微波热疗仪的研制以及微波热疗天线的设计与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的治疗一直是世界性的难题,手术,放疗和化疗仍然是治疗的主要手段,尽管传统治疗方法取得了长足的发展,但治疗效果徘徊不前,治疗费用较高,以及治疗过程给患者带来的损伤,仍然是阻碍肿瘤治疗学迅速发展的瓶颈问题。近年来,微波热疗技术相对于手术,放疗,化疗,由于其无创性,在肿瘤临床治疗中的应用越来越广泛;微波热疗无论从热生物学,还是从热疗设备方面都取得了很大进步,而且经过临床验证,得到了较好的效果,成为肿瘤治疗学的一个新的发展方向。
     由于微波热疗仪治疗肿瘤无创伤,毒副作用小,相对安全有效,所以研制微波热疗仪,能有效的利用微波治疗肿瘤,它的临床应用,对于提高癌症患者的生存率、延长患者生命、提高患者生存质量起着很大作用。本课题针对体表浅层肿瘤微波热疗的需求,研制了微波热疗仪的硬件及软件系统,并设计了适用于体表浅层肿瘤组织的微波热疗天线。
     本文设计的肿瘤微波热疗仪的硬件系统包括一个以AT89C52为核心的单片机主系统和以AT89C2051为核心的单片机从系统,主系统负责接口操作、总系统的运行,从系统主要调节并维持微波功率输出的稳定。软件系统能够使整个微波热疗仪系统灵活起来,方便地设定疗时,功率等参数,使微波热疗仪跟操作界面交互变得比较容易。最后经测试,该微波热疗系统工作稳定,性能可靠。
     本文采用HFSS软件进行了微波热疗天线设计与仿真,设计了在浅表肌肉组织中电场分布较好且反射系数较小的单元天线等角螺旋天线和阿基米德阵列天线。分析比较了单元天线和阵列天线的电场分布和S_(11),最终给出了在工作频率下电场分布较合理,S_(11)较小的单元天线和阵列天线。
Cancer treatment has been a worldwide problem all along, surgery, radiotherapy and chemotherapy treatment is still the main means, although the traditional method of treatment has been developed by a large scale, but the effect of the treatment is hanging back all the time, high costly treatment and the injure patients suffered in the therapeutic process, has still hindered the development of cancer treatment in the bottlenecks. In recent years, compared with surgery, radiotherapy and chemotherapy, by mean of its non-invasive, the technology of microwave hyperthermia has been applied more and more extensively in cancer clinical treatment. Whether from the heat biology or the equipment, microwave hyperthermia has made a great progress, and after clinical verification, it has got a perfect result, and became a new development direction in the cancer therapies.
     Because microwave hyperthermia treatment for cancer has non-invasive, less side effects, relatively safe and effective, thus its development can utilize microwave effectively to cure cancer, its clinical application, is playing a big role in improving the survival rate of cancer patients, to extend patients' life and improve the quality of life. Aiming at the treatment for superficial muscle tissue, a microwave hyperthermia hardware and software systems was designed, and applied to the superficial muscle tissue, a microwave hyperthermia antenna was also designed.
     In the system of microwave hyperthermia for tumor which was designed in this paper, the hardware system includes a main system based on the MCU of AT89C52 and a subordinate system based on the AT89C2051, the main system is for the operating of the interface and the running of the system, subordinate system is for the regulating and maintaining the stability of the microwave power output. Software Features: software system can make the entire system flexible, the treatment time, power and other parameters easy to set, and made the interaction of the microwave hyperthermia and the interface easier. Under final test, the microwave hyperthermia system was stable and reliable.
     By means of the HFSS software, the antenna was simulated and designed in this paper. The elementary antenna equiangular spiral antenna and the array antenna were designed, for the superficial muscle tissue, its reflection coefficient is smaller and the electric field distribution is better. The elementary antenna and the array antenna's electric field distribution and S_(11) was analyzed and compared, and the antenna which electric field distribution was reasonable in the Working frequency and the S_(11) which was smaller has been given finally.
