帕金森病相关基因LRRK2蛋白的抗体制备、神经解剖学分布及亚细胞定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's Disease,PD)是一种最常见的神经退行性运动障碍疾病,该病的特征是依赖年龄的静止性震颤,肌肉强直,躯体麻痹,经多巴胺的前体左旋多巴(L-dopa)治疗后症状减轻。在年龄大于65岁的德国Bavarian人群中,PD的发病率为0.71%;在年龄大于50岁的新加坡人中,PD的发病率大约为0.30%。PD的病理学特征为黑质致密部多巴胺能神经元缺失,以及在剩余的多巴胺能神经元中出现泛素阳性的Lewy小体。迄今在染色体上已发现至少有九个位点与家族性PD相关,分别为PARK1-PARK9,PARK13,其中PARK1与PARK4为同一位点4q21。已克隆的PD相关基因有7个,其中α-synuclein、UCH-L1、LRRK2和Omi/HtrA2基因的突变可导致常染色体显性(autosomal dominant,AD)遗传PD,parkin、PINK1和DJ-1基因的突变则导致常染色体隐性(autosomal recessive,AR)PD。
     LRRK2基因有51个外显子,编码的蛋白多达2527个氨基酸,包含ANK、LRR、ROC、COR、Kinase和WD40等多个结构域。已经发现的PD相关突变在LRRK2的各个结构域中均有分布,尤以位于Kinase结构域的G2019S最为常见。LRRK2的分子量大约280KD,在脑和其它器官以及细胞系HEK293T中均可表达,功能尚不清楚。已有的研究表明,LRRK2R1441C、G2019S、I2020T等PD相关突变导致LRRK2激酶活性上升,细胞生活力下降,说明这些突变对细胞是有毒性的。而且,LRRK2参与调节神经元突起的形态建成,并在突触囊泡蛋白的极性分布中起重要的作用。
     Anti-LRRK2抗体是研究LRRK2功能重要的、必须的工具。通过DNAstar的Protean软件分析LRRK2的氨基酸序列,选择了三段长度在100个氨基酸左右、抗原性强、亲水性好的多肽片段,将其编码的核苷酸序列构建至原核表达载体pGEX-4T-2,原核表达和纯化得到了GST融合蛋白,然后免疫新西兰雄兔,获得了效价高、特异性好的anti-LRRK2兔多克隆抗体。抗体用途分析实验表明,该抗体可用于Western Blotting,免疫组织化学,免疫细胞染色等实验。
     利用自制的anti-LRRK2抗体,绘制出了LRRK2在小鼠脑中的分布图,发现LRRK2在鼠脑中是广泛表达的,但各神经解剖学部位间有重要的不同;Western Blotting的结果表明LRRK2在大鼠脑各部位均可表达;在HEK293细胞中LRRK2与线粒体标志物细胞色素C可以共定位。另外,序列比对的结果表明LRRK2与LRRK1的氨基酸序列是高度同源的。
Parkinson's disease (PD) is the most frequent progressive neurodegenerative movement disorder characterized by age-dependent resting tremor, muscular rigidity, akinesia and relieved temporarily by administration of L-dopa. The prevalence of PD is 0.71% in a German Bavarian population of individuals older than 65 years, and is 0.30% in Singaporeans aged 50 years and older. The pathological hallmarks of PD patients include progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta as well as the presence of ubiquitin-positive Lewy neuritis and Lewy bodies in the remaining neurons. Nine loci in the chromosome have been found to be associated with family PD including PARK1-PARK9 and PARK13 in which PARK1 and PARK4 share the same locus. Mutations in at least seven genes are individually linked to familial forms of PD, including autosomal dominant mutations in a-synuclein, UCH-L1, LRRK2, Omi/HtrA2 and autosomal recessive mutations in parkin, PINK1, and DJ-1.
