G. Both the cyclic AMP response element and the activator protein 2 binding site mediate basal and cyclic AMP-induced transcription from the dominant promoter of the rat alpha 1B-adrenergic receptor gene in DDT1MF-2 cells. Mol Pharmacol 1997; 52: 1019-1026.
    40 Berkowitz EA et al. Transcription factor AP2 is required for expression of the rat transforming growth factor-alpha gene. Oncogene 1997; 14: 2229-2238.
    41 Kroeger KM, Abraham LJ. Identification of an AP-2 element in the -323 to -285 region of the TNF-alpha gene. Biochem Mol Biol Int 1996; 40: 43-51.
    42 Grether-Beck S et al. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene. Proc Natl Acad Sci USA 1996; 93: 14586-14591.
    43 Garcia MA et al. Transcription factor AP-2 regulates human apolipoprotein E gene expression in astrocytoma cells. J Neurosci 1996; 16: 7550-7556.
    44 Greco D, Zellmer E, Zhang Z, Lewis E. Transcription factor AP-2 regulates expression of the dopamine beta-hydroxylase gene. J Neurochem 1995; 65: 510-516.
    45 Gaubatz S et al. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. Embo J 1995; 14: 1508-1519.
    46 Bisgrove DA, Godbout R. Differential expression of AP-2alpha and AP-2beta in the developing chick retina: repression of R-FABP promoter activity by AP-2. Dev Dyn 1999; 214: 195-206.
    47 Jean D et al. Loss of AP-2 results in up-regulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J Biol Chem 1998; 273: 16501-16508.
    48 Jiang MS et al. Derepression of the C/EBPalpha gene during adipogenesis: identification of AP-2alpha as a repressor. Proc Natl Acad Sci U S A 1998; 95: 3467-3471.
    49 Heicklen-Klein A, Ginzburg I. Tau promoter confers neuronal specificity and binds Sp1 and AP-2. J Neurochem 2000; 75: 1408-1418.
    50 Mitchell DC et al. Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. J Biol Chem 2006; 281: 51-58.
    51 Stabach PR, Thiyagarajan MM, Woodfield GW, Weigel RJ. AP2alpha alters the transcriptional activity and stability of p53. Oncogene 2006; 25: 2148-2159.
    52 Zhou J et al. Genomic organization, promoter characterization and roles of Sp1 and AP-2 in the basal transcription of mouse PDIP1 gene. FEBS Lett 2005; 579: 1715-1722.
    53 Xia T, Zeng G, Gao L, Yu RK. Sp1 and AP2 enhance promoter activity of the mouse GM3-synthase gene. Gene 2005; 351: 109-118.
    54 Mertens PR, Alfonso-Jaume MA, Steinmann K, Lovett DH. A synergistic interaction of transcription factors AP2 and YB-1 regulates gelatinase A enhancer-dependent transcription. J Biol Chem 1998; 273: 32957-32965.
    55 Gubb D et al. The balance between isoforms of the prickle LIM domain protein is critical for planar polarity in Drosophila imaginal discs. Genes Dev 1999; 13: 2315-2327.
    56 Pena P et al. Activator protein-2 mediates transcriptional activation of the CYP11A1 gene by interaction with Sp1 rather than binding to DNA. Mol Endocrinol 1999; 13: 1402-1416.
    57 Langmann T et al. Transcription factors Sp1 and AP-2 mediate induction of acid sphingomyelinase during monocytic differentiation. J Lipid Res 1999; 40: 870-880.
    58 Chen TT, Wu RL, Castro-Munozledo F, Sun TT. Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells. Mol Cell Biol 1997; 17: 3056-3064.
    59 Mitchell PJ, Wang C, Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell 1987; 50: 847-861.
    60 Paonessa F et al. Activator protein-2 overexpression accounts for increased insulin receptor expression in human breast cancer. Cancer Res 2006; 66: 5085-5093.
    61 Friedrichs N et al. Distinct spatial expression patterns of AP-2alpha and AP-2gamma in non-neoplastic human breast and breast cancer. Mod Pathol 2005; 18: 431-438.
