SUMO-1修饰ataxin-3蛋白对其泛素化、降解、包涵体形成、细胞凋亡等的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     遗传性脊髓小脑型共济失调(hereditary spinocerebellar ataxia,SCAs)是一类常见的神经系统遗传病,分子遗传学研究已至少定位28种基因型,其中18个疾病基因已被克隆,脊髓小脑型共济失调3型/马查多-约瑟夫病(Spinocerebellar ataxia type 3/Machado-JoesphDisease,SCA3/MJD)为最常见亚型。其发病是由于致病基因MJD1编码区内3'端的CAG重复序列异常扩增导致其编码产物ataxin-3蛋白的羧基端多聚谷氨酰胺(polyglutamine,polyQ)肽链异常扩展引起。ataxin-3蛋白的生理功能尚不明确,其羧基端polyQ肽链异常扩展导致疾病发生的具体机制还不清楚。研究发现,蛋白质翻译后修饰在其生理功能的发挥及致病机制中具有重要的意义。
     小泛素相关修饰物(small ubiquitin-related modifier,SUMO)是新近发现的一类重要的蛋白质翻译后修饰因子。SUMO家族成员包括SUMO-1,SUMO-2,SUMO-3,SUMO-4等至少四个家族成员,它们主要功能是对底物蛋白进行苏素化(SUMOylation)修饰。与泛素化通路相似,SUMO-1修饰其底物包含一系列酶的级联反应。底物蛋白被SUMO-1修饰主要与底物蛋白的亚细胞定位、转录调控、蛋白质稳定性的调节等方面密切相关。泛素修饰底物蛋白主要导致底物蛋白被蛋白酶体降解,由于SUMO-1与泛素存在相同的靶蛋白结合位点—赖氨酸残基,苏素化与泛素化还具有拮抗作用,从而可能影响底物蛋白通过泛素蛋白酶体途径的降解。目前研究发现SUMO-1存在于阿尔茨海默病、多系统萎缩、多聚谷氨酰胺疾病(SCA1、SBMA、DRPLA、Huntingtin病)、帕金森病等多种神经退行性疾病的包涵体中。同时,很多与神经退行性疾病相关的蛋白被发现是SUMO-1的底物蛋白,苏素化可能参与了其生理及病理过程。
     在前期工作中,沈璐等应用酵母双杂交技术,以ataxin-3蛋白为Bait筛选成人脑cDNA文库,发现并证实ataxin-3蛋白以其氨基端与SUMO-1相互作用。汤建光等应用免疫荧光-激光共聚焦技术、免疫共沉淀技术,在真核细胞水平上进一步证实ataxin-3蛋白与SUMO-1存在相互作用,说明ataxin-3蛋白是SUMO-1的底物蛋白;并发现含polyQ异常扩展突变型ataxin-3蛋白经SUMO-1修饰后,可能使其细胞毒性加重,而RNAi下调SUMO-1的表达能缓解含polyQ异常扩展突变型ataxin-3蛋白的细胞毒性。廖书胜等应用在线SUMOplot分析程序(http://www.abgent.com.cn/doc/sumoplot/login.asp)分析,发现ataxin-3蛋白在第166位赖氨酸(K166)位点具有苏素化修饰模块位点(165VKD168),能被SUMO-1修饰;并应用Ni-NTA沉淀富集蛋白结合Western-blot技术证实SUMO-1修饰野生型、含polyQ异常扩展突变型ataxin-3蛋白的关键氨基酸位点为K166;免疫荧光实验初步证实SUMO-1修饰野生型、含polyQ异常扩展突变型ataxin-3蛋白并未改变其亚细胞定位。这些前期的研究工作结果:证实了ataxin-3蛋白是SUMO-1的底物蛋白,SUMO-1/苏素化参与了SCA3/MJD的发病过程。
     目的:
     从真核细胞水平探讨SUMO-1修饰对野生型、含polyQ异常扩展突变型ataxin-3蛋白的泛素化水平、降解情况、核内包涵体形成、细胞凋亡率的影响;进一步探讨SUMO-1修饰对野生型、含polyQ异常扩展突变型ataxin-3蛋白的胞浆/胞核分布的影响。
     方法:
     1.应用重组基因技术、Western-blot技术、GFP荧光技术构建并检测存在或缺失SUMO-1修饰位点的野生型、含polyQ异常扩展突变型ataxin-3的pEGFP-N1真核表达载体及其表达。
     2.应用亚细胞组分分离技术研究存在或缺失苏素化修饰的野生型、含polyQ异常扩展突变型ataxin-3蛋白胞浆/胞核分布的差异。
     3.应用免疫共沉淀技术分析过苏素化或缺失苏素化修饰位点的野生型、含polyQ异常扩展突变型ataxin-3蛋白泛素化水平的差异。
     4.应用追踪实验技术研究存在或缺失苏素化修饰位点的野生型、含polyQ异常扩展突变型ataxin-3蛋白降解水平的差异。
     5.应用荧光技术、PI/Annexin-V-FITC双染流式细胞仪技术分析存在或缺失苏素化修饰的野生型、含polyQ异常扩展突变型ataxin-3蛋白的核内包涵体形成及细胞凋亡率的差异。
     结果:
     1.DNA测序证实所构建的野生型、含polyQ异常扩展突变型ataxin-3的pEGFP-N1真核表达载体除了K166突变位点发生了改变、野生型ataxin-3其CAG三核苷酸重复次数为20次、polyQ异常扩展突变型CAG三核苷酸重复次数为68次外,其余位点均与ataxin-3在GenBank中的标准序列(S75313)完全匹配。核对各载体的阅读框在插入目的基因序列后均无移码,说明各真核表达载体构建成功。
     2.Western-blot证实野生型、含polyQ异常扩展突变型ataxin-3的pEGFP-N1真核表达载体均能在HEK 293T细胞中正常表达;荧光结果显示野生型ataxin-3及其K166R突变体在细胞中呈弥散分布,含polyQ异常扩展突变型ataxin-3及其K166R突变体能形成蛋白聚集物。
     3.亚细胞组分分离发现存在或缺失SUMO-1修饰位点对野生型、含polyQ异常扩展突变型ataxin-3蛋白的胞浆/胞核分布无明显影响。
     4.免疫共沉淀结果显示在外源性过表达SUMO-1或缺失SUMO-1修饰情况下,野生型与含polyQ异常扩展突变型ataxin-3蛋白的多聚泛素化水平可见明显差别,含polyQ异常扩展突变型ataxin-3蛋白的多聚泛素化水平更高;在外源性过表达SUMO-1或缺失SUMO-1修饰情况下,野生型ataxin-3蛋白的多聚泛素化水平无明显改变;同样,含polyQ异常扩展突变型ataxin-3蛋白的多聚泛素化水平也无明显改变。
     5.追踪实验发现野生型ataxin-3及其K166R突变体随时间延长蛋白逐渐降解,条带变化基本一致,未发现明显的差别;而含polyQ异常扩展突变型ataxin-3蛋白在第7小时、第15小时的条带均明显比含polyQ异常扩展突变型ataxin-3-68Q-K166R突变体同时间点的条带浓,说明含polyQ异常扩展突变型ataxin-3蛋白在存在SUMO-1修饰时变得更为稳定,降解明显减慢。
     6.随机双盲试验分析野生型、含polyQ异常扩展突变型ataxin-3蛋白核内包涵体有明显差异(P<0.005),说明polyQ的次数增加可导致核内包涵体的形成;在野生型组、含polyQ异常扩展突变型ataxin-3组内比较时,有或无外源性过SUMO-1修饰、存在或缺失SUMO-1修饰位点时,核内包涵体的数目无明显差异。
     7.PI/Annexin V-FITC双染流式细胞仪结果显示:含polyQ异常扩展突变型ataxin-3组与其K166R突变体组比较,含polyQ异常扩展突变型ataxin-3组的早期凋亡率要高于含polyQ异常扩展突变型ataxin-3-K166R突变体组,存在显著性差别(P<0.005),说明SUMO-1修饰含polyQ异常扩展突变型ataxin-3蛋白对细胞有毒性作用,增加了细胞的凋亡率;野生型ataxin-3及其K166R突变体组间早期凋亡率未见明显差别(P>0.005),说明SUMO-1修饰野生型ataxin-3蛋白无明显细胞毒性作用。