     LRRK2 gene has 51 exons. The LRRK2 protein has 2527aa, including ANK, LRR, ROC, COR, Kinase, WD40 six domains. The discovered mutations associated with PD are distributed in all the domains of LRRK2 and the most common one is G2019S. The MW of LRRK2 is 280 KD. It is expressed in brain, other organs and cell line HEK293T with unclear functions. Some research have showed that mutations associated with PD, such as R1441C, G2019S, I2020T, lead to increasing of LRRK2 kinase activity and decreasing of cell activity, indicating that these mutations are toxic to cells. Moreover, LRRK2 plays a role in neurite process morphology and polarity of synaptic vesicles (SV) protein.
     Anti-LRRK2 antibody is a necessary and important tool of LRRK2 functional research. To prepare anti-LRRK2 antibody, I analyzed LRRK2 protein sequence by DNAstar/Protean software and selected 3 polypeptides which are about 100aa, high antigenicity and good hydrophilicity. Then, the CDS of the selected 3 polypeptides were constructed to pGEX-4T-2 and the GST fusion protein were purified. With the purified GST fusion protein, the rabbits were immunized and a high titer, high specificity anti-LRRK2 rabbit polyclonal antibody was gotten. Functional analysis of anti-LRRK2 showed that it was available in immunohistochemistry, immunostaining and Western Blotting.
     With the anti-LRRK2 antibody, the distribution of LRRK2 in mouse brain was mapped. It was showed that LRRK2 protein is broadly distributed throughout the mouse brain, but shows important regional differences. Also, the result of Western blotting showed that LRRK2 is expressed in all sections of rat brain. In HEK293, LRRK2 is co-localized with cytochrome C. In addition, the result of alignment showed that amino acids sequences of LRRK2 and LRRK1 are highly homogenous.
引文
[1]http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=168600
    [2]Trenkwalder C,Schwarz J,Gebhard J,et al.Starnberg trial on epidemiology of parkinsonism and hypertension in the elderly:prevalence of Parkinson's disease and related disorders assessed by a door-to-door survey of inhabitants older than 65 years.Arch Neurol,1995,52:1017-1022.
    [3]Tan LCS,Venketasubramanian N,Hong CY,et al.Prevalence of Parkinson disease in Singapore:Chinese vs Malays vs Indians.Neurology,2004,62:1999-2004.
    [4]Zimprich A,Biskup S,Leitner P,et al.Mutations in LRRK2 Cause Autosomal Autosomal-Dominant Parkinsonism with Pleomorphic Pathology.Neuron,2004,44:601-607.
    [5]姚泰主编.生理学.北京:人民卫生出版社,2001.414.
    [6]Langston JW,Ballard P,Tetrud JW,et al.Chronic parkinsonism in humans due to a product of meperidine-analog synthesis.Science,1983,219:979-980.
    [7]Nicklas WJ,Vyas I,Heikkila RE.Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine,a metabolite of the neurotoxin,lmethyl-4-phenyl-1,2,5,6-tetrahydropyridine.Life Sci,1985,36:2503-2508.
    [8]Strauss KM,Martins LM,Plun-Favreau H,et al.Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.Hum Mole Genet,2005,14:2099-2111.
    [9]Feany MB.New genetic insights into Parkinson's disease.New Eng J Med,2004,351:1937-1940.
    [10]Dawson TM,Dawson VL.Molecular pathways of neurodegeneration in Parkinson's disease.Science,2003,302:819-822.
    [11]Valente EM,Abou-Sleiman PM,Caputo V,et al.Hereditary early-onset Parkinson's disease caused by mutations in PINK1.Science,2004,304:1158-1160.
    [12]Paisan-Ruiz C,Jain S,Evans EW,et al.Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease.Neuron,2004,44:595-600.
    [13]Spillantini MG,Schmidt ML,Lee VM,et al.Alpha-synuclein in Lewy bodies.Nature,1997,388:839-40.
    [14]Cookson MR.The biochemistry of Parkinson's Disease.Annu Rev Biochem, 2005, 74:29-52
    [15] Patrick M, Abou-Sleiman, Miratul MK, et al. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nature, 2006, 7: 207-219
    [16] Conway KA, Lee SJ, Rochet JC, et a\. Acceleration of oligomerization, not fibrillization, is a shared property of both alphasynuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A, 2000, 97: 571-6.
    [17] Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alphasynuclein linked to early-onset Parkinson disease. Nat Med, 1998, 4: 1318-20.