    62 Pellikainen J et al. Expression of HER2 and its association with AP-2 in breast cancer. Eur J Cancer 2004; 40: 1485-1495.
    63 Zhang J, Brewer S, Huang J, Williams T. Overexpression of transcription factor AP-2alpha suppresses mammary gland growth and morphogenesis. Dev Biol 2003; 256: 127-145.
    64 Pellikainen J et al. Reduced nuclear expression of transcription factor AP-2 associates with aggressive breast cancer. Clin Cancer Res 2002; 8: 3487-3495.
    65 Perissi V et al. AP-2 transcription factors in the regulation of ERBB2 gene transcription by oestrogen. Oncogene 2000; 19: 280-288.
    66 Bosher JM et al. A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene 1996; 13: 1701-1707.
    67 Turner BC et al. Expression of AP-2 transcription factors in human breast cancer correlates with the regulation of multiple growth factor signalling pathways. Cancer Res 1998; 58: 5466-5472.
    68 Berger AJ et al. Automated quantitative analysis of activator protein-2alpha subcellular expression in melanoma tissue microarrays correlates with survival prediction. Cancer Res 2005; 65: 11185-11192.
    69 Woenckhaus C et al. Expression of AP-2alpha, c-kit, and cleaved caspase-6 and-3 in naevi and malignant melanomas of the skin. A possible role for caspases in melanoma progression? J Pathol 2003; 201: 278-287.
    70 Tellez C, McCarty M, Ruiz M, Bar-Eli M. Loss of activator protein-2alpha results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma. J Biol Chem 2003; 278: 46632-46642.
    71 Baldi A et al. Expression of AP-2 transcription factor and of its downstream target genes c-kit, E-cadherin and p21 in human cutaneous melanoma. J Cell Biochem 2001; 83: 364-372.
    72 Karjalainen JM et al. Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. J Clin Oncol 1998; 16: 3584-3591.
    73 Bar-Eli M. Role of AP-2 in tumor growth and metastasis of human melanoma. Cancer Metastasis Rev 1999; 18: 377-385.
    74 Gershenwald JE et al. Dominant-negative transcription factor AP-2 augments SB-2 melanoma tumor growth in vivo. Oncogene 2001; 20: 3363-3375.
    75 Odegaard E et al. The AP-2gamma transcription factor is upregulated in advanced-stage ovarian carcinoma. Gynecol Oncol 2006; 100: 462-468.
    76 Anttila MA et al. Expression of transcription factor AP-2alpha predicts survival in epithelial ovarian cancer. Br J Cancer 2000; 82: 1974-1983.
    77 Ruiz M et al. Activator protein 2alpha inhibits tumorigenicity and represses vascular endothelial growth factor transcription in prostate cancer cells. Cancer Res 2004; 64: 631-638.
    78 Hoei-Hansen CE et al. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 2004; 10: 8521-8530.
    79 Lipponen P et al. Expression of activator protein 2 in prostate cancer is related to tumor differentiation and cell proliferation. Eur Urol 2000; 37: 573-578.
    80 Ahituv N et al. An ENU-induced mutation in AP-2alpha leads to middle ear and ocular defects in Doarad mice. Mamm Genome 2004; 15: 424-432.
    81 Ropponen KM et al. Expression of transcription factor AP-2 in colorectal adenomas and adenocarcinomas; comparison of immunohistochemistry and in situ hybridisation. J Clin Pathol 2001; 54: 533-538.
    82 Zhou R, Chen P, Zhang GS. [AP-2 expression and significance in the lung cancer tissues]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2004; 29: 195-197.
    83 Heimberger AB et al. Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. Clin Cancer Res 2005; 11: 267-272.
    84 Pauls K et al. Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. Int J Cancer 2005; 115: 470-477.
    85 Wu F, Lee AS. Identification of AP-2 as an interactive target of Rb and a regulator of the G1/S control element of the hamster histone H3.2 promoter. Nucleic Acids Res 1998; 26: 4837-4845.
