HSP22转基因小鼠模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腓骨肌萎缩症(Charcot-Marie-Tooth disease,CMT)又称为遗传性运动感觉性神经病(Hereditary Motor and Sensory Neuropathy,HMSN),是最常见的遗传性周围神经病,具有高度的临床和遗传异质性,临床上以肢体远端肌肉进行性对称性的萎缩、无力、腱反射减弱和感觉减退等为主要特征,发病率约为1/2500。根据电生理和病理学特点,CMT可分为脱髓鞘型(CMT1)和轴索型(CMT2),根据遗传方式的不同,CMT可呈常染色体显性遗传(AD)、常染色体隐性遗传(AR)和X连锁遗传(XD/XR)。随着分子遗传学的发展,迄今为止,腓骨肌萎缩症的基因型己达32型,其中22型已克隆。2004年,我们将一个来自中国湖南和湖北的常染色体显性遗传的CMT2型大家系定位在12q24.2-12q24.3之间的6.8cM区域,命名为CMT2L型(OMIM号608673),随后通过候选基因克隆策略,在该定位区间发现了小分子热休克蛋白22基因(Small heat shock protein 22,HSP22)的423G→T错义突变,导致氨基酸K141N的替换,与该CMT2L型家系的疾病表型共分离,从而证实HSP22为CMT2L型的致病基因。
     研究表明,CMT各亚型致病基因的分子发病机制并不完全一样,可能通过致病基因的剂量效应、功能丧失、功能获得或显性-负性作用而致病。国外研究表明,HSP22与HSP27存在蛋白-蛋白相互作用,而且还发现,HSP22可能与调节HSP27的活性有关,HSP22基因的K141N突变后并没有破坏其编码蛋白与HSP27的相互作用,相反,这种相互作用还增强了并且导致蛋白聚集物的形成,表明K141N突变可能是通过功能获得作用而致病。为了证实上述推测,我们拟应用微纤维注射技术构建HSP22基因K141N的转基因小鼠模型,使小鼠携带人类突变的HSP22蛋白,验证该突变的功能获得作用。
     最近的研究发现,HSP27突变后也可引起CMT,HSP22和HSP27基因突变可以引起同样的疾病表型,这无疑为CMT发病机制的相关性研究提供了一个很好的线索和思路。通过对HSP27过表达转基因小鼠模型进行研究,发现HSP27不仅对癫痫后的病理改变、心肌缺血和脑缺血之后的再灌注损伤都有保护作用,而且对神经损伤修复、肌肉功能的维持也有重要作用。HSP22是否具有同样的功能,目前国内外尚无系列的研究报道,也无关于HSP22的过表达转基因小鼠构建的报道。因此,为了更好的研究HSP22基因的功能及该基因突变后的分子致病机制,构建HSP22的过表达转基因小鼠模型是非常必要的。
     为了构建携带人类HSP22基因K141N突变和野生型HSP22基因的转基因小鼠模型,我们成功构建了pCAGGS-HA-~(K141N)HSP22和pCAGGS-HA-~(wt)HSP22两个转基因表达载体。通过激光共聚焦显微镜和Western Blot分析,证实了pCAGGS-HA-~(K141N)HSP22和pCAGGS-HA-~(wt)HSP22可在真核细胞有效表达,并验证了K141N突变型HSP22在活体外细胞系中形成以核周分布为主的聚合物,野生型HSP22在活体外细胞系中弥散分布于胞浆和胞核内。应用HA单克隆抗体,可以特异性检测出约25.5kDa大小的带HA-tag的HSP22蛋白。体外实验证实pCAGGS-HA-~(K141N)HSP22和pCAGGS-HA-~(wt)HSP22能用于转基因小鼠的构建后,我们用SalⅠ、HindⅢ和BsaⅪ三个核酸内切酶对pCAGGS-HA-~(K141N)HSP22和pCAGGS-HA-~(wt)HSP22进行酶切得到线性化目的片段,然后进行微纤维注射。pCAGGS-HA-~(K141N)HSP22线性化片段进行三次微纤维注射,共注射640枚受精卵,生下24只仔鼠,经PCR和测序分析,获得4只携带人类HSP22基因K141N突变的转基因首建鼠,编号为Tg642、Tg677、Tg679和Tg681。首建鼠Tg642已到交配年龄,使其与正常小鼠进行交配,已生下3批共23只F1代小鼠,经PCR鉴定,获得4只携带人类HSP22基因K141N突变的F1代转基因小鼠,编号为Be423、Be435、Bf84和Bf86,经Western Blot分析,该Tg642系小鼠并不表达目的蛋白,其他三个品系小鼠有待进一步鉴定。pCAGGS-HA-~(wt)HSP22线性化片段进行一次微纤维注射,共注射210枚受精卵,生下19只仔鼠,经PCR和测序分析,获得4只携带人类HSP22基因的转基因首建鼠,编号为Tg646、Tg648、Tg649和Tg661。
     在获得更多pCAGGS-HA-~(K141N)HSP22子代转基因阳性小鼠的基础上,我们将继续进行外源性突变HSP22蛋白的表达分析,如成功表达,再进行下一步的行为学、电生理学和病理学等方面的分析,以期获得CMT2L的转基因小鼠模型,为CMT的分子发病机制和治疗研究奠定基础。在获得pCAGGS-HA-~(wt)HSP22子代转基因阳性小鼠的基础上,分析外源性HSP22蛋白的过表达情况,如能得到过表达HSP22蛋白的转基因阳性小鼠,后续的工作可围绕HSP22的神经保护作用进行,例如用HSP22过表达的转基因阳性小鼠与阿尔茨海默病(Alzhermer's Disease,AD)、帕金森病(Parkinson's Disease,PD)、肌萎缩侧索硬化症(Amyotrophic LateralSclerosis,ALS)等神经退行性疾病的小鼠模型进行交配,也使这些神经退行性疾病的小鼠模型过表达HSP22蛋白,观察HSP22对上述神经退行性疾病的病理改变是否有保护作用,从而为神经退行性疾病的治疗研究提供新的思路。
Charcot-Marie-Tooth disease(CMT),also known as hereditary motor and sensory neuropathy(HMSN),is the most common hereditary peripheral neuropathy with highly clinical and genetic heterogeneity. CMT is characterized by progressive and symmetric distal muscle atrophy,weakness,hyporeflexia and hypoesthesia in distal limbs.The incidence of CMT is about 1/2500.According to the electrophysiological and histopathological criteria,CMT can be divided into two forms:the demyelinating form(CMT1)and the axonal form(CMT2).Several modes of inheritance have been described in CMT,including autosomal dominant(AD),autosomal recessive(AR)and X-linked dominant or recessive(XD/XR).With the advancement of the biogenetics,so far 32 gene loci have been identified and 22 distinct genes have been cloned.In 2004,we found a large Chinese CMT2 family in Hunan and Hubei provinces which was proved to be a novel genotype designated as CMT2L.After mapping the locus to a 6.8cM region at chromosome 12q24.2-12q24.3,we identified a novel 423G→T mutation of HSP22 gene and confirmed amino-acid Change K141N as the causative gene defect in CMT2L.