    [18] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392: 605-8.
    [19] Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet, 2000, 25: 302-5.
    [20] Zhang Y, Gao J, Chung KK et al. Parkin functions as an E2-dependent ubiquitin protein ligase and promotes the degradation of the synaptic vesicle associated protein, CDCrel-1. Proc Natl Acad Sci U S A, 2000, 97:13354-9.
    [21] Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002, 82: 373-428.
    
    [22] Ciechanover A, Brundin P. The ubiquitin proteasome system in eurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron, 2003, 40: 427-46.
    [23] Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555-90.
    [24] Mizuno Y, Hattori N, Mori H, et al. Parkin and Parkinson's disease. Curr Opin Neurol, 2001, 14: 477-82.
    [25] Tanaka K, Suzuki T, Hattori N, et al. Ubiquitin, proteasome and parkin. Biochim Biophys Acta, 2004,1695: 235-47.
    [26] Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol, 2004, 56: 336-41.
    [27] Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003, 299 : 256-9
    [28] Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep, 2004, 5: 213-8.
    [29] Menzies FM, Yenisetti SC, Min KT. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol, 2005,15: 1578-82.
    [30] Meulener M, Whitworth AJ, Armstrong-Gold CE, et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol, 2005,15: 1572-7.
    [31] Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem, 2003, 278 :43628-35.
    [32] Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem , 2004, 279:18614-22.
    [33] Wang D, Qian L, Xiong H, et al. From the Cover: Antioxidants protect PINK1 dependent dopaminergic neurons in Drosophila. Proc Natl Acad Sci USA, 2006, 103(36):13520-5.
    [34] Jiang H, Ren Y, Zhao J, et al. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet, 2004,13:1745-54.
    [35] Tang B, Xiong H, Sun P, et al. Association of PINK1 and DJ-1 Confers Digenic Inheritance of Early Onset Parkinson's Disease. Hum Mol Genet, 2006, 15(11):1816-25.
    
    [36] Lesage S, Durr A, Brice A. LRRK2: a link between familial and sporadic Parki-nson's disease? Pathologie Biologie(Paris), 2006. (In press)
    [37] http://www.ebi.ac.uk/interpro/ISpy?mode=single&ac=Q5S007.
    [38] Shen J. Protein kinases linked to the pathogenesis of Parkinson's disease. Neuron, 2004, 44(4): 575-577.
    [39] Mata IF, Wedemeyer WJ, Farrer MJ, et al. LRRK2 in Parkinson's disease: rotein domains and functional insights. TRENDS in Neurosciences, 2006, 29 (5): 286-293.
    [40] Mosavi LK, Minor DL, Peng Z. Consensus-derived structural determinants of the ankyrin repeat motif. PNAS, 2002, 99(25): 16029-16034.
    [41] Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Current Opinion in Structural Biology, 2001,11:725-732.
    
    [42] Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci, 2001, 58(14):2085-2097.
    [43] Funayama M, Hasegawa K, Kowa H, et al. A New Locus for arkinson's Disease (PARKS) Maps to hromosome 12p11.2-q13.1. Ann Neurol, 2002, 51: 296-301.
    [44] Zimprich A, Mu¨ller-Myhsok B, Farcer M, et al. The PARK8 Locus in Autosomal Dominant Parkinsonism: Confirmation of Linkage and Further Delineation of the Disease-Containing Interval. Am J Hum Genet, 2004, 74: 11-19.
    [45] Gilks WP, Abou-Sleiman PM, Gandhi S, et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet, 2005, 365(9457): 415-416.
    [46] Di Fonzo A, Rohe CF, Ferreira J, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet, 2005, 365(9457): 412-415.
    [47] Nichols WC, Pankratz N, Hernandez D, et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet, 2005, 365(9457): 410-412.
    
    [48] Giasson BI, Jason P, Covy BS, et al. Biochemical and Pathological Characterization of LRRK2. Ann Neurol, 2006, 59: 315-322.
    [49] Taymans JM, Haute CV, Baekelandt V. Distribution of PINK1 and LRRK2 in rat and mouse brain. Journal of Neurochemistry, 2006, 98(3): 951-961.