    86 Pfisterer P, Ehlermann J, Hegen M, Schorle H. A subtractive gene expression screen suggests a role of transcription factor AP-2 alpha in control of proliferation and differentiation. J Biol Chem 2002; 277: 6637-6644.
    87 Wajapeyee N, Britto R, Ravishankar HM, Somasundaram K. Apoptosis induction by activator protein 2alpha involves transcriptional repression of Bcl-2. J Biol Chem 2006; 281: 16207-16219.
    88 Wajapeyee N, Raut CG, Somasundaram K. Activator protein 2alpha status determines the chemosensitivity of cancer cells: implications in cancer chemotherapy. Cancer Res 2005; 65: 8628-8634.
    89 Muller FU et al. Transcription factor AP-2alpha triggers apoptosis in cardiac myocytes. Cell Death Differ 2004; 11: 485-493.
    90 Wajapeyee N, Somasundaram K. Cell cycle arrest and apoptosis induction by activator protein 2alpha (AP-2alpha) and the role of p53 and p21WAF1/CIP1 in AP-2alpha-mediated growth inhibition. JBiol Chem 2003; 278: 52093-52101.
    91 Nyormoi O et al. Transcription factor AP-2alpha is preferentially cleaved by caspase 6 and degraded by proteasome during tumor necrosis factor alpha-induced apoptosis in breast cancer cells. Mol Cell Biol 2001; 21: 4856-4867.
    92 Moser M et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2beta. Genes Dev 1997; 11: 1938-1948.
    93 Garcia MA et al. Identification of amino acid residues of transcription factor AP-2 involved in DNA binding. J Mol Biol 2000; 301: 807-816.
    94 Mohibullah N, Donner A, Ippolito JA, Williams T. SELEX and missing phosphate contact analyses reveal flexibility within the AP-2 [alpha] protein: DNA binding complex. Nucleic Acids Res 1999; 27: 2760-2769.
    95 McPherson LA, Weigel RJ. AP2alpha and AP2gamma: a comparison of binding site specificity and trans-activation of the estrogen receptor promoter and single site promoter constructs. Nucleic Acids Res 1999; 27: 4040-4049.
    96 HuOang Y, Domann FE. Redox modulation of AP-2 DNA binding activity in vitro. Biochem Biophys Res Commun 1998; 249: 307-312.
    97 Wankhade S et al. Characterization of the activation domains of AP-2 family transcription factors. J Biol Chem 2000; 275: 29701-29708.
    98 Moser M, Ruschoff J, Buettner R. Comparative analysis of AP-2 alpha and AP-2 beta gene expression during murine embryogenesis. Dev Dyn 1997; 208: 115-124.
    99 Werling U, Schorle H. Transcription factor gene AP-2 gamma essential for early murine development. Mol Cell Biol 2002; 22: 3149-3156.
    100 Zhang Y, Luo T, Sargent TD. Expression of TFAP2beta and TFAP2gamma genes in Xenopus laevis. Gene Expr Patterns 2006; 6: 589-595.
    101 Luo T et al. Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus. Dev Biol 2002; 245: 136-144.
    102 Monge I, Mitchell PJ. DAP-2, the Drosophila homolog of transcription factor AP-2. Mech Dev 1998; 76: 191-195.
    103 Monge I et al. Drosophila transcription factor AP-2 in proboscis, leg and brain central complex development. Development 2001; 128: 1239-1252.
    104 Barrallo-Gimeno A, Holzschuh J, Driever W, Knapik EW. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development 2004; 131: 1463-1477.
    105 Auman HJ et al. Transcription factor AP-2gamma is essential in the extra-embryonic lineages for early postimplantation development. Development 2002; 129: 2733-2747.
    106 Nottoli T et al. AP-2-null cells disrupt morphogenesis of the eye, face, and limbs in chimeric mice. Proc Natl Acad Sci USA 1998; 95: 13714-13719.
    107 Brewer S et al. Wntl-Cre-mediated deletion of AP-2alpha causes multiple neural crest-related defects. Dev Biol 2004; 267: 135-152.
    108 Nelson DK, Williams T. Frontonasal process-specific disruption of AP-2alpha results in postnatal midfacial hypoplasia, vascular anomalies, and nasal cavity defects. Dev Biol 2004; 267: 72-92.