     Although many mutations of a number of genes have been associated with CMT,the disease mechanisms caused by each gene may be different.The main mechanisms include dosage effect,loss of function, gain of function or dominant-negative effect.Many researches have found that HSP22 not only can interact with HSP27,but may be involved in the modulation of HSP27 activities.The K141N mutation in the HSP22 protein does not disrupt interaction with HSP27,but strengthen it, leading to the formation of aggregates.So,the K141N mutation may have a gain-of-function and cause CMT.To confirm the presumption,we can construct the transgenic mice which carry the K141N mutation of human HSP22 gene through microinjection.
     Recently studies showed that HSP27 gene mutations could also be associated with CMT.The phenotypes caused by HSP22 or HSP27 are similar.This would be a good clue not only for the researches about the normal function of sHSPs,but the researches about the pathogenesis of CMT.By over expression of heat shock protein 27(HSP27)in transgenic mice,many scholars have found that HSP27 not only could reduce cell death in the hippocampus associated with seizures and reduce infarct size in cardiac or brain ischemia but has significant cytoprotective properties in rescuing nerve injury,maintaining muscle function.Whether HSP22 has the similar properties as HSP27,there are still no relevant reports and no transgenic mice over expression HSP22.It is necessary to establish the transgenic mice model over expressing HSP22 for improving our understanding the normal function of HSP22 and learn more about the pathogenesis of HSP22 mutations.
     To construct the transgenic mouse models carrying the mutation K141N of human HSP22 gene or the wild-type human HSP22 gene,we constructed pCAGGS-HA-~(K141N)HSP22 and pCAGGS-HA-~(wt)HSP22 transgenic expression vectors,pCAGGS-HA-~(K141N)HSP22 and pCAGGS-HA-~(wt)HSP22 could express effectively in eukaryocytes such as COS7 and HEK293T cells through confocal microscopy and western blot analysis.We also confirmed that mutant HSP22 protein formed large aggregates predominantly located around the nucleus and wild HSP22 protein distributed diffusively in the cytosol and nucleus.A prospective 25.5kDa protein band of HA-tagged HSP22 could be specificity detected by Western blot with a monoclonal antibody to the HA tag.Our results showed that pCAGGS-HA-~(K141N)HSP22 and pCAGGS-HA-~(wt)HSP22 could be used to further transgenic researches.The linearized DNA was cut out of the pCAGGS-HA-~(K141N)HSP22 or pCAGGS-HA-~(wt)HSP22 vectors by SalI,HindⅢand BsaⅪI digestion,purified and used to generate the transgenic mice.The linearized pCAGGS-HA-~(K141N)HSP22 was microinjected into 640 fertilized eggs from C57BL mice,which were subsequently transferred to pseudopregnant recipients.24 babies were produced.Among them,4 transgenic founder mice(Tg642,Tg677, Tg679,Tg681)carrying the mutation K141N of human HSP22 gene were identified by PCR and direct sequence.Tg642 can breed very well and have produced 23 F1 offsping.Among them,4 transgenic F1 mice (Be423,Be435,Bf84,Bf86)carrying the mutation K141N of human HSP22 gene were identified by PCR.But the Tg642 line mice didn't express the human HSP22 protein and can not be used for further researches.The linearized pCAGGS-HA-~(wt)HSP22 was microinjected into 210 fertilized eggs from C57BL mice.19 babies were produced.Among them,4 transgenic founder mice(Tg646,Tg648,Tg649,Tg661)carrying human HSP22 gene were identified by PCR and direct sequence.
     We will analyze the expression of exogenous mutant HSP22 protein if we can get more offspring carrying the mutation K141N of human HSP22 gene.If our transgenic mice express the human mutant HSP22 protein,we will observe whether they have the similar behavior, electrophysiology or pathology features as human CMT2L disease.This will establish foundations for the pathogenesis and therapy researches of CMT.Similarly,if the transgenic founder mice carrying the human HSP22 gene could breed well,we will analyze whether these mice could over express human HSP22 protein.We could analyze the neuron protective function of HSP22 in the transgenic mice over expression of HSP22 protein.Many sHSPs are often upregulated and accumulate into inclusion bodies in many neurodegenerative diseases.This suggests that sHSPs may be potent suppressors of neurodegeneration.Some transgenic mice of neurodegenerative disease such as Alzhermer's disease(AD), Parkinson's disease(PD)or Amyotrophic Lateral Sclerosis(ALS)have been generated.We could make those transgenic mice also to over express HSP22 by mating them with our HSP22 over expressed transgenic mice.Then we can observe whether HSP22 have an effect on the pathological changes on the transgenic mice of neurodegenerative disease.This will provide a new idea about the therapy for those neurodegenerative diseases.
引文
[1] Hogan B,Beddington R,Costantini F,et al. Manipulating the Mouse Embryo:A Laboratory Manual. New York, Cold Spring Harbor Laboratory Press, 1994,117-119.
    [2] Harding AE, Thomas PK. The clinical features of hereditary motor and sensory neuropathy types I and II. Brain, 1980, 103(2): 259-280.
    [3] Davis CJ, Bradley WG, Madrid R. The peroneal muscular atrophy syndrome: clinical, genetic, electrophysiological and nerve biopsy studies. I. Clinical, genetic and electrophysiological findings and classification. J Hum Genet, 1978, 26(4): 311-349.
    [4] Matsunami N, Smith B, Ballard L, et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p 11.2 associated with Charcot-Marie-Tooth 1A. Nat Genet, 1992,1(3): 176-179.
    [5] Street VA, Bennett CL, Goldy JD, et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology, 2003, 60(1): 22-26.
    
    [6] Chapon F, Latour P, Diraison P , et al. Axonal phenotype of Charcot- Marie-Tooth disease associated with a mutation in the myelin protein zero gene. J Neurol Neurosurg Psychiatry, 1999, 66(6): 779-782.
    [7] Bellone E, Di Maria E, Soriani S, et al. A novel mutation (D305V) in the early growth response 2 gene is associated with severe Charcot-Marie-Tooth type 1 disease. Hum Mutat, 1999,14(4): 353-354.
    [8] Hayasaka K, Takada G, Ionasescu VV. Mutation of the myelin PO gene in Charcot-Marie-Tooth neuropathy type 1B. Hum Mol Genet, 1993, 2(9): 1369- 1372.
    [9] Rogers T, Chandler D, Angelicheva D, et al. A novel locus for autosomal recessive peripheral neuropathy in the EGR2 region on 10q23. Am J Hum Genet, 2000, 67(3): 664-671.
    [10] Kwon JM, Elliot JL, Yee W, et al. Assignment of a second locus for Charcot-Marie-Tooth type II locus to chromosome 3q. Am J HumGenet. 1995, 57(4): 853-858.
    [11] Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1B. Cell, 2001, 105(5):587-597.