    [50] Simon-Sanchez J, Herranz-Perez V, Olucha-Bordonau F, et al. LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain. Eur J Neurosci., 2006, 23(3): 659-66.
    [51] Melrose H, Lincoln S, Tyndall G, et al. Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience, 2006,139(3):791-794.
    [52] Gaiter D, Westerlund M, Carmine A, et al. LRRK2 Expression Linked to Dopamine Dopamine-Innervated Areas. Ann Neurol, 2006, 59: 714-719.
    [53] Higashi S, Moore DJ, Colebrooke RE, et al. Expression and localization of Parkinson's disease associated Leucine-rich repeat kinase 2 in the mouse brain. J Neurochem, 007,100:368-381.
    [54] Biskup S, Moore DJ, Celsi F, et al. Localization of LRRK2 to membranous and vesicular Structures in Mammalian Brain. Ann Neurol, 2006, 60: 557-569.
    [55] Hatano T, Kubo SI, Imai S. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet, 2007, (press on line)
    [56] Giasson BI, Jason P, Covy BS, et al. Biochemical and Pathological Characterization of LRRK2. Ann Neurol, 2006, 59: 315-322.
    [57] Ross OA, Toft M, Whittle AJ, et al. Lrrk2 and Lewy Body Disease. Ann Neurol, 2006, 59:388-393.
    [58] Smith WW, Pei Z, Jiang H, et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA, 2005,102:18676-81.
    [59] Gloeckner CJ, Kinkl N, Schumacher A, et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet, 2006,15:223-232
    [60] West AB, Moore DJ, Biskup S, et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA, 2005,102:16842-7.
    [61] Smith WW, Pei Z, Jiang H, et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci, 2006, 9(10):1231-3.
    [62] Greggio E, Jain S, Kingsbury A, et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis, 2006, 23(2):329-41.
    [63] Ito G, Okai T, Fujino G, et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry, 2007, 46(5): 1380-8.
    [64] Korr D, Toschi L, Donner P, et al. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal, 2006, 18(6): 910-20.
    [65] MacLeod D, Dowman J, Hammond R, et al. The Familial Parkinsonism Gene LRRK2 Regulates Neurite Process Morphology. Neuron, 2006, 52:587-593.
    [66] Sakaguchi-Nakashima A, Meir JY, Jin Y, et al. LRK-1, a C. elegans PARK8-Related Kinase, Regulates Axonal-Dendritic Polarity of SV Proteins, Current Biology, 2007, doi:10.1016/j.cub.2007.01.074
    [1]http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=168600
    [2]Trenkwalder C,Schwarz J,Gebhard J,et al.Stamberg trial on epidemiology of parkinsonism and hypertension in the elderly:prevalence of Parkinson's disease and related disorders assessed by a door-to-door survey of inhabitants older than 65 years.Arch Neurol,1995,52:1017-1022.
    [3]Tan LCS,Venketasubramanian N,Hong CY,et al.Prevalence of Parkinson disease in Singapore:Chinese vs Malays vs Indians.Neurology,2004,62:1999-2004.
    [4]Zimprich A,Biskup S,Leitner P,et al.Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology.Neuron,2004,44:601-607.
    [5]姚泰主编.生理学.北京:人民卫生出版社,2001.414.
    [6]Langston JW,Ballard P,Tetrud JW,et al.Chronic parkinsonism in humans due to a product of meperidine-analog synthesis.Science,1983,219:979-980.
    [7]Nicklas WJ,Vyas I,Heikkila RE.Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine,a metabolite of the neurotoxin,1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine.Life Sci.,1985,36:2503-2508.
    [8]Strauss KM,Martins LM,Plun-Favreau H,et al.Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.Hum Mole Genet,2005,14:2099-2111.
    [9]Feany MB.New genetic insights into Parkinson's disease.New Eng J Med,2004,351:1937-1940.
    [10] Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science, 2003, 302: 819-822.
    [11] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004, 304: 1158-1160.
    [12] Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease. Neuron, 2004, 44: 595-600.