    109 Kohlbecker A, Lee AE, Schorle H. Exencephaly in a subset of animals heterozygous for AP-2alpha mutation. Teratology 2002; 65: 213-218.
    110 O'Brien EK et al. Transcription factor Ap-2alpha is necessary for development of embryonic melanophores, autonomic neurons and pharyngeal skeleton in zebrafish. Dev Biol 2004; 265: 246-261.
    111 Philipp J, Mitchell PJ, Malipiero U, Fontana A. Cell type-specific regulation of expression of transcription factor AP-2 in neuroectodermal cells. Dev Biol 1994; 165: 602-614.
    112 Schorle H et al. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 1996; 381: 235-238.
    113 Donner AL, Williams T. Frontal nasal prominence expression driven by Tcfap2a relies on a conserved binding site for STAT proteins. Dev Dyn 2006; 235: 1358-1370.
    114 Stewart HJ et al. Developmental regulation and overexpression of the transcription factor AP-2, a potential regulator of the timing of Schwann cell generation. Eur J Neurosci 2001; 14: 363-372.
    115 Berggard C, Damberg M, Oreland L. Brainstem levels of transcription factor AP-2 in rat are changed after treatment with phenelzine, but not with citalopram. BMC Pharmacol 2005; 5: 1.
    116 Damberg M et al. Transcription factor AP-2beta genotype, striatal dopamine D2 receptor density and cerebrospinal fluid monoamine metabolite concentrations in humans. J Neural Transm 2004; 111: 537-545.
    117 Takeuchi S et al. AP-2beta represses D(1A) dopamine receptor gene transcription in neuro2a cells. Brain Res Mol Brain Res 1999; 74: 208-216.
    118 Kramer PR, Krishnamurthy R, Mitchell PJ, Wray S. Transcription factor activator protein-2 is required for continued luteinizing hormone-releasing hormone expression in the forebrain of developing mice. Endocrinology 2000; 141: 1823-1838.
    119 Coutts AS, MacKenzie E, Griffith E, Black DM. TES is a novel focal adhesion protein with a role in cell spreading. J Cell Sci 2003; 116: 897-906.
    120 Gotoh M, Izutsu Y, Maeno M. Complementary expression of AP-2 and AP-2rep in ectodermal derivatives of Xenopus embryos. Dev Genes Evol 2003; 213: 363-367.
    121 Shimada M et al. Distribution of AP-2 subtypes in the adult mouse brain. Neurosci Res 1999; 33: 275-280.
    122 Minarcik JC, Golden JA. AP-2 and HNK-1 define distinct populations of cranial neural crest cells. Orthod Craniofac Res 2003; 6: 210-219.
    123 West-Mays JA et al. AP-2alpha transcription factor is required for early morphogenesis of the lens vesicle. Dev Biol 1999; 206: 46-62.
    124 West-Mays JA et al. Ectopic expression of AP-2alpha transcription factor in the lens disrupts fiber cell differentiation. Dev Biol 2002; 245: 13-27.
    125 West-Mays JA et al. Positive influence of AP-2alpha transcription factor on cadherin gene expression and differentiation of the ocular surface. Differentiation 2003; 71: 206-216.
    126 Paggi MG et al. The retinoblastoma-related Rb2/p130 gene is an effector downstream of AP-2 during neural differentiation. Oncogene 2001; 20: 2570-2578.
    127 Bisgrove DA, Monckton EA, Godbout R. Involvement of AP-2 in regulation of the R-FABP gene in the developing chick retina. Mol Cell Biol 1997; 17: 5935-5945.
    128 Wang X et al. AP-2alpha: a regulator of EGF receptor signaling and proliferation in skin epidermis. J Cell Biol 2006; 172: 409-421.
    129 Koster MI et al. TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Dev Biol 2006; 289: 253-261.
    130 Wanner R, Zhang J, Henz BM, Rosenbach T. AP-2 gene expression and modulation by retinoic acid during keratinocyte differentiation. Biochem Biophys Res Commun 1996; 223: 666-669.