    [12] Sambuughin N , Sivakumar K, Selenge B , et al. Autosomal dominant distal spinal muscular atrophy type V (dSMA2V) and Charcot-Marie-Tooth disease type 2D (CMT2D) segregate within a single large kindred and map to a refined region on chromosome 7p15. JNeurol Sci, 1998,161(1): 23-28.
    [13] Takashima H, Nakagawa M, Suehara M, et al. Gene for hereditary motor and sensory neuropathy (proximal dominant form) mapped to 3q13. 1. Neuromuscul Disord, 1999, 9(6-7): 368-371.
    [14] Ionasescu V, Searby C, Sheffield VC, et al. Autosomal dominant Charcot-Marie- Tooth axonal neuropathy mapped on chromosome 7p (CMT2D). Hum Mol Genet, 1996, 5(9):1373- 1375
    
    [15] De Jonghe P, Mersivanova I, Nelis E, et al. Further evidence that neurofilament light chain gene mutations can cause Charcot-Marie-Tooth disease type 2E. Ann Neural, 2001,49(2): 245-249.
    [16] Berger P, Young P, Suter U. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics, 2002, 4(1): 1-15.
    [17] Kalaydjieva L, Gresham D, Gooding R, et al. N-myc downstream regulated gene 1 is mutated in hereditary motor and sensory neuropathy Lorn. Am J Hum Genet, 2000, 67(1): 47-58.
    [18] Jordanova A, De Jonghe P, Boerkoel CF, et al. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 2003, 126(3): 590-597.
    [19] Jordanova A, Irobi J, Thomas FP, et al. Disrupted function and axonal distribution of mutant lyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genet, 2006, 38: 197-202.
    [20] Nelis E, Berciano J, Verpoorten N, et al. Autosomal dominant axonal harcot-Marie-Tooth disease type 2 (CMT2G) maps to chromosome 12q12-q13. 3. J Med Genet, 2004,41(3): 193-197.
    
    [21] Tang BS, Luo W, Xia K, et al. A new locus for autosomal dominant Charcot-Marie-Tooth disease type 2 (CMT2L) maps to chromosome 12q24. Hum Genet. 2004,114(6):527-533.
    [22] Tang BS, Zhao GH, Luo W, et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet. 2005,116(3):222-224.
    [23] Hahn AF , Brown WF , Koopman WJ , et al. X-linked dominant hereditary motor and sensory neuropathy. Brain, 1990, 113(5):1511-1525.
    [24] Nelis E, Erdem S, Van Den Bergh PY, et al. Mutations in GDAP1: autosomal recessive CMT with demyelination and axonopathy. Neurology, 2002, 59(12): 1865-1872.
    [25] Baxter RV, Othmane BK, Rochelle JM, et al. Ganglioside induced differentiation associated protein1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet, 2002, 30(1): 21-22.
    [26] Guilbot A, Williams A, Ravise N, et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum Mol Genet, 2001,10(4): 415-421.
    [27] Georgiou DM, Zidar J, Korosec M, et al. A novel NF-L mutation Pro22Seris associated with CMT2 in a large Slovenian family. Neurogenetics, 2002, 4(2): 93-96.
    [28] Bolino A, Brancolini V, Bono F, et al. Localization of a gene responsible for autosomal recessive demyelinating neuropathy with focally folded myelin sheaths to chromosome 11q23 by homozygosity mapping and haplotype sharing. Hum Mol Genet, 1996, 5(7): 1051-1054.
    [29] Kalaydjieva L, Nikolova A, Turnev I, et al. Hereditary motor and sensory neuropathy LOM, a novel demyelinating neuropathy associated with deafness in gypsies. Clinical, electrophysiological and nerve biopsy findings. Brain, 1998,121(pt 3): 399-408.
    [30] Bolino A, Muglia M, Conforti F et al. Charcot-Marie- Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nature Genet, 2000, 25(1): 17-19.
    [31] Zuchner S, Noureddine M, Kennerson M, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie- Tooth disease. Nature Genet, 2005, 37(3): 289-294.
    [32] Boerkoel CF, Takashima H, Stankiewicz P et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Hum Genet, 2001, 68(2): 325-333.
    [33] Antonellis A, Ellsworth, RE, Sambuughin N et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Hum Genet, 2003, 72(5): 1293-1295.
    [34] Stock AD, Spallone PA, Dennis TR et al. Heat shock protein 27 gene chromosomal and molecular location and relationship to Williams syndrome. Med Genet, 2003,120(3): 320-325.
    [35] De Sandre - Giovannoli A, Chaouch M, Kozlov S, et al: Homozygous defects in LMNA, encoding lamin A/ C nuclear - envelope proteins, cause autosomal recessive axonal neuropathy in human ( Charcot-Marie-Tooth disorder type 2) and mouse. Hum Genet, 2002, 70(3): 726-736.
    [36] Zuchner S, Mersiyanova IV, Muglia M et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot - Marie - Tooth neuropathy type 2A. Nature Genet, 2004, 36(5): 449-451.
    [37] Lupski JR, Montes de Oca-Luna R, Slaugenhaupt S, et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell, 1991, 66(2): 219-232.
    [38] Taylor V, Welcher AA, Program AE, et al. Epithelial membrane protein 21, peripheral myelin protein 22, and lens membrane protein 20 define a novel gene family. J Biol Chem, 1995, 270(48): 28824-28833.
    [39] Baechner D, Liehr T, Hameister H, et al. Widespread expression of the peripheral myelin protein22 gene (PMP22) in neural and nonneural tissues during murine development. J Neurosci Res, 1995,42(6): 733-741.
    [40] Parmantier E , Cabon F , Braun C , et al. Peripheral myelin protein 22 is expressed in rat and mouse brain and spinal cord motoneurons, Eur J Neurosci, 1995,7(5): 1080-1088.
    [41] Hayasaka K, Himoro M, Sawaishi Y, et al. De novo mutation of the myelin P(0) gene in Dejerine-Sottas disease (hereditary motor and sensory neuropathy type III). Nat Genet, 1993, 5(3): 266-268.
    [42] Auer-Grumbach M, Strasser-Fuchs S, Robl T, et al. Late onset Charcot-Marie-Tooth 2 syndrome caused by two novel mutations in the MPZ gene. Neurology, 2003, 63(1): 1435-1437.
    [43] Seeman P, Mazanec R, Huehne K, et al. Hearing loss as the first feature of late-onset axonal CMT disease due to a novel PO mutation. Neurology, 2004, 63(4): 733-735.
    [44] Myokai F, Takashiba S, Lebo R, et al. A novel lipopolysaceharide-induced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Nat Acad Sci USA, 1999, 96(8): 4518-4523.
    [45] Agarajan R , Svaren J , Le N , et al. EGR2 mutations in inherited neuropathies dominant negatively inhibit myelin gene expression. Neuron, 2001, 30(2): 355-368.
    [46] Warner LE, Mancias P, Butler IJ, et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet, 1998, 18(4): 382-384.
    [47] Mersiyanova IV, Perepelov AV, Polyakov AV, et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet, 2000, 67(1): 37-46.