引文
[1]李鼎九,胡自省,钟毓斌.肿瘤热疗学[M].郑州:郑州大学出版社.2002
    [2]林世寅,李瑞英,毛慧生等.现代肿瘤热疗学原理、方法与临床[M].北京:学苑出版社,1997
    [3]王海磐,李迎新,林世寅等.新型热疗宫颈癌微波天线的研制.生物医学工程杂志[J].2002,19(1):175-177
    [4]杨国胜,刘于惠.2450MHz侵入式天线的设计与试验[J].第四军医大学医学工程系2002,868-873
    [5]邵汛帆.915MHz微波天线不同插入深度的功率特别吸收率(SAR)变化.中华放射肿瘤学杂志[J].1995,5
    [6]贺秀莲.微带天线的数学建模理论与数值分析方法研究[D].西安电子科技大学,2005
    [7]高蕴雅,缪毅强,钱鸿森.医用外照射微波天线的改进和临床应用.上海第二医科大学医用物理教研室.红外与毫米波学报,2000,25:143-146
    [8]电子管设计手册编辑委员会.磁控管设计手册[M].国防工业出版社,1979:1-40
    [9]席晓莉,汪文秉,王丽黎.微波热疗天线在生物组织中温度分布的模拟.微波学报[J].2005,01:66-69
    [10]申文江.前列腺癌放射性粒子植入近距离治疗并发症报告标准美国近距离治疗协会.中华放射肿瘤学杂志[J].2004,04:323-324
    [11]徐州市诺万医疗设备有限公司.微波肿瘤热疗仪(KJ-9000)[p].外观设计专利,200530086656.2006.03
    [12]何翔,孙奉娄.微波磁控管电源系统设计与实现.中南民族学院学报(自然科学版)[J].2000,02:1-5
    [13]张秉孝.微波驻波比的测量.青海师范大学学报(自然科学版)[J].1981,02:112-125
    [14]贺军涛,钟辉煌,刘永贵.C波段三腔渡越时间振荡器的数值模拟.强激光与粒子束[J].2003,15(9):895-898
    [15]国营第七七二厂.CK-140B型连续波磁控管使用说明书[M].2000:1-2
    [16]赵明华.具有高稳定性和安全型的小型微波发生仪.试验技术与管理[J].1999,16(5):62-65
    [17]基准电压可调节的滞回比较器MIC833.国外电子元器件[J].2000,06:48
    [18]解永勃,裴巍.精密的交流调压稳压电路.电子世界[J].2003,02:50
    [19]何李莉.负反馈放大电路实现探讨.科技咨询导报[J].2007,02:31
    [20]张哲,沈虹,王晓寰.基于UCC3895的移相全桥变换器的设计.电源技术应用[J].2006,03:17-20
    [21]张硕成,王丹,敬岚,乔卫民,马云海.电子加速器调压器自控系统.核技术[J].2006,09:710-712
    [22]李志宇.单片机控制系统抗干扰设计.电子测量技术[J].2007,06:100-117
    [23]李鼎九,胡自省.肿瘤微波热疗的质量保证的建议.中华放射肿瘤学杂志[J].1994,04:282-285
    [24]李天保.八位单片机的发展及应用.机械职业教育[J].1996,09:14-16
    [25]仇国庆,杨志龙,唐贤伦,杨莉.看门狗电路的设计与应用.自动化与仪器仪表[J].2005,04:132-135
    [26]陈世攀,李玉忍.E-2PROM器件CAT1161在单片机系统中的应用.电气传动自动化[J].2003,04:75-77
    [27]邹建,饶程,顾兴志,刘颖.微波场中温度传感方法.压电与声光[J].2005,04:170-174
    [28]刘静波.基于AT89C2051的温度测控系统设计与分析.现代电子技术[J].2008,01:21-23
    [29]乐建华,顾雪艳.基于AT89C2051单片机的旋转变压器位置测量系统设计.计算机测量与控制[J].2002,03:141-142
    [30]杜刚,高军,童宁宁.基于AT89C2051单片机的频率计设计.微计算机应用[J].2004,04:498
    [31]赵长松.串行AD和DA芯片的应用.今日电子[J].2002,09:4-5
    [32]梁明亮,王新强.单片机与ADC0832的接口技术.河南科技[J].2006,08:48-49
    [33]郑国君,8位串行A/D转换器ADC0832.电子世界[J].2002,09:44-45
    [34]杜洋.A/D转换芯片ADC0832的应用.电子制作[J].2006,01:44-46
    [35]黄鑫,宋洋.软件抗干扰技术及其在单片机上的应用.现代电子技术[J].2007,09:19-22
    [36]闾坚强,谢企良.2450MHz微波机CK-140B磁控管工作特性研究.中国医疗器械杂志[J].1993,04:148-152
    [37]陈小娟,袁乃昌,平面螺旋天线的设计与实现.雷达与对抗[J].2004,04:31-33
    [38]S.Jacobsen et al.Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease.IEEE Trans.Biomed[J].2000,47:150-153.
    [39]Magnus Karlsson,Shaofang Gong.An integrated spiral antenna system for UWB.University of Link ping,Department of Science and Technology[J].2005,2:299-302
    [40]Honda,Sho.Rotational vibration of a helical gear pair with modified tooth surfaces (verification of the new theory by experiment and a new design method for dynamic performance).JSME International Journal[J].1995,38(1):112-121
    [41]H.Nakano,Y.Okabe,H.Mimaki,and J.Yamauchi.A Monofilar Spiral Antenna Excited Through a Helical Wire.IEEE transactions on antennas and propagation[J].2003,51(3):661-664
    [42]H.O.Rolfsnes,St.Louis et al.Design of Spiral Antennas for Radiometric Temperature Measurement.IEEE EMBS[J].2006,13:90-100
    [43]Paulraj R J.Behari.Effect of Low level Microwave Radiation on Growth Related Enzymes of Developing Rats Brain.Asia-Pacifie Radio Science Conference Proceedings[J].2004,15(3):225-259
    [44]Jarosz,B.J.Feasibility of interstitial thermotherapy with ultrasound waveguide applicator arrays. Proceedings of SPIE-The International Society for Optical Engineering[J]. 1998, 3249: 20-30
    