    [13] Lesage S, Durr A, Brice A. LRRK2: a link between familial and sporadic Parkinson's disease? PathologieBiologie(Paris),2006. (In press)
    [14] http:// www.ebi.ac.uk /interpro /ISpy? mode=single&ac=Q5S007.
    [15] Hanks SK, Hunter T. Protein kinases 6, the eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J, 1995, 9(8):576-96.
    [16] Shen J. Protein kinases linked to the pathogenesis of Parkinson's disease. Neuron, 2004, 44(4): 575-577.
    [17] Mata IF, Wedemeyer WJ, Farrer MJ, et al. LRRK2 in Parkinson's disease: protein domains and functional insights. TRENDS in Neurosciences, 2006, 29 (5): 286-293.
    [18] Mosavi LK, Minor DL, Peng Z. Consensus-derived structural determinants of the ankyrin repeat motif. PNAS, 2002, 99(25): 16029-16034.
    [19] Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Current Opinion in Structural Biology, 2001,11: 725-732.
    [20] Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol. Life Sci, 2001, 58(14):2085-2097.
    [21] Funayama M, Hasegawa K, Kowa H, et al. A New Locus for Parkinson's Disease (PARKS) Maps to chromosome 12p11.2-q13.1. Ann Neurol, 2002, 51: 296-301.
    [22] Zimprich A, Mu¨ller-Myhsok B, Farrer M, et al. The PARK8 Locus in Autosomal Dominant Parkinsonism: Confirmation of Linkage and Further Delineation of the Disease-Containing Interval. Am J Hum Genet, 2004, 74: 11-19.
    [23] Berg D, Schweitzer K, Leitner P, et al. Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease. Brain, 2005, 128: 3000-3011.
    [24] Skipper L, Shen H, Chua E, et al. Analysis of LRRK2 functional domains in nondominant Parkinson's disease. Neurology, 2005, 65: 1319-1321.
    [25] Paisan-Ruiz C, Lang AE, Kawarai T, et al. LRRK2 gene in Parkinson's disease: mutation analysis and case control association study. Neurology, 2005, 65: 696-700.
    [26] Mata IF, Kachergus JM, Taylor JP, et al. LRRK2 pathogenic substitutions in Parkinson's disease. Neurogenetics, 2005, 6:171-177.
    [27] Zabetian CP, Samii A, Mosley AD, et al. A clinic-based study of the LRRK2 gene in Parkinson's disease yields new mutations. Neurology, 2005, 65: 741-744
    [28] Mata IF, Taylor JP, Kachergus J, et al. LRRK2 R1441G in Spanish patients with Parkinson's disease. Neurosci Lett., 2005, 382: 309-311.
    [29] Farrer M, Stone J, Mata IF, et al. LRRK2 mutations in Parkinson's disease. Neurology, 2005, 65: 738-740.
    [30] Khan NL, Jain S, Lynch JM, et al. Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson's disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain, 2005, 128: 2786-2796.
    [31] Lu CS, Simons EJ, Wu-Chou YH, et al. The LRRK2 I2012T, G2019S, and I2020T mutations are rare in Taiwanese patients with sporadic Parkinson's disease. Parkinsonism Relat. Disord., 2005,11: 521-522.
    [32] Funayama M, Hasegawa K, Ohta E, et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol., 2005, 57: 918-921.
    [33] Fonzo AD, Huei Y, Chou W. A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson's disease risk in Taiwan. Neurogenetics, 2006,7:133-138.
    [34] Fung HC, Chen CM, Hardy J, et al. A common genetic factor for Parkinson disease in ethnic Chinese population in Taiwan. BMC Neurology, 2006, 6(47): 1-4.
    [35] Gilks WP, Abou-Sleiman PM, Gandhi S, et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet, 2005, 365(9457): 415-416.
    [36] Di Fonzo A, Rohe CF, Ferreira J, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet, 2005, 365(9457): 412-415.
    [37] Nichols WC, Pankratz N, Hernandez D, et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet, 2005, 365(9457): 410-412.
    [38] Giasson BI, Jason P, Covy BS, et al. Biochemical and Pathological Characterization of LRRK2. Ann Neurol, 2006, 59: 315-322.