     结论:
     1.构建成功野生型、含polyQ异常扩展突变型ataxin-3及其K166R突变体的pEGFP-N1真核表达载体。
     2.进一步证实SUMO-1修饰野生型、含polyQ异常扩展突变型ataxin-3蛋白不能改变其胞浆/胞核分布。
     3.证明SUMO-1修饰野生型、含polyQ异常扩展突变型ataxin-3蛋白的K166位点不是同时被泛素修饰。
     4.发现SUMO-1修饰含polyQ异常扩展突变型ataxin-3蛋白能延缓其降解。
     5.发现SUMO-1修饰含polyQ异常扩展突变型ataxin-3蛋白后增加了细胞毒性,但对核内包涵体形成无明显影响。
Background:
     The hereditary spinocerebellar ataxias(SCAs) are a heterogeneous group of neurodegenerative disorders.To date,at least 28 gene loci responsible for SCAs have been mapped,in which 18 pathogenic genes have been cloned.Among them,spinocerebellar ataxia type 3/Machado -Joseph disease(SCA3/MJD) is the most common subtype.The gene for SCA3/MJD has been cloned and designated as MJD1.SCA3/MJD is one of the polyglutamine(polyQ) diseases caused by an expansion of a polyQ stretch near the C-terminus of the MJD-1 gene product,ataxin-3.Up to now,the physiological function of ataxin-3 is unknown,and the pathogenesis of the expansion of a polyQ stretch near the C-terminus is still not well illuminated.Studies have found that post-translational modification of the disease proteins plays a critical role in their physiological function and pathogenesis.
     Ten years after its discovery,the small ubiquitin-like protein modifier(SUMO) has emerged as an important post-translational modification factor.SUMO family contains SUMO-1,SUMO-2, SUMO-3,SUMO-4 isoforms.Similar to ubiquitin,SUMO attachment to proteins which referred to as "SUMOylation",enters a multi-step enzymatic pathway.This reversible pathway provides a rapid and efficient way to modulate much prominent and basic function,such as subcellular localization,nuclear transport,transcriptional regulation,and protein stability.Similar to ubiquitin,SUMO are linked directly to the amino sidechains of lysine residues and,in some instances,both modifiers target the same substrate.This suggests a dynamic interplay between the related ubiquitination and SUMOylation pathways.SUMO immunoreactivity has been observed within inclusions in numerous neurodegenerative diseases including Alzheimer disease,multiple system atrophy,polyQ diseases(SCA1、SBMA、DRPLA、Huntingtin disease) and Parkinson's disease.The identification of huntingtin,ataxin-1,tau andα-synuclein as SUMO substrates further supports the involvement of SUMOylation in the pathogenesis of neurodegenerative diseases.
     We have found that the N-terminus of ataxin-3 interacted with SUMO-1 by yeast two-hybrid techniques screening human brain cDNA library,then confirmed the interaction in eukaryocyte by immunofluorescence-laser cofocalization and co-immunoprecipitation, and SUMO-1 modification might have toxic effect on polyQ-expanded ataxin-3.By online SUMOylation analysis protocol,we found that ataxin-3 contains SUMOylation motif(165VKGD168) at K166.Then by Ni-NTA precipitation and western-blot,we detected that K166 was the key amino acid of wild-type and polyQ-expanded ataxin-3 for SUMO-1 modification.We found that SUMO-1 modification didn't change the subcellular localization of wild-type and polyQ-expanded ataxin-3 using immunofluorescence initially.Our previous data indentified that ataxin-3 was the substrate of SUMO-1,and SUMOylation participated the pathogenesis of SCA3/MJD.