    [48] Raul Perez-Olle, Conrad L. Leung and Ronald K. H, Liem. Effects of Charcot-Marie-Tooth-linked mutations of the neurofilament light subunit on intermediate filament formation. J Cell Sci, 2002,115(24): 4937-4946.
    [49] Cuesta A, Pedrola L, Sevilla T, et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet, 2002, 30(1): 22-25.
    [50] Boerkoel CF, Takashima H , Nakagawa M. CMT4A : identification of a hispanic GDAP1 founder mutation. Ann Neurol, 2003, 53(3): 400-405.
    
    [51] Previtali SC, Zerega B, Sherman DL, et al. Myotubularin - related protein Phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Mol Genet, 2003, 12(14): 1713-1723.
    [52] Bolino A, Bolis A, Previtali SC, et al. Disruption of Mtmr2 produces CMT4B1 - like neuropathy with myelin outfolding and impaired spermatogenesis. Cell Biol, 2004,167(4): 711-721.
    [53] Senderek J, Bergmann C, Weber S, et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/llpl5. Hum Mol Genet, 2003,12(3): 349-356.
    [54] Azzedine H, Bolino A, Taieb T. et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet, 2003, 72(5): 1141-1153.
    [55] Senderek J, Bergmann C, Stendel C, et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am J Hum Genet, 2003, 73(5): 1106-1119.
    [56] Hunter M, Bernard R, Freitas E, et al. Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth disease. Hum Mutat. 2003, 22(2): 129-135.
    [57] Boerkoel CF, Takashima H, Stankiewicz P, et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet, 2001, 68(2): 325-333.
    [58] Kim HJ,Sohn KM,Shy ME,et al. Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (CMT5X). Am J Hum Genet. 2007, 81(3): 552-558.
    [59] Irobi J, Van Impe K, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet. 2004, 36(6):597-601.
    [60] Sun Y, MacRae TH. The small heat shock proteins and their role in human disease. FEBS J, 2005,272(11):2613-2627.
    [61] Arrigo A, Simon S, Gibert B, et al. Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett, 2007, 581(19):3665-3674.
    [62] Launay N, Goudeau B, Kato K, et al. Cell signaling pathways to alphaB-crystallin following stresses of the cytoskeleton. Exp Cell Res. 2006, 312(18):3570-3584.
    [63] Theriault JR, Lambert H, Chavez-Zobel, et al. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem. 2004, 279(22):23463-23471.
    [64] Sereda MW, Griffiths I, Puhlhofer A, et al. A transgenic rat model of Charcot-Marie-Tooth disease. Neuron, 1996,16(5): 1049-1060.
    [65] Suter U, Welcher AA, Ozcelik T, et al. Trembler mouse carries a point mutation in a myelin gene. Nature, 1992, 356(6366):241-244.
    [66] Huxley C, Passage E, Manson A, et al. Construction of a mouse model of Charcot-Marie-Tooth disease type 1A by pronuclear injection of human YAC DNA. Hum Mol Genet, 1996, 5(5):563-569.
    
    [67] Huxley C, Passage E, Robertson AM, et al. Correlation between varying levels of PMP22 expression and the degree of demyelination and reduction in nerve conduction velocity in transgenic mice. Hum Mol Genet, 1998, 7(3):449-458.
    [68] Magyar JP, Martini R, Ruelicke T, et al. Impaired differentiation of Schwann cells in transgenic mice with increased PMP22 gene dosage. J Neurosci, 1996, 16(17):5351-5360.
    [69] Robertson AM, Perea J, McGuigan A, et al. Comparison of a new pmp22 transgenic mouse line with other mouse models and human patients with CMT1A. J Anat, 2002,200(4):377-390.
    [70] Suter U, Moskow JJ, Weicher AA, et al. A leucine-to-proline mutation in the putative first transmembrane domain of the 22-kDa peripheral myelin protein in the trembler-J mouse. Proc Natl Acad Sci USA, 1992, 89(10):4382-4386.
    [71] Suh JG, Ichihara N, Saigoh K, et al. An in-frame deletion in peripheral myelin protein-22 gene causes hypomyelination and cell death of the Schwann cells in the new Trembler mutant mice. Neuroscience, 1997, 79(3):735-744.
    [72] Isaacs AM, Davies KE, Hunter AJ, et al. Identification of two new Pmp22 mouse mutants using large-scale mutagenesis and a novel rapid mapping strategy. Hum Mol Genet, 2000, 9(12):1865-1871.
    [73] Adlkofer K, Martini R, Aguzzi A, et al. Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat Genet, 1995, 1(3):274-280.
    [74] Adlkofer K, Frei R, Neuberg DH, et al. Heterozygous peripheral myelin protein 22-deficient mice are affected by a progressive demyelinating tomaculous neuropathy. J Neurosci, 1997,17(12):4662-4671.
    [75] Giese KP, Martini R, Lemke G, et al. Mouse PO gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell, 1992, 71(4):565-576.
    [76] Wrabetz L, Feltri ML, Quattrini A, et al. P(0) glycoprotein overexpression causes congenital hypomyelination of peripheral nerves. J Cell Biol, 2000,148(5):1021-1034.
    [77] Runker AE, Kobsar I, Fink T, et al. Pathology of a mouse mutation in peripheral myelin protein PO is characteristic of a severe and early onset form of human Charcot-Marie-Tooth type 1B disorder. J Cell Biol, 2004, 165(4):565-573.
    [78] Wrabetz L, D'Antonio M, Pennuto M, et al. Different intracellular pathomechanisms produce diverse myelin protein zero neuropathies in transgenic mice. J Neurosci, 2006, 26(8):2358-2368.
    [79] Anzini P, Neuberg DH, Schachner M, et al. Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein Connexin 32. J Neurosci, 1997,17(12):4545-4551.
    [80] Scherer SS, Bone LJ, Deschenes SM, et al. The role of the gap junction protein connexin32 in the pathogenesis of X-linked Charcot-Marie-Tooth disease. Novartis Found Symp, 1999, 219:175-185.
    [81] Schneider-Maunoury S, Topilko P, Seitandou T, et al. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell, 1993,75(6):1199-1214.
    [82] Nagarajan R, Le N, Mahoney H, et al. Deciphering peripheral nerve myelination by using Schwann cell expression profiling. Proc Natl Acad Sci USA, 2002, 99(13):8998-9003.
    [83] Gillespie CS, Sherman DL, Fleetwood-Walker SM, et al. Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron, 2000,26(2):523-531.
    [84] Bolino A, Bolis A, Previtali SC, et al. Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol, 2004, 167(4):711-721.
    
    [85] Bonneick S, Boentert M, Berger P, et al. An animal model for Charcot- Marie-Tooth disease type 4B1. Hum Mol Genet 2005,14(23):3685-3695.
    [86] Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIFlBbeta. Cell, 2001,105(5):587-597.
    [87] Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 1994,13(4):975-988.
    [88] De Sandre-Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet, 2002, 70(3):726-736.
    [89] Miyazaki J, Takaki S, Araki K, et al. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5.Gene. 1989, 79(2):269-277.