    [39] Taymans JM, Haute CV, Baekelandt V. Distribution of PINK1 and LRRK2 in rat and mouse brain. Journal of Neurochemistry, 2006, 98(3): 951-961.
    [40] Simon-Sanchez J, Herranz-Perez V, Olucha-Bordonau F, et al. LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain. Eur J Neurosci., 2006, 23(3): 659-66.
    [41] Melrose H, Lincoln S, Tyndall G, et al. Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience, 2006,139(3):791-794.
    [42] Gaiter D, Westerlund M, Carmine A, et al. LRRK2 Expression Linked to Dopamine-Innervated Areas. Ann Neurol, 2006, 59: 714-719.
    [43] Higashi S, Moore DJ, Colebrooke RE, et al. Expression and localization of Parkinson's disease-associated Leucine-rich repeat kinase 2 in the mouse brain. J Neurochem, 2007,100: 368-381.
    [44] Biskup S, Moore DJ, Celsi F, et al. Localization of LRRK2 to membranous and vesicular Structures in Mammalian Brain. Ann Neurol, 2006, 60: 557-569.
    [45] Hatano T, Kubo SI, Imai S. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet, 2007, (press on line)
    [46] Giasson BI, Jason P, Covy BS, et al. Biochemical and Pathological Characterization of LRRK2. Ann Neurol, 2006, 59: 315-322.
    
    [47] Ross OA, Toft M, Whittle AJ, et al. LRRK2 and Lewy Body Disease. Ann Neurol, 2006,59: 388-393.
    [48] Smith WW, Pei Z, Jiang H, et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA, 2005, 102: 18676-81.
    [49] Gloeckner CJ, Kinkl N, Schumacher A, et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet, 2006, 15:223-232
    [50] West AB, Moore DJ, Biskup S, et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA, 2005,102:16842-7.
    [51] Smith WW, Pei Z, Jiang H, et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci, 2006, 9(10):1231-3.
    [52] Greggio E, Jain S, Kingsbury A, et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis, 2006, 23(2): 329-41.
    [53] Ito G, Okai T, Fujino G, et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry, 2007,46(5): 1380-8.
    [54] Korr D, Toschi L, Donner P, et al. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal, 2006, 18(6): 910-20.
    [55] MacLeod D, Dowman J, Hammond R, et al. The Familial Parkinsonism Gene LRRK2 Regulates Neurite Process Morphology. Neuron, 2006, 52: 587-593.
    [56] Sakaguchi-Nakashima A, Meir JY, Jin Y, et al. LRK-1, a C. elegans PARK8-Related Kinase, Regulates Axonal-Dendritic Polarity of SV Proteins, Current Biology, 2007, doi:10.1016/j.cub.2007.01.074
    [57] White LR, Toft M, Kvam SN, et al. MAPK-pathway activity, LRRK2 G2019S, and Parkinson's disease. J Neurosci Res., 2007 Mar 26. [Epub ahead of print]
    [58] Gosala D, Rossc OA, Wileya J, et al. Clinical traits of LRRK2-associated Parkinson's disease in Ireland: A link between familial and idiopathic PD. Parkinsonism and Related Disorders, 2005,11: 349-352.
    [59] Hernandez DG, Paisan-Ruiz C, McInerney-Leo A, et al. Clinical and Positron Emission Tomography of Parkinson's Disease Caused by LRRK2. Ann Neurol, 2005, 57: 453-456.
    [60] Aasly JO, Toft M, Fernandez-Mata I, et al. Clinical Features of LRRK2-Associated Parkinson's Disease in Central Norway. Ann Neurol, 2005, 57:762-765.
    [1]http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=168600
    [2]Holden A,Wilman A,Wieler M,et aI.Basal ganglia activation in Parkinson's disease.Parkinsonism Relat Disord,2006,12(2):73277.
    [3]Zimprich A,Biskup S,Leitner P,et al.Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology.Neuron,2004,44:601-607.
    [4]Trenkwalder C,Schwarz J,Gebhard J,et al.Starnberg trial on epidemiology of parkinsonism and hypertension in the elderly:prevalence of Parkinson's disease and related disorders assessed by a door-to-door survey of inhabitants older than 65 years.Arch Neurol,1995,52:1017-1022.