     Objective:
     To research the influence of SUMO-1 modification on the ubiquitination,protein degradation,formation of intranuclear inclusions, and apoptosis of wild-type and polyQ-expanded ataxin-3;And explore the effect on cytoplasmic/nuclear distribution further in eukaryocyte level.
     Methods:
     1.Recombinant DNA technology,Western-blot,GFP fluorescence technique were undertaken to construct and detect the expression of pEGFP-N1 eukaryotic expression plasmids of wild-type and polyQ-expanded ataxin-3.
     2.Subcellular fractionation was used to observe the effect of SUMO-1 modification on the cytoplasmic/nuclear distribution of wild-type and polyQ-expanded ataxin-3.
     3.Co-immunoprecipitation was utilized to analyze the influence of SUMO-1 modifcation on the ubiquitination of wild-type and polyQ-expanded ataxin-3.
     4.Chase experiment was undertaken to investigate the effect of SUMO-1 modification on the protein degradation of wild-type and polyQ-expanded ataxin-3.
     5.Fluorescence technique,flow cytometry of PI/Annexin-V-FITC were used to study the effect of SUMO-1 modification on the formation of intranuclear inclusions,and apoptosis of wild-type and polyQ- expanded ataxin-3.
     Results:
     1.DNA sequencing confirmed that eukaryotic expression plasmids of the wild-type and polyQ-expanded ataxin-3 were altered on the designed mutation loci,and the repeat number of CAG trinucleotide were 20 and 68 on wild-type and polyQ-expanded respectively,which the other loci matched with GenBank standard sequence(S75313).It suggested that eukaryotic expression plasmids constructed successfully when we checked the reading frame of the plasmids without any frame shift after purpose gene order insertion.
     2.We identified eukaryotic expression plasmids of wild-type and polyQ-expanded ataxin-3 was expressed in HEK 293T cell by Western-blot.Using GFP fluorescence technique,we found that ataxin-3-20Q and ataxin-3-20Q-K166R distributed scattered;on the contrast,ataxin-3-68Q and ataxin-3-68Q-K166R aggregated.
     3.We found SUMO-1 modification had no influence on the cytoplasmic/nuclear distribution of wild-type and polyQ- expanded ataxin-3 by subcellular fractionation.
     4.By co-immunoprecipitation,our study suggested that over-expression of SUMO-1 or SUMO-1 modification of missing,the polyubiquitination level between the wild-type and polyQ-expanded ataxin-3 protein was significantly different, including polyQ-expanded ataxin-3 protein polyubiquitination higher level.Over-expression of SUMO-1 or SUMO-1 modification of missing,the wild-type ataxin-3 protein polyubiquitination level had no difference,and the result was similar for polyQ-expanded ataxin-3 protein.
     5.We discovered by chase experiment that the bands weren't significantly different between ataxin3-20Q and ataxin3-20Q-K166R in 0h,1h,3h,7h,and 15h;but the bands of ataxin3-68Q were predominantly thicker than ataxin-3-68Q-K166R in 7h and 15h,which suggested that SUMO-1 modification resulted in stabilization of ataxin3-68Q.
     6.We analyzed the quantitation of intranuclear inclusion of the wild-type and polyQ-expanded ataxin-3 had significant different (P<0.005),indicated that polyQ expansion could induce formation of the intranuclear inclusion;the means of wild-type ataxin-3 group or polyQ-expanded ataxin-3 group weren't significantly different between with/without SUMO-1 or excessive/native SUMO-1 modification.
     7.The result from flow cytometry of PI/Annexin-V/FITC showed the early apoptosis rate of ataxin-3-68Q group was higher than ataxin-3-68Q-K166R group(P<0.005),which suggested that SUMO-1 modification had toxic effect;but the early apoptosis rate of ataxin-3-20Q group and ataxin-3-20Q-K166R group wasn't significantly different(P>0.005).
     Conclusion:
     1.We construct pEGFP-N1 eukaryotic expression plasmids of the wild-type and polyQ-expanded ataxin-3 firstly,and obtain 14 HEK 293T cell strains.
     2.We confirm that SUMO-1 modification has no influence on the cytoplasmic/nuclear distribution of the wild-type and polyQ-expanded ataxin-3.
     3.We identify that K166 is not the ubiquitination locus of wild-type and polyQ-expanded ataxin-3.
     4.We discover that SUMO-1 modification resulted in stabilization of polyQ-expanded ataxin-3.
     5.We disclose that SUMO-1 modification of polyQ-expanded ataxin-3 had toxic effect,but didn't have influence on the nuclear inclusion formation.
引文
[1] Basri R, Yabe I, Soma H, et al. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families. J Hum Genet. 2007; 52(10):848-55.
    [2] Due(?)as AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain, 2006, 129(6):1357-1370.
    [3] Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet, 1993, 4(3): 221-226.
    [4] Pulst SM, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet, 1996, 14(3): 269-276.
    [5] Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet, 1994, 8(3): 221-228.
    [6] Flanigan K, Gardner K, Alderson K, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet, 1996, 59(2): 392-399.
    [7] Ranum LP, Schut LJ, Lundgren JK, et al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet, 1994, 8(3): 280-284.
    [8] Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha lA-voltage-dependent calcium channel. Nat Genet, 1997, 15(1): 62-69.
    [9] Lindblad K, Savontaus ML, Stevanin G, et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res, 1996, 6(10): 965-971.
    [10] Koob MD, Moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet, 1999, 21(4): 379-384.
    [11] Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet, 2000, 26(2): 191-194.
    [12] Houlden H, Johnson J, Gardner-Thorpe C, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet. 2007, 39(12):1434-1436.
    [13] Holmes SE, O'Hearn EE, Mclnnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet, 1999, 23(4): 391-392.
    [14] Waters MF, Minassian NA, Stevanin G, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental nervous system phenotypes. Nature Genet, 2006, 38(4): 447-451.