    [90] Sereda MW, Meyer zu Horste G, Suter U, et al. Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat Med, 2003, 9(12): 1533-1537.
    [91]Passage E,Norreel JC,Noack-Fraissignes P,et al.Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease.Nat Med,2004,10(4):396-401.
    [92]Zhu Q,Couillard-Despres S,Julien JP.Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments.Exp Neurol,1997,148:299-316.
    [93]Hino H,Araki K,Uyama E,et al.Myopathy phenotype in transgenic mice expressing mutated PABPN1 as a model of oculopharyngeal muscular dystrophy.Hum Mol Genet.2004,13(2):181-190.
    [94]Galbiati F,Volonte D,Chu JB,et al.Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype.Proc Natl Acad Sci USA.2000,97(17):9689-9694.
    [95]Sharp P,Krishnan M,Pullar O,et al.Heat shock protein 27 rescues motor neurons following nerve injury and preserves muscle function.Exp Neurol.2006,198(2):511-518.
    [96]张如旭,唐北沙,资晓宏,等.pEGFPN1-wtHSP22和pEGFPN1-mtHSP22载体的构建及其在人神经母细胞瘤细胞中的表达,中华医学杂志,2006,86(25):1780-1782.
    [97]Wilson IA,Niman HL,Houghten RA,et al.The structure of an antigenic determinant in a protein.Cell.1984,37(3):767-778.
    [98]Kappe G,Franck E,Verschuure P,et al.The human genome encodes 10alpha-crystallin-related small heat shock proteins:HspB1-10.Cell Stress Chaperones.2003,8(1):53-61.
    [99]Parcellier A,Schmitt E,Gurbuxani S,et al.HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation.Mol Cell Biol.2003,23(16):5790-5802.
    [100]Lin DI,Barbash O,Kumar KG;et al.Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin)complex.Mol Cell.2006,24(3):355-66.
    [101]Arrigo AP.In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem. 2005, 94(2):241-246.
    [102] Arrigo AP. Hsp27: novel regulator of intracellular redox state. IUBMB Life. 2001,52(6):303-307.
    [103] Yan LJ, Christians ES, Liu L, et al. Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J. 2002, 21(19):5164-72.
    [104]Wilhelmus MM, Boelens WC, Otte-Holler I,et al. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol. 2006,111(2):139-149.
    [105] Outeiro TF, Klucken J, Strathearn KE, et al. Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun. 2006, 351(3):631-638.
    [106]Zcurlidou A. Gidalevitz T. Kristiansen M. et al. Hsp27 overexpression in the R6/2 mouse model of Huntington's disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet. 2007, 16(9):1078-1090.
    [107] Sharp PS, Akbar MT, Bouri S, et al. Protective effects of heat shock protein 27 in a model of ALS occur in the early stages of disease progression. Neurobiol Dis. 2008, 30(1):42-55.
    [108] Wang J, Martin E, Gonzales V, et al. Differential regulation of small heat shock proteins in transgenic mouse models of neurodegenerative diseases. Neurobiol Aging. 2008, 29(4):586-597.
    [1]Skre H.Genetic and clinical aspects of Charcot-Marie-Tooth's disease.Clin Genet,1974,6(2):98-118.
    [2]Harding AE,Thomas PK.The clinical features of hereditary motor and sensory neuropathy types Ⅰ and Ⅱ.Brain,1980,103(2):259-280.
    [3]Suter U,Scherer SS.Disease mechanisms in inherited neuropathies.Nat Rev Neurosci,2003,4(9):714-726.
    [4]Davis CJ,Bradley WG,Madrid R.The peroneal muscular atrophy syndrome:clinical,genetic,electrophysiological and nerve biopsy studies.Ⅰ.Clinical,genetic and electrophysiologieal findings and classification.J Hum Genet,1978, 26(4): 311-349.
    [5] Matsunami N, Smith B, Ballard L, et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p11.2 associated with Charcot-Marie-Tooth 1A. Nat Genet, 1992,1(3): 176-179.
    [6] Street VA, Bennett CL, Goldy JD, et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology, 2003, 60(1): 22-26.
    [7] Chapon F, Latour P, Diraison P , et al. Axonal phenotype of Charcot-Marie-Tooth disease associated with a mutation in the myelin protein zero gene. J Neurol Neurosurg Psychiatry, 1999, 66(6): 779-782.
    [8] Bellone E, Di Maria E, Soriani S, et al. A novel mutation (D305V) in the early growth response 2 gene is associated with severe Charcot-Marie-Tooth type 1 disease. Hum Mutat, 1999, 14(4): 353-354.
    [9] Hayasaka K, Takada G, Ionasescu VV. Mutation of the myelin PO gene in Charcot-Marie-Tooth neuropathy type 1B. Hum Mol Genet, 1993, 2(9):1369- 1372.
    [10] Rogers T, Chandler D, Angelicheva D, et al. A novel locus for autosomal recessive peripheral neuropathy in the EGR2 region on 10q23. Am J Hum Genet, 2000, 67(3): 664-671.
    [11] Kwon JM, Elliot JL, Yee W, et al. Assignment of a second locus for Charcot-Marie-Tooth type II locus to chromosome 3q. Am J HumGenet. 1995, 57(4): 853-858.
    [12] Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1B. Cell, 2001,105(5):587-597.
    [13] Sambuughin N , Sivakumar K, Selenge B , et al. Autosomal dominant distalspinal muscular atrophy type V (dSMA2V) and Charcot-Marie-Tooth disease type 2D (CMT2D) segregate within a single large kindred and map to a refined region on chromosome 7p15. J Neurol Sci, 1998,161(1): 23-28.
    [14] Takashima H, Nakagawa M, Suehara M, et al. Gene for hereditary motor and sensory neuropathy (proximal dominant form) mapped to 3q13. 1. Neuromuscul Disord, 1999, 9(6-7): 368-371.
    [15] Ionasescu V, Searby C, Sheffield VC, et al. Autosomal dominant Charcot-Marie- Tooth axonal neuropathy mapped on chromosome 7p (CMT2D). Hum Mol Genet, 1996, 5(9): 1373 - 1375.
    
    [16] De Jonghe P, Mersivanova I, Nelis E, et al. Further evidence that neurofilament light chain gene mutations can cause Charcot-Marie-Tooth disease type 2E. Ann Neurol, 2001,49(2): 245-249.
    [17] Berger P, Young P, Suter U. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics, 2002,4(1): 1-15.
    
    
    [18] Kalaydjieva L, Gresham D, Gooding R, et al. N-myc downstream regulated gene 1 is mutated in hereditary motor and sensory neuropathy Lom. Am J Hum Genet, 2000, 67(1): 47-58.
    
    [19] Jordanova A, De Jonghe P, Boerkoel CF, et al. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain. 2003, 126(3): 590-597.
    [20] Jordanova A, Irobi J, Thomas FP, et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genet, 2006, 38: 197-202.