    [45] T. Juang et al. Construction of a Conformal Water Bolus Vest Applicator for Hyperthermia Treatment of Superficial Cancer. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [J]. 2004, 26:3467—3470
    
    [46] k. W, P. King et al. The Insulated Monopole:Admittance and Junction Effection. Biomedical Engineering[J]. 1975, 23(2): 172—177
    
    [47] Lin, J. C., ShinjiHirai, Chin-Lin Chiang. Computer simulation and experimental studies of SAR distributions of interstitial arrays of sleeved-slot microwave antennas for hyperthermia treatment of brain tumors. IEEE Transactions on Microwave Theory and Techniques [J]. 2000, 48(11) :2191~2198
    
    [48] K Saito, Y Hayashi, H Yoshimura. Heating characteristics of array applicator composed of two coaxial-slot antennas for microwave coagulation therapy. IEEE Transactions on Microwave Theory and Techniques [J]. 2000, 48(11): 1800—1806
    
    [49] T. p. Ryan and J. W. Strohbehn. Variation in the Design of a Helical Tip Microwave Antenna for Hyperthermia. Proceedings of the Northeast Conference [J]. 1988, 130—132
    
    [50] A. W. Guy. History of biological effects and medical applications of microwave energy. Microwave Theory Tech [J]. 1984, 32: 1182—1200
    
    [51] D Yang, John M. Bertram, Mark C. Converse, et al. A Floating Sleeve Antenna Yields Localized Hepatic Microwave Ablation. IEEE Transactions on Biomedical Engineering [J]. 2006, 53(3): 533-537
    [52] Sathiaseelan, V. Mittal, B. B. Taf love. A. Deep heating characteristics of an EM annular phased array hyperthermia applicator. Proceedings of the Annual Conference on Engineering in Medicine and Biology [J]. 1991, 13(2) :980—981
    [53] Muller, Dominikus J. Design and analysis of a 3-arm spiral antenna. IEEE Transactions on Antennas and Propagation [J]. 2007, 55(2): 258—266
    [54] S. A. Nouh, Amal Mohamed, H. M. EL Hussieny. Thermal and optical properties of electron beam irradiated cellulose triacetate.Materials Chemistry and Physics[J].2008, 110(15): 376-379
    [55] Jennings, W. E. An investigation into the properties and limits of quasi-taper helical antennas. IEEE Antennas and Propagation Society, AP-S International Symposium[J]. 2004, 2903-2906
    [56] Kumar, Dheeraj. Beam scanning characteristics of microstrip triangular array antenna on normally biased NiAl ferrite. Proceedings of the 9th International on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory[J]. 2004, 115—120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700