    [15] Yabe I, Sasaki H, Chen DH, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol, 2003, 60(12): 1749-1751.
    [16] Knight MA, Kennerson ML, Armey RJ, et al. Spinocerebellar ataxia type 15 (scal 5) maps to 3p24.2-3pter: exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant. Neurobiol Dis, 2003, 13(2): 147-157.
    [17] Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet, 2001, 10(14): 1441-1448.
    [18] van Swieten JC, Brusse E, de Graaf BM, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral ataxia. Am. J. Hum. Genet, 2003, 72(1):191-199.
    [19] Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet, 1994, 6: 14-18.
    [20] Miyoshi Y, Yamada T, Tanimura M, et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology, 2001, 57(1): 96-100.
    [21] Brkanac Z, Fernandez M, Matsushita M, et al. Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): linkage to chromosome 7q22-q32. Am J Med Genet, 2002,114: 450-457.
    [22] Verbeek DS, Schelhaas JH, Ippel EF, et al. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet, 2002, 111(4-5): 388-393.
    [23] Knight MA, Gardner RJ, Bahlo M, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain, 2004, 127(5): 1172-1181.
    [24] Vuillaume I, Devos D, Schraen-Maschke S, et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-pl5.1. Ann Neurol, 2002, 52(5): 666-670.
    [25] Chung MY, Lu YC, Cheng NC, Soong BW. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain, 2003, 126(pt6): 1293-1299.
    [26] Verbeek DS, van de Warrenburg BP, Wesseling P, et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain, 2004, 127(pt11: 2551-2557.
    [27] Swartz BE, Burmeister M, Somers JT, et al. A form of inherited cerebellar ataxia with saccadic intrusions, increased saccadic speed, sensory neuropathy, and myoclonus. Ann NY Acad Sci, 2002, 956: 441-444.
    [28] Stevanin G, Bouslam N, Thobois S, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann. Neurol, 2004, 55(1): 97-104.
    [29] Yu GY, Howell MJ, Roller MJ, et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann. Neurol, 2005, 57(3): 349-354.
    [30] Cagnoli C, Mariotti C, Taroni F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain, 2006, 129(pt1): 235-242.
    [31] Dudding TE, Friend K, Schofield PW, et al. Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology, 2004, 63(12): 2288-2292.
    [32] Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW. Autosomal dominant cerebellar ataxia type Ⅲ: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet, 1999, 65(2):420-426.
    [33] Schols L, Amoiridis G, Buttner T, et al. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol, 1997, 42(6): 924-932.
    [34] Watanabe H, Tanaka F, Matsumoto M, et al. Frequency analysis of autosomal dominant cerebellar ataxias in Japanese patients and clinical characterization of spinocerebellar ataxia type 6. Clin Genet, 1998, 53(1): 13-19.
    [35] Tang BS, Liu C, Shen L, et al. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol, 2000, 57(4): 540-544.
    [36] Evidente VG, Gwinn-Hardy KA, Caviness JN, et al. Hereditary ataxias. Mayo Clin Proc, 2000, 75(5):475-490.
    [37] Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007,30:575-621.
    [38] Williams A, Jahreiss L, Sarkar S, et al. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol, 2006,76:89-101.
    [39] Steffan JS, Thompson LM. Targeting aggregation in the development of therapeutics for the treatment of Huntington's disease and other polyglutamine repeat diseases. Expert Opin Ther Targets, 2003, 7(2):201-213.
    [40] Li Y, Yokota T, Matsumura R, et al. Sequence-dependent and independent inhibition specific for mutant ataxin-3 by small interfering RNA. Ann Neurol, 2004, 56(1): 124-129.
    [41] Xia J, Lee DH, Taylor J, et al. Huntingtin contains a highly conserved nuclear export signal. Hum Mol Genet, 2003, 12(12):1393-1403.
    [42] Schilling G, Savonenko AV, Klevytska A, et al. Nuclear-targeting of mutant huntingtin fragments produces Huntington's disease-like phenotypes in transgenic mice. Hum Mol Genet. 2004, 13(15):1599-1610.
    [43] Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet, 2003, 12 Spec No 2:R173-186.
    [44] Takahashi T, Nozaki K, Tsuji S, et al. Polyglutamine represses cAMP- responsive-element-mediated transcription without aggregate formation. Neuroreport, 2005, 16(3): 295-299.
    [45] Tarlac V, Storey E. Role of proteolysis in polyglutamine disorders. J Neurosci Res, 2003, 74(3): 406-416.
    [46] Arrasate M, Mitra S, Schweitzer ES, et al. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 2004, 431(7010): 805-810.
    [47] Ueda H, Goto J, Hashida H, et al. Enhanced SUMOylation in polyglutamine diseases. Biochem Biophys Res Commun, 2002, 293(1): 307-313.
    [48] Terashima T, Kawai H, Fujitani M, et al. SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport, 2002,13(17): 2359-2364.
    [49] Steffan JS, Agrawal N, Pallos J, et al. SUMO modification of Huntingtin and Huntington's disease pathology. Science, 2004, 304(5667): 100-104.
    [50] Boddy M.N, Howe K, Etkin L.D, et al. a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene, 1996, 139(5):971-982.
    [51] Tanaka K, Nishide J, Okazaki K, et al. Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol Cell Biol, 1999, 19(12): 8660-8672.
    [52] Kamitani T, Nguyen HP, Yeh ET. Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J Biol Chem, 1997, 272(22): 14001-14004.
    [53] Owerbach, D., McKay, E. M., Yeh, E. T., et al. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun. 2005, 337:517-520.
    [54] Li SJ, Hochstrasser M. A new protease required for cell-cycle progression in yeast. Nature, 1999, 398(6724): 246-251.
    [55] Strunnikov AV, Aravind L, Koonin EV. Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics, 2001, 158(1): 95-107.