    [21] Nelis E, Berciano J, Verpoorten N, et al. Autosomal dominant axonal Charcot-Marie-Tooth disease type 2 (CMT2G) maps to chromosome 12ql2-ql3. 3. J Med Genet, 2004,41(3): 193-197.
    [22] Hahn AF , Brown WF , Koopman WJ , et al. X-linked dominant hereditary motor and sensory neuropathy. Brain, 1990,113(5):1511-1525.
    [23] Nelis E, Erdem S, Van Den Bergh PY, et al. Mutations in GDAP1: autosomal recessive CMT with demyelination and axonopathy. Neurology, 2002, 59(12): 1865-1872.
    [24] Baxter RV, Othmane BK, Rochelle JM, et al. Ganglioside induced differentiation associated protein 1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet, 2002, 30(1): 21-22.
    [25] Guilbot A, Williams A, Ravise N, et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum Mol Genet, 2001, 10(4): 415-421.
    [26] Georgiou DM, Zidar J, Korosec M, et al. A novel NF-L mutation Pro22Seris associated with CMT2 in a large Slovenian family. Neurogenetics, 2002, 4(2): 93-96.
    [27] Bolino A, Brancolini V, Bono F, et al. Localization of a gene responsible for autosomal recessive demyelinating neuropathy with focally folded myelin heaths to chromosome 11q23 by homozygosity mapping and haplotype sharing. Hum Mol Genet, 1996, 5(7): 1051-1054.
    [28] Kalaydjieva L, Nikolova A, Turnev I, et al. Hereditary motor and sensory neuropathy LOM, a novel demyelinating neuropathy associated with deafness in gypsies. Clinical, electrophysiological and nerve biopsy findings. Brain, 1998,121(pt 3): 399-408.
    [29] Bolino A, Muglia M, Conforti F et al. Charcot-Marie- Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nature Genet, 2000, 25(1): 17-19.
    [30] Zuchner S, Noureddine M, Kennerson M, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie- Tooth disease. Nature Genet, 2005, 37(3): 289-294.
    [31] Boerkoel CF, Takashima H, Stankiewicz P et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Hum Genet, 2001, 68(2): 325-333.
    [32] Antonellis A, Ellsworth, RE, Sambuughin N et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Hum Genet, 2003, 72(5): 1293-1295.
    [33] Stock AD, Spallone PA, Dennis TR et al. Heat shock protein 27 gene chromosomal and molecular location and relationship to Williams syndrome. Med Genet, 2003, 120(3): 320-325.
    [34] De Sandre - Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/ C nuclear - envelope proteins, cause autosomal recessive axonal neuropathy in human ( Charcot-Marie-Tooth disorder type 2) and mouse. Hum Genet, 2002, 70(3): 726-736.
    [35] Zuchner S, Mersiyanova IV, Muglia M et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot - Marie - Tooth neuropathy type 2A. Nature Genet, 2004, 36(5): 449-451.
    [36] Lupski JR, Montes de Oca-Luna R, Slaugenhaupt S, et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell, 1991, 66(2): 219-232.
    [37] Taylor V, Welcher AA, Program AE, et al. Epithelial membrane protein 21, peripheral myelin protein 22, and lens membrane protein 20 define a novel gene family. J Biol Chem, 1995, 270(48): 28824-28833.
    [38] Baechner D, Liehr T, Hameister H, et al. Widespread expression of the peripheral myelin protein22 gene (PMP22) in neural and nonneural tissues during murine development. J Neurosci Res, 1995,42(6): 733-741.
    [39] Parmantier E , Cabon F , Braun C , et al. Peripheral myelin protein 22 is expressed in rat and mouse brain and spinal cord motoneurons, Eur J Neurosci, 1995, 7(5): 1080-1088.
    [40] Hayasaka K, Himoro M, Sawaishi Y, et al. De novo mutation of the myelin P(0) gene in Dejerine-Sottas disease (hereditary motor and sensory neuropathy type III). Nat Genet, 1993, 5(3): 266-268.
    [41] Auer-Grumbach M, Strasser-Fuchs S, Robl T, et al. Late onset Charcot-Marie-Tooth 2 syndrome caused by two novel mutations in the MPZ gene. Neurology, 2003, 63(1): 1435-1437.
    [42] Seeman P, Mazanec R, Huehne K, et al. Hearing loss as the first feature of late-onset axonal CMT disease due to a novel PO mutation. Neurology, 2004, 63(4): 733-735.
    [43] Myokai F, Takashiba S, Lebo R, et al. A novel lipopolysaceharide-induced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Nat Acad Sci USA, 1999,96(8): 4518-4523.
    [44] Agarajan R, Svaren J , Le N , et al. EGR2 mutations in inherited neuropathies dominant negatively inhibit myelin gene expression. Neuron, 2001, 30(2): 355-368.
    [45] Warner LE, Mancias P, Butler IJ, et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet, 1998, 18(4): 382-384.
    [46] Mersiyanova IV, Perepelov AV, Polyakov AV, et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet, 2000, 67(1): 37-46.
    [47] Raul Perez-Olle, Conrad L. Leung and Ronald K. H, Liem. Effects of Charcot-Marie-Tooth-linked mutations of the neurofilament light subunit on intermediate filament formation. J Cell Sci, 2002,115(24): 4937-4946.
    [48] Cuesta A, Pedrola L, Sevilla T, et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet, 2002,30(1): 22-25.
    [49] Boerkoel CF, Takashima H , Nakagawa M. CMT4A : identification of a hispanic GDAP1 founder mutation. Ann Neurol, 2003, 53(3): 400-405.
    [50] Previtali SC, Zerega B, Sherman DL, et al. Myotubularin - related protein Phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Mol Genet, 2003, 12(14): 1713-1723.
    [51] Bolino A, Bolis A, Previtali SC, et al. Disruption of Mtmr2 produces CMT4B1 - like neuropathy with myelin outfolding and impaired spermatogenesis. Cell Biol, 2004, 167(4): 711-721.
    [52] Senderek J, Bergmann C, Weber S, et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/llpl5. Hum Mol Genet, 2003, 12(3): 349-356.
    [53] Azzedine H, Bolino A, Taieb T. et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet, 2003, 72(5): 1141-1153.
    [54] Senderek J, Bergmann C, Stendel C, et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am J Hum Genet, 2003, 73(5): 1106-1119.
    [55] Hunter M, Bernard R, Freitas E, et al. Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth disease. Hum Mutat. 2003,22(2): 129-135.
    [56] Boerkoel CF, Takashima H, Stankiewicz P, et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet, 2001, 68(2): 325-333.
    [57] Kim HJ,Sohn KM,Shy ME,et al. Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (CMT5X). Am J Hum Genet. 2007, 81(3): 552-558.
    [58] Martini R. Zielasek J. Toyka KV. et al. Protein zero (PO)-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nat Genet, 1995, 11(3):281-286.
    [59] Sereda MW, Griffiths I, Puhlhofer A, et al. A transgenic rat model of Charcot-Marie-Tooth disease. Neuron, 1996,16(5):1049-1060.