    131 Oyama N et al. Different properties of three isoforms (alpha, beta, and gamma) of transcription factor AP-2 in the expression of human keratinocyte genes. Arch Dermatol Res 2002; 294: 273-280.
    132 Popa C et al. AP-2 transcription factor family member expression, activity, and regulation in human epidermal keratinocytes in vitro. Differentiation 2004; 72: 185-197.
    133 Panteleyev AA, Mitchell PJ, Paus R, Christiano AM. Expression patterns of the transcription factor AP-2alpha during hair follicle morphogenesis and cycling. J Invest Dermatol 2003; 121: 13-19.
    134 Richardson BD, Cheng YH, Langland RA, Handwerger S. Differential expression of AP-2gamma and AP-2alpha during human trophoblast differentiation. Life Sci 2001; 69: 2157-2165.
    135 Cheng YH et al. Critical role for transcription factor AP-2alpha in human trophoblast differentiation. Physiol Genomics 2004; 18: 99-107.
    136 Kerber B et al. The AP-2 transcription factor is required for joint formation and cell survival in Drosophila leg development. Development 2001; 128: 1231-1238.
    137 Davies SR, Sakano S, Zhu Y, Sandell LJ. Distribution of the transcription factors Sox9, AP-2, and [delta]EF1 in adult murine articular and meniscal cartilage and growth plate. J Histochem Cytochem 2002; 50: 1059-1065.
    138 Knight RD et al. AP2-dependent signals from the ectoderm regulate craniofacial development in the zebrafish embryo. Development 2005; 132: 3127-3138.
    139 Brewer S et al. Requirement for AP-2alpha in cardiac outflow tract morphogenesis. Mech Dev 2002; 110: 139-149.
    140 Bamforth SD et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet 2001; 29: 469-474.
    141 Moser M et al. Terminal renal failure in mice lacking transcription factor AP-2 beta. Lab Invest 2003; 83: 571-578.
    142 Oya M et al. Differential expression of activator protein-2 isoforms in renal cell carcinoma. Urology 2004; 64: 162-167.
    143 Satoda M et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet 2000; 25: 42-46.
    144 Zhao F et al. Novel TFAP2B mutations that cause Char syndrome provide a genotype-phenotype correlation. Am J Hum Genet 2001; 69: 695-703.
    145 Rietveld LE, Koonen-Reemst AM, Sussenbach JS, Holthuizen PE. Dual role for transcription factor AP-2 in the regulation of the major fetal promoter P3 of the gene for human insulin-like growth factor Ⅱ. Biochem J 1999; 338 (Pt 3): 799-806.
    146 Yu S, Asa SL, Weigel RJ, Ezzat S. Pituitary tumor AP-2alpha recognizes a cryptic promoter in intron 4 of fibroblast growth factor receptor 4. J Biol Chem 2003; 278: 19597-19602.
    147 Courtois SJ et al. Nuclear factor-Ⅰ and activator protein-2 bind in a mutually exclusive way to overlapping promoter sequences and trans-activate the human growth hormone gene. Nucleic Acids Res 1990; 18: 57-64.
    148 Brenneisen P et al. Essential role of an activator protein-2 (AP-2)/specificity protein 1 (Sp1) cluster in the UVB-mediated induction of the human vascular endothelial growth factor in HaCaT keratinocytes. Biochem J 2003; 369: 341-349.
    149 Duan C, Clemmons DR. Transcription factor AP-2 regulates human insulin-like growth factor binding protein-5 gene expression. J Biol Chem 1995; 270: 24844-24851.
    150 Sivak JM et al. Transcription Factors Pax6 and AP-2alpha Interact To Coordinate Corneal Epithelial Repair by Controlling Expression of Matrix Metalloproteinase Gelatinase B. Mol Cell Biol 2004; 24: 245-257.
    151 Takahashi H et al. Transcriptional factor AP-2gamma increases human cystatin A gene transcription of keratinocytes. Biochem Biophys Res Commun 2000; 278: 719-723.