    [56] Li SJ, Hochstrasser M. The Ulpl SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol, 2003,160(7): 1069-1081.
    [57] Panse VG, Kuster B, Gerstberger T, et al. Unconventional tethering of Ulpl to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol, 2003, 5(1 ):21-27.
    [58] Martin S, Wilkinson KA, Nishimune A, Henley JM. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci. 2007, 8(12):948-959.
    [59] Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007, 8(12):947-956.
    [60] Zhao J.Sumoylation regulates diverse biological processes. Cell Mol Life Sci. 2007,64(23):3017-3033.
    [61] Desterro J. M., Rodriguez M. S., Hay, R.T. SUMO-1 modification of IKBy inhibits NF-KB activation. Mol. Cell, 1998, 2(2): 233-239.
    [62] Lin X., Liang M., Liang Y.Y. et al. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J. Biol. Chem. 2003, 278 (33):31043-31048.
    [63] Watts, F. Z. Sumoylation of PCNA: wrestling with recombination at stalled replication forks. DNA Repair (Amst.) 2006, 5(3), 399-403.
    [64] Sacher M., Pfander B., Hoege C. et al. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat. Cell Biol, 2006, 8(11): 1284-1290.
    [65] Klenk C, Humrich J, Quitterer U, et al. SUMO-1 controls the protein stability and the biological function of phosducin. J. Biol. Chem, 2006, 281(13):8357-8364.
    [66] Benanti JA, Williams DK, Robinson, et al. Induction of extracellular matrixremodeling genes by the senescence-associated protein APA-1. Mol. Cell. Biol. 2002, 22(21):7385-7397.
    [67] Bae SH, Jeong JW, Park JA, et al. Sumoylation increases HIF-1 alpha stability and its transcriptional activity. Biochem Biophys Res Commun, 2004, 324(1):394-400.
    [68] Floyd ZE, Stephens JM. Control of peroxisome proliferator-activated receptor gamma 2 stability and activity by SUMOylation. Obes Res, 2004, 12:921-928.
    [69] Hay RT. SUMO: a history of modification. Mol Cell, 2005, 18(1):1-12.
    [70] Christian Endter, Julia Kzhyshkowska, Roland Stauber, et al. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci U S A. 2001 September 25; 98(20): 11312-11317.
    [71] Dorval, V. and Fraser, P. E. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem, 2006, 281(15):9919-9924.
    [72] Poukka H, Karvonen U, Janne OA, et al. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14145-14150.
    [73]Riley BE,Zoghbi HY,Orr HT.SUMOylation of the polyglutamine repeat protein,ataxin-1,is dependent on a functional nuclear localization signal.J Biol Chem.2005 Jun 10;280(23):21942-21948.
    [74]SHEN Lu,TANG Jian-guang,TANG Bei-sha et al.Research on screening and identification of proteins interacting with ataxin-3.Chinese Journal of Medical Genetics,2005,22(3):242-247
    [75]沈璐,唐北沙,汤建光等.脊髓小脑型共济失调Ⅲ型ataxin-3相互作用蛋白的筛选.中南大学学报(医学版),2006,15(1):28-30
    [76]汤建光,沈璐,唐北沙等.SUMO-1共价修饰ataxin-3.生物化学与生物物理进展,2006,33(11):1037-1043.
    [77]汤建光.ataxin-3苏素化在SCA3/MJD发病机制中的作用.[博士学位论文].长沙.中南大学,2005年.
    [78]Terashima T,Kawai H,Fujitani M,et al.SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death.Neuroreport.2002 Dec 3;13(17):2359-2364.
    [79]Ueda H,Goto J,Hashida H,et al.Enhanced SUMOylation in polyglutamine diseases.Biochem Biophys Res Commun.2002 Apr 26;293(1):307-313.
    [80]Dorval V,Fraser PE.SUMO on the road to neurodegeneration.Biochim Biophys Acta.2007 Jun;1773(6):694-706.
    [81]Evert BO,Wullner U,Schulz JB,et al.High level expression of expanded full-length ataxin-3 in vitro causes cell death and formation of intranuclear inclusions in neuronal cells.Hum Mol Genet,1999,8(7):1169-1176.
    [82]Ikeda H,Yamaguchi M,Sugai S,et al.Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo.Nat Genet,1996,13(2):196-202.
    [83]Warrick JM,Paulson HL,Gray-Board GL,et al.Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila.Cell,1998,93(6):939-949.
    [84]Evert BO,Vogt IR,Vieira-Saecker AM,et al.Gene expression profiling in ataxin-3 expressing cell lines reveals distinct effects of normal and mutant ataxin-3.J Neuropathol Exp Neurol,2003,62(10):1006-1018.
    [85]Wen FC,Li YH,Tsai HF,et al.Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3.FEBS Lett,2003,546(2-3):307-314.
    [86]Evert BO,Vogt IR,Kindermann C,et al.Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains.J Neurosci,2001,21(15):5389-5396.
    [87]Li F,Macfarlan T,Pittman RN,et al.Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities.J Biol Chem.2002,277(47):45004-45012.
    [88]廖书胜.SUMO-1修饰ataxin-3对其亚细胞定位及转录抑制活性的影响.[博士学位论文].长沙.中南大学,2008年.
    [89]Pakhomov AA,Martynov VI.GFP family:structural insights into spectral tuning.Chem Biol.2008 Aug 25;15(8):755-764.
    [90]Schindelhauer D,Laner A.Visible transient expression of EGFP requires intranuclear injection of large copy numbers.Gene Ther.2002 Jun;9(11):727-730.
    [91]Yutaka Morita,Chic Kanei-Ishii,Teruaki Nomura,et al.TRAF7 Sequesters c-Myb to the Cytoplasm by Stimulating Its Sumoylation.Mol Biol Cell,2005,16(11):5433-5444.
    [92]Paulson HL,Das SS,Crino PB,et al.Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain.Ann Neurol,1997,41(4):453-462.