    [60] Suter U, Welcher AA, Ozcelik T, et al. Trembler mouse carries a point mutation in a myelin gene. Nature, 1992, 356(6366):241-244.
    [61] Huxley C, Passage E, Manson A, et al. Construction of a mouse model of Charcot-Marie-Tooth disease type 1A by pronuclear injection of human YAC DNA. Hum Mol Genet, 1996, 5(5):563-569.
    [62] Huxley C, Passage E, Robertson AM, et al. Correlation between varying levels of PMP22 expression and the degree of demyelination and reduction in nerve conduction velocity in transgenic mice. Hum Mol Genet, 1998, 7(3):449-458.
    [63] Magyar JP, Martini R, Ruelicke T, et al. Impaired differentiation of Schwann cells in transgenic mice with increased PMP22 gene dosage. J Neurosci, 1996, 16(17):5351-5360.
    [64] Robertson AM, Perea J, McGuigan A, et al. Comparison of a new pmp22 transgenic mouse line with other mouse models and human patients with CMT1A. J Anat, 2002,200(4):377-390.
    [65] Suter U, Moskow JJ, Welcher AA, et al. A leucine-to-proline mutation in the putative first transmembrane domain of the 22-kDa peripheral myelin protein in the trembler-J mouse. Proc Natl Acad Sci USA, 1992, 89(10):4382-4386.
    [66] Suh JG, Ichihara N, Saigoh K, et al. An in-frame deletion in peripheral myelin protein-22 gene causes hypomyelination and cell death of the Schwann cells in the new Trembler mutant mice. Neuroscience, 1997, 79(3):735-744.
    [67] Isaacs AM, Davies KE, Hunter AJ, et al. Identification of two new Pmp22 mouse mutants using large-scale mutagenesis and a novel rapid mapping strategy. Hum Mol Genet, 2000, 9(12):1865-1871.
    [68] Adlkofer K, Martini R, Aguzzi A, et al. Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat Genet, 1995, 1(3):274-280.
    [69] Adlkofer K, Frei R, Neuberg DH, et al. Heterozygous peripheral myelin protein 22-deficient mice are affected by a progressive demyelinating tomaculous neuropathy. J Neurosci, 1997,17(12):4662-4671.
    [70] Giese KP, Martini R, Lemke G, et al. Mouse PO gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell, 1992, 71(4):565-576.
    [71] Wrabetz L, Feltri ML, Quattrini A, et al. P(0) glycoprotein overexpression causes congenital hypomyelination of peripheral nerves. J Cell Biol, 2000,148(5):1021-1034.
    [72] Runker AE, Kobsar I, Fink T, et al. Pathology of a mouse mutation in peripheral myelin protein PO is characteristic of a severe and early onset form of human Charcot-Marie-Tooth type 1B disorder. J Cell Biol, 2004,165(4):565-573.
    [73] Wrabetz L, D'Antonio M, Pennuto M, et al. Different intracellular pathomechanisms produce diverse myelin protein zero neuropathies in transgenic mice. J Neurosci, 2006, 26(8) :2358-2368.
    [74] Anzini P, Neuberg DH, Schachner M, et al. Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein Connexin 32. J Neurosci, 1997, 17(12):4545-4551.
    [75] Scherer SS, Bone LJ, Deschenes SM, et al. The role of the gap junction protein connexin32 in the pathogenesis of X-linked Charcot-Marie-Tooth disease. Novartis Found Symp, 1999, 219:175-185.
    [76] Schneider-Maunoury S, Topilko P, Seitandou T, et al. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell, 1993,75(6):1199-1214.
    [77] Nagarajan R, Le N, Mahoney H, et al. Deciphering peripheral nerve myelination by using Schwann cell expression profiling. Proc Natl Acad Sci USA, 2002, 99(13):8998-9003.
    [78] Gillespie CS, Sherman DL, Fleetwood-Walker SM, et al. Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron, 2000,26(2):523-531.
    [79] Doline A. Bolis A. Previtali SC, et al. Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol, 2004,167(4):711-721.
    
    [80] Bonneick S, Boentert M, Berger P, et al. An animal model for Charcot- Marie-Tooth disease type 4B1. Hum Mol Genet, 2005,14(23):3685-3695.
    [81] Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIFlBbeta. Cell, 2001,105(5):587-597.
    [82] Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 1994,13(4):975-988.
    [83] De Sandre-Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet, 2002, 70(3):726-736.
    [84] Raeymaekers P, Immerman V, De Jonghe P, et al. Localization of the mutation in an extended family with Charcot-Marie-Tooth neuropathy (HMSN I). Am J Hum Genet, 1989,45(6): 953-958.
    [85] Sereda MW, Meyer zu Horste G, Suter U, et al. Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat Med, 2003, 9(12):1533-1537.
    [86] Grandis M, Leandri M, Vigo T, et al. Early abnormalities in sciatic nerve function and structure in a rat model of Charcot-Marie-Tooth type 1A disease. Exp Neural, 2004,190(1):213-223.
    
    [87] Koenig HL, Schumacher M, Ferzaz B, et al. Progesterone synthesis and myelin formation by Schwann cells. Science, 1995, 268(5216):1500-1503.
    [88] Schumacher M, Guennoun R, Mercier G, et al. Progesterone synthesis and myelin formation in peripheral nerves. Brain Res Brain Res Rev, 2001, 37(1-3):343-359.
    [89] Desarnaud F, Do Thi AN, Brown AM, et al. Progesterone stimulates the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. J Neurochem, 1998, 71(4):1765-1768.
    [90] Melcangi RC, Magnaghi V, Cavarretta I, et al. Progesterone derivatives are able to influence peripheral myelin protein 22 and PO gene expression:possible mechanisms of action. J Neurosci Res, 1999, 56(4):349-357.
    [91] Podratz JL, Rodriguez E, Windebank AJ. Role of the extracellular matrix in myelination of peripheral nerve. Glia, 2001, 35(1):35-40.
    [92] Podratz JL, Rodriguez EH, Windebank AJ. Antioxidants are necessary for myelination of dorsal root ganglion neurons, in vitro. Glia, 2004,45(1):54-58.
    [93] Passage E, Norreel JC, Noack-Fraissignes P, et al. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med, 2004,10(4):396-401.
    [94] Robertson A, Huxley C. Transgenic models of inherited neuropathy. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy. 4th ed. vol. 2. Amsterdam:Elsevier Saunders; 2005. pp. 1561-1583.A careful review of animal models of inherited neuropathies caused by mutations in myelin proteins.
    [95] Wrabetz L, Feltri ML, Suter U. Models of Charcot-Marie-Tooth disease. In:Lazzarini RA, editor. Myelin biology and disorders. Vol. 2. Amsterdam:Elsevier Academy; 2004. pp. 1143-1168.
    [96] Niemann S, Sereda MW, Suter U, et al. Uncoupling of myelin assembly and Schwann cell differentiation by transgenic overexpression of peripheral myelin protein 22. J Neurosci, 2000, 20(11):4120-4128.