    152 Ehlermann J, Pfisterer P, Schorle H. Dynamic expression of Kruppel-like factor 4 (Klf4), a target of transcription factor AP-2alpha during murine mid-embryogenesis. Anat Rec A Discov Mol Cell Evol Biol 2003; 273: 677-680.
    153 Cheng YH, Handwerger S. AP-2alpha modulates human corticotropin-releasing hormone gene expression in the placenta by direct protein-protein interaction. Mol Cell Endocrinol 2002; 191: 127-136.
    154 Richardson BD et al. Activator protein-2 regulates human placental lactogen gene expression. Mol Cell Endocrinol 2000; 160:183-192.
    155 Ito T et al. Ap-2 and Ikaros regulate transcription of human placental leucine aminopeptidase/oxytocinase gene. Biochem Biophys Res Commun 2002; 290: 1048-1053.
    156 Marreiros A et aL KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene 2005; 24: 637-649.
    157 Maconochie M et al. Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 1999; 126: 1483-1494.
    158 Wenke AK, Rothhammer T, Moser M, Bosserhoff AK. Regulation of integrin alpha10 expression in chondrocytes by the transcription factors AP-2epsilon and Ets-1. Biochem Biophys Res Commun 2006; 345: 495-501.
    159 Shachaf C, Skorecki KL, Tzukerman M. Role of AP2 consensus sites in regulation of rat Npt2 (sodium-phosphate cotransporter) promoter. Am J Physiol Renal Physiol 2000; 278: F406-416.
    160 Bishop JF et al. A putative AP-2 binding site in the 5' flanking region of the mouse POMC gene. FEBS Lett 1990; 264: 125-129.
    161 Lavrovsky Y et al. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc Natl Acad Sci USA 1994; 91: 5987-5991.
    162 Bespalova IN, Burmeister M. Identification of a novel LIM domain gene, LMCD1, and chromosomal localization in human and mouse. Genomics 2000; 63: 69-74.
    163 Pellikainen MJ et al. p21WAF1 expression in invasive breast cancer and its association with p53, AP-2, cell proliferation, and prognosis. J Clin Pathol 2003; 56: 214-220.
    164 Bosher JM, Williams T, Hurst HC. The developmentally regulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human mammary carcinoma. Proc Natl Acad Sci USA 1995; 92: 744-747.
    165 Nix DA et al. Targeting of zyxin to sites of actin membrane interaction and to the nucleus. J Biol Chem 2001; 276: 34759-34767.
    166 Chiefari E et al. Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC Cancer 2002; 2: 35.
    167 Zhu CH, Huang Y, Oberley LW, Domann FE. A family of AP-2 proteins down-regulate manganese superoxide dismutase expression. J Biol Chem 2001; 276: 14407-14413.
    168 Zhu C et al. Constitutive activation of transcription factor AP-2 is associated with decreased MnSOD expression in transformed human lung fibroblasts. Antioxid Redox Signal 2001; 3: 387-395.
    169 Perkins ND, Agranoff AB, Duckett CS, Nabel GJ. Transcription factor AP-2 regulates human immunodeficiency virus type 1 gene expression. J Virol 1994; 68: 6820-6823.
    170 Whetstine JR, Witt TL, Matherly LH. The human reduced folate carrier gene is regulated by the AP2 and sp1 transcription factor families and a functional 61-base pair polymorphism. J Biol Chem 2002; 277: 43873-43880.
    171 Zhu CH, Domann FE. Dominant negative interference of transcription factor AP-2 causes inhibition of ErbB-3 expression and suppresses malignant cell growth. Breast Cancer Res Treat 2002; 71: 47-57.
    172 Qin H, Sun Y, Benveniste EN. The transcription factors Spl, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem 1999; 274: 29130-29137.
    173 Huang Y, Domann FE. Transcription factor AP-2 mRNA and DNA binding activity are constitutively expressed in SV40-immortalized but not normal human lung fibroblasts. Arch Biochem Biophys 1999; 364: 241-246.
    174 Batsche E et al. RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 1998; 18: 3647-3658.
    175 Wu F, Lee AS. CDP and AP-2 mediated repression mechanism of the replication-dependent hamster histone H3.2 promoter. J Cell Biochem 2002; 84: 699-707.