    [93]Wang G,Ide K,Nukina N,et al.Machado-Joseph disease gene product identified in lymphocytes and brain.Biochem Biophys Res Commun,1997,233(2):476-479.
    [94]Yoshizawa T,Yamagishi Y,Koseki N,et al.Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch.Hum Mol Genet,2000,9(1):69-78.
    [95]Matunis MJ,Coutavas E,Blobel G.et al.A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1between the cytosol and the nuclear pore complex.J Cell Biol,1996,135(6 Pt 1):1457-1470.
    [96]Endter C,Kzhyshkowska J,Stauber R,et al.SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein.Proc Natl Acad Sci USA,2001,98(20):11312-11317.
    [97]Sara Salinas,Anne Brian(?)on-Marjollet,Guillaume Bossis,et al.SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1.The Journal of Cell Biology, 2004,165(6):767-772.
    [98] Shinbo Y, Niki T, Taira T, et al. Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ. 2006 Jan; 13(1):96-108.
    [99] Wang H, Jia N, Fei E, et al. p45, an ATPase subunit of the 19S proteasome, targets the polyglutamine disease protein ataxin-3 to the proteasome. Neurochem. 2007 Jun; 101(6):1651-1661.
    [100]Olzmann JA, Li L, Chin LS. Aggresome formation and neurodegenerative diseases: therapeutic implications. Curr Med Chem. 2008; 15(1):47-60.
    [101] Shastry BS. Neurodegenerative disorders of protein aggregation. Neurochem Int, 2003,43 (1):127.
    [102] Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin- proteasomal pathyway in Parkinson's disease and other neurodegenerative diseases. Trends Neurosci,2001,24:S7-S14.
    [103]Dorval V, Fraser PE. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein.J Biol Chem. 2006 Apr 14; 281(15):9919-9924.
    [104] Yonashiro R, Ishido S, Kyo S, et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006 Aug 9; 25(15):3618-3626.
    [105]Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007 Dec; 8(12):947-956.
    [106] Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol. 2008 Dec;9(12):944-957.
    [107]Sarkar S, Rubinsztein DC. Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J. 2008 Sep; 275(17):4263-4270.
    [108] Zhong X, Pittman RN. Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. Hum Mol Genet. 2006, 15(16):2409-2420.
    [109] Li X, Zhang Q, Cai L, et al. Inhibitor of growth 4 induces apoptosis in human lung adenocarcinoma cell line A549 via Bcl-2 family proteins and mitochondria apoptosis pathway. J Cancer Res Clin Oncol. 2008 Nov 26.
    [110] Fan J, Ren H, Jia N, et al. DJ-1 decreases Bax expression through repressing p53 transcriptional activity. J Biol Chem. 2008 Feb 15; 283(7):4022-4030.
    [1] Shastry BS. Neurodegenerative disorders of protein aggregation. Neurochem Int, 2003,43 (1):127.
    [2] Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin- proteasomal pathyway in Parkinson's disease and other neurodegenerative diseases. Trends Neurosci, 2001, 24: S7-S14.
    [3] Ciechanover A. Linking ubiquitin, parkin and synphilin-1. Nat Med, 2001, 7(10): 1108-1109.
    [4] Lim KL, Tan JM. Role of the ubiquitin proteasome system in Parkinson's disease. BMC Biochem, 2007 22; 8 1:S13.
    [5] Keller JN, Hanni KB, Markesbery WR. Impaired proteasome function in Alzheimer's disease. J Neurochem, 2000, 75 (1) :436-439.
    [6] Gregori L, Fuchs C, Figueiredo-Pereira ME, et al. Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem, 1995, 270 (34) : 19702-19708.
    [7] De Vrij FM, Sluijs JA, Gregori L, et al. Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death. FASEB J, 2001, 15 (14): 2680-2688.
    [8] Lam YA, Pickart CM, Alban A, et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc Natl Acad Sci, 2000, 97 (18): 9902-9906.
    [9] Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest, 2003, 111(2): 145-151.
    [10] Zhang Y, Gao J, Chung KK, et al. Parkin function as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel21. Proc Natl Acad Sci USA, 2000, 97 (24):13354-13359.
    [11] Chung KK, Zhang Y, Lim KL, et al. Parkin ubiquitinates thea-synuclein -interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nature Medicine, 2001, 7(10):1144-1150.
    [12] Shimura H, Schlossmacher MG, Hattori N, et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Scienc, 2001, 293 (5528):263-269.
    [13] Corti O, Hampe C, Koutnikova H, et al. The p38 subunit of the aminoacyl- tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum Mol Genet, 2003, 12 (12):1427-1437.
    [14] Maraganore DM, Farrer MJ, Hardy JA, et al. Case-control study of the ubiquitin carboxy terminal hydrolase L1 gene in Parkinson's disease. Neurology, 1999, 53:1858-1860.
    [15] Sherman M, Goldberg AL. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron, 2001, 29:15-32.
    [16] Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 2001, 292(5521):1552-1555.
    [17] Cummings CJ, Reinstein E, Sun Y, et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron, 1999, 24:879-892.
    [18] Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell, 2000, 101:57-66.
    [19] Boddy M.N, Howe K, Etkin L.D, et al. a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene, 1996, 139(5):971-982.
    [20] Kamitani T, Kito K, Nguyen HP, et al. Characterization of a second member of the sentrin family of ubiquitin-like proteins. J Biol Chem, 1998, 273(18):11349-11353.
    [21] Shen Z, Pardington-Purtymun PE, Comeaux JC, et al. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics, 1996, 36(2): 271-279.
    [22] Mahajan R, Delphin C, Guan T, et al. A small ubiquitin-related polypeptide involved in targeting RanGAPl to nuclear pore complex protein RanBP2. Cell, 1997, 88(1): 97-107.
    [23] Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol, 1996, 135(6 Pt 1):1457-1470.
    [24] Johnson ES, Schwienhorst I, Dohmen RJ, et al. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aoslp/Uba2p heterodimer. EMBO J, 1997, 16(18): 5509-5519.