    [97] Robaglia-Schlupp A, Pizant J, Norreel JC, et al. PMP22 overexpression causes dysmyelination in mice. Brain, 2002, 125(10):2213-2221.
    [98] Roa BB, Dyck PJ, Marks HG, et al. Dejerine-Sottas syndrome associated with point mutation in the peripheral myelin protein 22 (PMP22) gene. Nat Genet, 1993, 5(3):269-273.
    [99] Szigeti K, Garcia CA, Lupski JR. Charcot-Marie-Tooth disease and related hereditary polyneuropathies: molecular diagnostics determine aspects of medical management. Genet Med, 2006, 8(2):86-92.
    [100] Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromol Med 2006, 8(1-2):217-242.
    [101] Chance PF, Alderson MK, Leppig KA, et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell, 1993, 72(1):143-151.
    [102] Bird TD, Ott J, Giblett ER. Evidence for linkage of Charcot-Marie-Tooth neuropathy to the Duffy locus on chromosome 1. Am J Hum Genet, 1982, 34(3): 388-394.
    [103] Oakey RJ, Watson ML, Seldin MF. Construction of a physical map on mouse and human chromosome 1: comparison of 13 Mb of mouse and 11 Mb of human DNA. Hum Mol Genet, 1992,1(8): 613-620.
    [104] Marrosu MG, Vaccargiu S, Marrosu G, et al. Charcot-Marie-Tooth disease type 2 associated with mutation of the myelin protein zero gene. Neurology, 1998, 50(5): 1397-1401.
    [105] Mastaglia FL, Nowak KJ, Stell R, et al. Novel mutation in the myelin protein zero gene in a family with intermediate hereditary motor and sensory neuropathy. J Neurol Neurosurg Psychiatry, 1999, 67(2): 174-179.
    [106] Warner LE, Hilz MJ, Appel SH, et al. Clinical phenotypes of different MPZ (PO) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron, 1996, 17(3): 451-460.
    [107] Pareyson D, Menichella D, Botti S, et al. Heterozygous null mutation in the PO gene associated with mild Charcot-Marie-Tooth disease. Ann N Y Acad Sci, 1999; 883:477-480.
    [108] Gal, A.; Mucke, J.; Theile, H.et al. X-linked dominant Charcot-Marie-Tooth disease: suggestion of linkage with a cloned DNA sequence from the proximal Xq. Hum Genet, 1985, 70(1): 38-42.
    [109]Bergoffen J, Scherer SS, Wang S, et al. Connexin mutations in X-linked Charcot- Marie-Tooth disease. Science, 1993, 262(5142): 2039-2042.
    [110]Ressot C, GomesD, Dautigny A, et al. Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct behaviors: loss of function and altered gating p roperties. J Neurosci, 1998, 18(11): 4063-4075.
    [111] Abrams CK, Bennett MVL, Verselis VK, et al. Voltage opens unopposed gap junction hemichannels formed by a Connexin 32 mutant asso2ciated with X21inked Charcot2Marie2Tooth disease. Proc Nat Acad Sci USA, 2002, 99(6): 3980-3984.
    [112] Nelles E, Butzler C, Jung D, et al. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc Natl Acad Sci USA, 1996, 93(18):9565-9570.
    [113] Scherer SS, Xu YT, Nelles E, et al. Connexin32-null mice develop demyelinating peripheral neuropathy. Glia, 1998, 24(1):8-20.
    [114] Scherer SS, Xu YT, Messing A, et al. Transgenic expression of human connexin32 in myelinating Schwann cells prevents demyelination in connexin32- null mice. J Neurosci, 2005, 25(6): 1550-1559.
    [115] Joseph LJ, Le Beau MM, Jamieson GA, et al. Molecular cloning, sequencing, and mapping of EGR2, a human early growth response gene encoding a protein with 'zinc-binding finger' structure. Proc Nat Acad Sci USA, 1988, 85(19): 7164-7168.
    [116] Warner L, Svaren J, Milbrandt J, et al. Functional consequences of mutations in the early growth response 2 gene (EGR2) correlate with severity of human myelinopathies. Hum Mol Genet, 1999, 8(7): 1245-1251.
    [117]Topilko P, Schneider-Maunoury S, Levi G, et al. Krox-20 controls myelination in the peripheral nervous system. Nature, 1994, 371(6500):796-799.
    [118]Delague V, Barcil C, Tuffery S, et al. Mapping of a new locus for autosomal recessive demyelinating Chartcot-Marie-Tooth disease to 19q13.1-13.3 in a large consangnineous Lebanese family: exclusion of MAG as a candidate gene. Am J Hum Genet, 2000, 67(1): 236-243.
    [119] Sherman DL, Fabrizi C, Gillespie CS, et al. Specific disruption of a Schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron, 2001, 30(3): 677-687.
    
    [120] Nellis E, Erderm S, Tan E, et al. A novel homozygous missense mutation in the myotubularin-related protein 2 gene associated with recessive Charcot-Marie-Tooth disease with irregularly folded myelin sheaths. Neuromuscul Disord, 2002, 12(9): 869-873.
    [121] Kim SA, Taylor GS, Torgersen KM, et al. Myotubularin and MTMR2, phosphatidylinositol 3-phosphatases mutated in myotubular myopathy and type 4B Charcot-Marie-Tooth disease. J Biol Chem, 2002,277(6): 4526-4531.
    [122]Berger P, Bonneick S, Willi S, et al. Loss of Phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum Mol Genet, 2002,11(13): 1569-1579.
    [123]Bolis A, Zordan P, Coviello S, et al. Myotubularin-related (MTMR) Phospholipid Phosphatase proteins in the peripheral nervous system. Mol Neurobiol. 2007, 35(3):308-316.
    [124] Othmane B, Middleton L, Loprest L, et al. Localization of a gene (CMT2A) for autosomal dominant Charcot-Marie-Tooth disease type 2 to chromosome 1p and evidence of genetic heterogeneity. Genomics, 1993, 17(2): 370-375.
    [125] Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: a novel regulatory mechanism altered in obesity. J Biol Chem, 2003,278(19): 17190-17197.
    [126] Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfnl and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol, 2003,160(2): 189-200.
    [127] Detmer SA, Vande Velde C, Cleveland DW, et al. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum Mol Genet, 2008, 17(3):367-375.
    [128]Couhouche A, Benomar A, Birouk N, et al. A locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 1q21.2-q21.3. Am J Hum Genet, 1999, 65(3): 722-727.
    [129] Muchir A, Bonne G, van der Kooi AJ, et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet, 2000, 9(9): 1453-1459.
    [130]Raffaele Di Barletta M, Ricci E, Galluzzi-G, et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet, 2000, 66(4): 1407-1412.
    [131] Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med, 1999, 341(23): 1715-1724.
    [132] Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet, 2000, 24(2): 153-156.
    [133] Novelli G, Muchir A, Sangiuolo F, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet, 2002, 71(2): 426-431.
    [134] Sullivan T, Escalante-Alcalde D, Bhatt H, et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol. 1999,147(5):913-920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700