    176 McPherson LA, Loktev AV, Weigel RJ. Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J Biol Chem 2002; 277: 45028-45033.
    177 Mertens PR et al. Combinatorial interactions of p53, activating protein-2, and YB-1 with a single enhancer element regulate gelatinase A expression in neoplastic cells. J Biol Chem 2002; 277: 24875-24882.
    178 Katsel PL, Greenstein RJ. Identification of overlapping AP-2/NF-kappa B-responsive elements on the rat cholecystokinin gene promoter. J Biol Chem 2001; 276: 752-758.
    179 Kannan P, Tainsky MA. Coactivator PC4 mediates AP-2 transcriptional activity and suppresses ras-induced transformation dependent on AP-2 transcriptional interference. Mol Cell Biol 1999; 19: 899-908.
    180 Kannan P, Yu Y, Wankhade S, Tainsky MA. PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation. Nucleic Acids Res 1999; 27: 866-874.
    181 Braganca J et al. Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2. J Biol Chem 2003; 278: 16021-16029.
    182 Campillos M, Garcia MA, Valdivieso F, Vazquez J. Transcriptional activation by AP-2alpha is modulated by the oncogene DEK. Nucleic Acids Res 2003; 31: 1571-1575.
    183 Begon DY et al. Yin Yang 1 cooperates with activator protein 2 to stimulate ERBB2 gene expression in mammary cancer cells, J Biol Chem 2005; 280: 24428-24434.
    184 Eloranta JJ, Hurst HC. Transcription factor AP-2 interacts with the SUMO-conjugating enzyme UBC9 and is sumolated in vivo. J Biol Chem 2002; 277: 30798-30804.
    185 Clark JH, Haridasse V, Glazer RI. Modulation of the human protein kinase C alpha gene promoter by activator protein-2. Biochemistry 2002; 41: 11847-11856.
    186 Guccione M, Silbiger S, Lei J, Neugarten J. Estradiol upregulates mesangial cell MMP-2 activity via the transcription factor AP-2. Am J Physiol Renal Physiol 2002; 282: F164-169.
    187 Hasleton MD, Ibbitt JC, Hurst HC. Characterization of the human activator protein-2gamma (AP-2gamma) gene: control of expression by Sp1/Sp3 in breast tumour cells. Biochem J 2003; 373: 925-932.
    188 Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA 1974; 71: 1250-1254.
    189 Yunis JJ, Soreng AL. Constitutive fragile sites and cancer. Science 1984; 226: 1199-1204.
    190 Tobias ES et al. The TES gene at 7q31.1 is methylated in tumours and encodes a novel growth-suppressing LIM domain protein. Oncogene 2001; 20: 2844-2853.
    191 Drusco A et al. Knockout mice reveal a tumor suppressor function for Testin. Proc Natl Acad Sci USA 2005; 102: 10947-10951.
    192 Mueller W et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 2006.
    193 Garvalov BK et al. The conformational state of Tes regulates its zyxin-dependent recruitment to focal adhesions. J Cell Biol 2003; 161: 33-39.
    194 Griffith E, Courts AS, Black DM. RNAi knockdown of the focal adhesion protein TES reveals its role in actin stress fibre organisation. Cell Motil Cytoskeleton 2005; 60: 140-152.
    195 Pawlak G, Helfman DM. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 2001; 11: 41-47.
    196 Vernimmen D et al. Identification of HTF (HER2 transcription factor) as an AP-2 (activator protein-2) transcription factor and contribution of the HTF binding site to ERBB2 gene overexpression. Biochem J 2003; 370: 323-329.
    197 Freyd G, Kim SK, Horvitz HR. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature 1990; 344: 876-879.
    198 Karlsson O et al. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 1990; 344: 879-882.
    199 Dawid IB, Breen JJ, Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet 1998; 14: 156-162.
    200 Cattaruzza M, Lattrich C, Hecker M. Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension 2004; 43: 726-730.
    201 Arber S, Caroni R Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev 1996; 10: 289-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700