    [25] Tanaka K, Nishide J, Okazaki K, et al. Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol Cell Biol, 1999, 19(12): 8660-8672.
    [26] Kamitani T, Nguyen HP, Yeh ET. Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J Biol Chem, 1997, 272(22): 14001-14004.
    [27] Owerbach, D., McKay, E. M, Yeh, E. T., et al. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun. 2005, 337:517-520.
    [28] Bayer P, Arndt A, Metzger S, et al. Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol, 1998, 280(2): 275-286.
    [29] M(?)ller S, Hoege C, Pyrowolakis G, et al. SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol. 2001,2(3):202-210.
    [30] Tatham MH, Jaffray E, Vaughan OA, et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem, 2001, 276(38): 35368-35374.
    [31] Li Y, Wang H, Wang S, et al. Positive and negative regulation of APP amyloidogenesis by sumoylation. Proc Natl Acad Sci U S A, 2003, 100(1):259-264.
    [32] Hoege C, Pfander B, Moldovan GL, et al. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature, 2002, 419(6903): 135-141.
    [33] Vertegaal AC, Andersen JS, Ogg SC, et al. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics. 2006, 5(12), 2298-2310.
    [34] Bohren KM, Nadkarni V, Song JH, et al. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem. 2004, 279(26): 27233-27238.
    [35] Sia C. Is a new immune response mediator in the NF-kappaB pathway SUMO-4-related to type 1 diabetes? Rev Diabet Stud. 2005, 2(2):58-60.
    [36] Dorval V, Fraser PE. SUMO on the road to neurodegeneration. Biochim Biophys Acta. 2007; 1773(6):694-706.
    [37] Hofmann H, Floss S, Stamminger T. Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol, 2000, 74(6): 2510-2524.
    [38] Okuma T, Honda R, Ichikawa G, et al. In vitro SUMO-1 modification requires two enzymatic steps, El and E2. Biochem Biophys Res Commun, 1999, 254(3): 693-698.
    [39] Desterro JM, Rodriguez MS, Kemp GD, et al. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem, 1999,274(15): 10618-10624.
    [40] Desterro JM, Thomson J, Hay RT. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett, 1997, 417(3): 297-300.
    [41] Shuai K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene, 2000, 19(21):2638-2644.
    [42] Kotaja N, Karvonen U, Janne O. et al. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell Biol. 2002, 22(14): 5222-5234.
    [43] Kahyo T, Nishida T, Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell, 2001, 8(3):713-718
    [44] Potts P.R, Yu H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 2005, 25(16):7021-7032.
    [45] Johnson ES, Gupta AA. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell, 2001, 106(6): 735-744.
    [46] Schmidt D, Muller S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA, 2002, 99(5): 2872-2877.
    [47] Sachdev S, Bruhn L, Sieber H, et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev, 2001, 15(23): 3088-3103.
    [48] Pichler A, Gast A, Seeler JS, et al. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell, 2002, 108(1): 109-120.
    [49] Kirsh O, Seeler JS, Pichler A, et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J, 2002, 21(11): 2682-2691.
    [50] Miyauchi Y, Yogosawa S, Honda R, et al. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J Biol Chem, 2002, 277(51): 50131-50136.
    [51] Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. Cell, 2003, 113(1): 127-137.
    [52] S. Weger, E. Hammer, R. Heilbronn. Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo, FEBS Lett. 579 (2005) 5007-5012.
    [53] Y. Morita, C. Kanei-Ishii, T. Nomura, S. Ishii. TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation, Mol. Biol. Cell 16(2005) 5433-5444.
    [54] Mossessova E, Lima CD. Ulpl-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell, 2000, 5(5): 865-876.
    [55] Li SJ, Hochstrasser M. A new protease required for cell-cycle progression in yeast. Nature, 1999, 398(6724): 246-251.
    [56] Strunnikov AV, Aravind L, Koonin EV. Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics, 2001, 158(1): 95-107.
    [57] Li SJ, Hochstrasser M. The Ulpl SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol, 2003, 160(7): 1069-1081.
    [58] Panse VG, Kuster B, Gerstberger T, et al. Unconventional tethering of Ulpl to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol, 2003, 5(1):21-27.
    [59] Dorval V, Fraser PE. SUMO on the road to neurodegeneration. Biochim Biophys Acta, 2007, 1773(6):694-706.
    [60] Walker FO. Huntington's disease. Lancet, 2007, 369(9557):218-228.
    [61] Chan HY, Warrick JM, Andriola I, et al. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet, 2002, 11(23):2895-2904.
    [62] H. Ueda, J Goto, H. Hashida, X. Enhanced SUMOylation in polyglutamine disease. Biochem Biophys Res Commun. 2002, 293(1) 307-313.
    [63] T Terashima, H Kawai, M Fujitani K. SUMO-1 colocalized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport, 2002,13(17) 2359-2364.
    [64] DL Pountney, Y Huang, RJ Burns, et al. SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol, 2003, 184(1):436-446.
    [65] Steffan JS, Agrawal N, Pallos J, et al. SUMO modification of Huntingtin and Huntington's disease pathology. Science, 2004, 304(5667): 100-104.
    [66] BE Riley, HY Zoghbi, HT Orr. SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J Biol. Chem. 2005, 280(23):21942-21948.
    [67] SHEN Lu, TANG Jian-guang, TANG Bei-sha et al. Research on screening and identification of proteins interacting with ataxin-3. Chinese Journal of Medical Genetics, 2005, 22(3):242-247
    [68]沈璐,唐北沙,汤建光等.脊髓小脑型共济失调Ⅲ型ataxin-3相互作用蛋白的筛选.中南大学学报(医学版),2006,15(1):28-30.
    [69]汤建光,沈璐,唐北沙等.SUMO-1共价修饰ataxin-3.生物化学与生物物理进展,2006,33(11):1037-1043.