    [5]Tan LCS,Venketasubramanian N,Hong CY,et al.Prevalence of Parkinson's disease in Singapore:Chinese vs Malays vs Indians.Neurology,2004,62:1999-2004.
    [6]Wirdefeldt K,Gatz M,Schalling M,et al.No evidence for heritability of Parkinson disease in Swedish twins.Neurology,2004,63:305-311.
    [7]Nicklas WJ,Vyas I,Heikkila RE.Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine,a metabolite of the neurotoxin,1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine.Life Sci,1985,36:2503-2508.
    [8] Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding 0mi/HtrA2 in Parkinson's disease. Hum Mole Genet, 2005, 14: 2099-2111.
    [9] Feany MB. New genetic insights into Parkinson's disease. New Eng J Med, 2004, 351:1937-1940.
    [10] Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science, 2003, 302: 819-822.
    [11] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004, 304: 1158-1160.
    [12] Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease. Neuron, 2004, 44: 595-600.
    [13] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392: 605-8.
    [14] Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet, 2000, 25: 302-5.
    [15] Zhang Y, Gao J, Chung KK et al. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A , 2000, 97: 13354-9.
    [16] Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002, 82: 373-428.
    [17] Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron, 2003,40: 427-46.
    [18] Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555-90.
    [19] Mizuno Y, Hattori N, Mori H, et al. Parkin and Parkinson's disease. Curr Opin Neurol, 2001, 14: 477-82.
    [20] Tanaka K, Suzuki T, Hattori N, et al. Ubiquitin, proteasome and parkin. Biochim Biophys Acta, 2004,1695: 235-47.
    [21] Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol, 2004, 56: 336-41.
    [22] Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003, 299 : 256-9
    [23] Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep, 2004, 5: 213-8.
    [24] Menzies FM, Yenisetti SC, Min KT. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol, 2005,15:1578-82.
    [25] Meulener M, Whitworth AJ, Armstrong-Gold CE, et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol, 2005,15:1572-7.
    [26] Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem, 2003, 278: 43628-35.
    [27] Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem, 2004, 279:18614-22.
    [28] Wang D, Qian L, Xiong H, et al. From the Cover: Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc Natl Acad Sci USA, 2006,103(36):13520-5.
    [29] Jiang H, Ren Y, Zhao J, et al. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet, 2004,13:1745-54.
    [30] Tang B, Xiong H, Sun P, et al. Association of PINK1 and DJ-1 Confers Digenic Inheritance of Early Onset Parkinson's Disease. Hum Mol Genet, 2006, 15(11): 1816-25.
    [31] Patrick M, Abou-Sleiman, Miratul MK, et al. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nature, 2006, 7: 207-219
    [32] Celine Perier, Kim Tieu, Christelle Gue'gan, et al. Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA, 2005,102(52): 19126-19131
    [33] Muftuoglu M, et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord, 2004,19: 544-548
    [34] Parker WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol, 1989, 26: 719-723.
    [35] Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem, 1990, 54: 823-827.
    [36]Clayton R,Clark JB,Sharpe M.Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit:implications for apoptosis and neurodegenerative disease.J Neurochem,2005,92:840-849.
    [37]Green DR,Kroemer G.The pathophysiology of mitochondrial cell death.Science,2004,305:626-629.
    [38]Kroemer G,Reed JC.Mitochondrial control of cell death.Nat Med,2000,6:513-519
    [39]Cassarino DS,Parks JK,Parker WD,et al.The parkinsonian neurotoxin MPP~+opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism.Biochim Biophys Acta,1999,1453:49-62.
    [40]中华医学会神经病学分会运动障碍及帕金森病学组.帕金森病的诊断.中华神经科杂志,2006,39(6):408-409
    [41]中华医学会神经病学分会运动障碍及帕金森病学组.帕金森病治疗指南.中华神经科杂志,2006,39(6):409-412
    [42]褚玉霞,汪静.帕金森病研究进展分析.医学综述,2006,12(18):1112-1113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700