    [70]汤建光.ataxin-3苏素化在SCA3/MJD发病机制中的作用.[博士学位论文].长沙.中南大学,2005年.
    [71]廖书胜.SUMO-1修饰ataxin-3对其亚细胞定位及转录抑制活性的影响.[博士学位论文].长沙.中南大学,2007年.
    [72]DL Pountney,F Chegini,X Shen.SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy.Neurosci.Lett,2005,381(1-2):74-79.
    [73]Cuervo AM,Stefanis L,Fredenburg R,et al.Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy.Science,2004,27,305(5688):1292-1295.
    [74]Um JW,Min DS,Phim H,et al.Parkin ubiquitinates and promotes the degradation of RanBP2.J Biol Chem,2006,281(6):3595-3603.
    [75]Um JW,Chung KC.Functional modulation of parkin through physical interaction with SUMO-1.Neurosci Res,2006,84(7):1543-1554.
    [76]Zhong N,Kim CY,Rizzu P,et al.D J-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor.J Biol Chem.2006,281(31):20940-20948.
    [77]CB Gocke,H Yu,J Kang.Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates.J Biol Chem,2005,280(6):5004-5012.
    [78]Li Y,Wang H,Wang S,et al.Positive and negative regulation of APP amyloidogenesis by sumoylation.Proc Natl Acad Sci USA,2003,100(1):259-264.
    [79]Neve RL.A new wrestler in the battle between alpha- and beta-secretases for cleavage of APP.Trends Neurosci,2003,26(9):461-463.
    [80]Dorval,V.and Fraser,P.E.Small ubiquitin-like modifier(SUMO) modification of natively unfolded proteins tau and alpha-synuclein.J Biol Chem,2006, 281(15):9919-9924.
    [81] Hunter T. Signaling-2000 and beyond. Cell, 2000,100(1): 113-127.
    [82] Chen HK, Fernandez-Funez P, Acevedo SF, et al. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell, 2003,113(4): 457-468.
    [83] Emamian ES, Kaytor MD, Duvick LA, et al. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron, 2003, 38(3): 375-387.
    [84] Cynthia A Vierra-Green, Harry T Orr, Huda Y Zoghbi, et al. Identification of a novel phosphorylation site in ataxin-1. Biochim Biophys Ada, 2005 May 15;1744(1):11-18.
    [85] Sharp AH, Loev SJ, Schilling G, et al.Widespread expression of Huntington's disease gene (IT 15) protein product. Neuron, 1995 May; 14(5): 1065-1074.
    [86] Luo S, Vacher C, Davies JE, et al. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol, 2005, 169(4): 647-656.
    [87] Warby SC, Chan EY, Metzler M, et al. Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum Mol Genet, 2005, 14(11): 1569-1577.
    [88] Humbert S, Bryson EA, Cordelieres FP, et al. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev Cell, 2002 Jun; 2(6):831-837.
    [89] H(?) l(?)ne Rangone, Ra(?) 1 Pardo, Emilie Colin, et al. Phosphorylation of Arfaptin 2 at Ser260 by Akt Inhibits PolyQ huntingtin-induced Toxicity by Rescuing Proteasome Impairment. J Cell Biol, 2005, 280(23):22021-22028.
    [90] Pardo R, Colin E, Regulier E, et al. Inhibition of Calcineurin by FK506 Protects against Polyglutamine-Huntingtin Toxicity through an Increase of Huntingtin Phosphorylation at S421. J Neurosci, 2006 Feb 1; 26(5): 1635-45.
    [91] Cheng Song, Yuntian Zhang, Chris G Parsons, et al. Expression of Polyglutamine-expanded Huntingtin Induces Tyrosine Phosphorylation of N-Methyl-D-aspartate Receptors. J Biol Chem, 2003,278(35):33364-33369.
    [92] Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet, 1994 Jan;6(1):14-18.
    [93] Okamura-Oho Y, Miyashita T, Nagao K, et al. Dentatorubral- pallidoluysian atrophy protein is phosphorylated by c-Jun NH2-terminal kinase. Hum Mol Genet,2003, 12(13): 1535-1542.
    [94] Belsham DD, Yee WC, Greenberg CR, et al. Analysis of the CAG repeat region of the androgen receptor gene in a kindred with X-linked spinal and bulbar muscular atrophy. J Neurol Sci, 1992 Oct; 112(1-2):133-138.
    [95] LaFevre-Bernt MA, Ellerby LM. Kennedy's disease. Phosphorylation of the polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and enhances cell death. J Biol Chem, 2003, 278(37): 34918-34924.
    [96] Banfi S, Servadio A, Chung MY, et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet, 1994 Aug; 7(4):513-520.
    [97] Kaytor MD, Byam CE, Tousey SK, et al. A cell-based screen for modulators of ataxin-1 phosphorylation. Hum Mol Genet, 2005 Apr 15; 14(8): 1095-1105.
    [98] Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet, 1994 Nov; 8(3):221-228.
    [99] Erkang Fei, Nali Jia, Tao Zhang, et al. Phosphorylation of ataxin-3 by glycogen synthase kinase 3b at serine 256 regulates the aggregation of ataxin-3. Biochem Biophys Res Commun. 2007 Jun 1; 357(2):487-492.
    [100]Ellisdon AM, Thomas B, Bottomley SP. The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem, 2006 Jun 23;281(25):16888-16896.
    [101] Tanaka M, Machida Y, Nishikawa Y, et al. Expansion of polyglutamine induces the formation of quasi-aggregate in the early stage of protein fibrillization. J Biol Chem, 2003, 5; 278(36): 34717-34724.
    [102] Cowan KJ, Diamond MI, Welch WJ. Polyglutamine protein aggregation and toxicity are linked to the cellular stress response. Hum Mol Genet, 2003 Jun 15; 12(12):1377-1391.
    [103]Kitamura A, Kubota H, Pack CG, et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol, 2006 Oct;8(10):1163-1170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700