组合式三电平直流变换器及其软开关技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对宽范围、高压输入场合,本文以降低开关管电压应力和减小输出滤波电感为出发点,提出组合式三电平(Three-level, TL)变换器拓扑及其控制策略,并研究了该变换器的软开关技术和磁集成技术。
     本文提出一种组合式TL变换器拓扑,它由半桥TL单元和全桥单元组成,其中两个变压器副边绕组按同名端一致的方向串联,实现副边电压的叠加。该变换器的优点是开关管的电压应力为输入直流电压的一半,通过合理地选择变压器变比可以大幅度减小输出滤波电感及副边整流管电压应力,变换器具有较高的功率密度和快速的动态响应,非常适用于宽范围、高压输入的应用场合。论文还提出组合式TL变换器的几种控制方式和实现方法,通过分析指出,采用双移相控制方式有利于提高变换器的效率。基于双移相控制方式,按照每个单元移相顺序的不同,组合式TL变换器有两种控制策略,其中1#控制策略优于2#控制策略。
     为减小变换器的体积重量,必须提高开关频率,因此需要采用软开关技术,降低开关损耗。本文将软开关技术应用到组合式TL变换器中,分别提出零电压开关(Zero-Voltage-Switching, ZVS) PWM组合式TL变换器和零电压零电流开关(Zero-Voltage and Zero-Current-Switching, ZVZCS) PWM组合式TL变换器。
     两种软开关PWM组合式TL变换器均保留了基本变换器的优点和特点,其中ZVS PWM组合式TL变换器可以利用电路的寄生参数,如开关管结电容、变压器漏感等,在宽负载范围内实现超前管的ZVS,在一定负载范围内实现滞后管的ZVS,但在两电平模式下一对超前管的体二极管存在反向恢复。ZVZCS PWM组合式TL变换器可以在宽负载范围内实现超前管的ZVS和滞后管的ZCS,同时超前管的体二极管不存在反向恢复现象。本文详细分析了两种软开关PWM组合式TL变换器的工作原理和参数设计,并分别进行了实验验证。
     ZVS PWM组合式TL变换器中副边整流管存在反向恢复,导致整流管承受较大的电压尖峰,通常采用有损吸收电路抑制尖峰。本文将两种基本箝位网络应用于该变换器中,得到8种箝位电路,其中有两种可以有效地消除副边整流管的电压尖峰,即分别在半桥TL单元和全桥单元中采用Tr-lead型箝位网络,并将两个箝位二极管连接于正负直流母线两端。引入箝位网络后,该变换器不仅保留了原型变换器的所有优点,而且能够有效地消除三电平模式和两电平模式下的电压尖峰,从而可以降低整流管的电压应力,同时省去有损吸收电路。论文还解释了其他6种电路不能箝位或不能正常工作的原因,并进行了实验验证。
     为进一步减小变换器中磁性元件的体积,本文采用磁集成技术对变换器中两个变压器进行集成。利用解耦集成法和源转移等效变换法推导出三种磁集成方案,选择出一种最优方案,即采用解耦集成,且使两个边柱的磁通在中柱方向相反。论文以ZVS PWM组合式TL变换器为例对集成后的变换器进行分析,并得出结论:采用磁集成技术后,变换器仍然保留了原型变换器的优点,同时能够有效地减小磁芯体积和磁芯损耗,进一步提高变换器的效率和功率密度。
A combined three-level (TL) converter is proposed in this thesis, which reduces the voltage stress on the switches and the size of the output filter inductance, the proposed converter is very suitable for high input voltage with wide range applications. The control strategies, soft-switching techniques and magnetics integration schemes for the combined TL converters are also investigated.
     Similar to the combined full-bridge converter, two half-bridge TL converters are combined into one configuration. Through a sequence of deduction and simplification, the combined TL converters are obtained, which is composed of a half-bridge TL cell and a full-bridge cell, and the transformer voltages in the two cells are added at the secondary side to reduce the high-frequency content across the output filter inductance. The advantages of the proposed converter are described as follows: all the switches only sustain one half of the input voltage, the output filter inductance and the voltage stress on rectifier diodes can be reduced significantly by properly designing the transformers turns-ratios. So the combined TL converters will achieve a higher power density and rapid dynamic response, which is very suitable for high input voltage with wide range applications. Meanwhile, the corresponding control strategies and realization methods are proposed, and the combined TL converter should employ double phase-shift control. According to the phase-shift sequence of each cell, the converters have two control strategies, and 1# control strategy is superior to 2# control strategy.
     In order to increase the power density of the converters, a general approach is to push the switching frequency as high as possible, which needs to adopt soft-switching techniques to reduce the switching losses. In this thesis, two kinds of soft-switching techniques, i.e., zero-voltage-switching (ZVS) and zero-voltage and zero-current- switching (ZVZCS) are introduced into the combined TL converters, and the operation principles and parameters design of two soft-switching PWM combined TL converters are described in detail.
     ZVS PWM combined TL converter can realize ZVS for switches with the use of the leakage inductance of the transformer and the intrinsic capacitors of the switches as the manner of phase-shift full-bridge converter. The demerit is that in two-level mode, one pair of leading switches lose ZVS and their body diodes have reverse recovery, degrading the conversion efficiency. ZVZCS PWM combined TL converter can realizes ZVS for the leading switches and ZCS for the lagging switches in a wide load range, and the body diode reverse recovery of one pair of leading switches is avoided due to ZCS. The experimental results from two prototypes are presented to validate the theoretical analysis and demonstrate the performance of the proposed converters.
     In ZVS PWM combined TL converter, the rectifier diodes still suffer the voltage oscillation resulted by the reverse recovery and excessive voltage overshoot occurs when the rectifier diode snap off. In order to eliminate the voltage oscillation, two basic clamping tanks are introduced into the ZVS PWM combined TL converter and a family of voltage clamping schemes are proposed. Two feasible schemes among them are effective which can not only eliminate the voltage oscillation and spike both in three-level mode and two-level mode, but keep all the advantages of the original converter, thus additional lossy RC snubber can be removed.
     In order to further reduce the volume of the magnetic components, integrated magnetic (IM) schemes for the combined TL converters are proposed. Based on the comparison of different schemes, the appropriate one is adopted, which combines the two decoupled reversed transformers into a single magnetic structure. The experimental results from the prototype indicate that the IM can reduce the core size and the core losses; and as a result, the power density and efficiency of the combined TL converters are improved.
引文
[1] Nabae A, Takahashi I, Akagi H. A new neutral-clamped PWM inverter. IEEE transactions on Industry Applications, 1981, 17(5): 518-523.
    [2]阮新波.三电平直流变换器及其软开关技术.北京:科学出版社, 2006.
    [3] Pinheiro J R, Barbi I, The three-level ZVS PWM converter - a new concept in high-voltage dc-to-dc conversion. Proc. IEEE IECON, 1992. 173-178.
    [4] Canales F, Barbosa P M, Burdio J M, et al. A zero-voltage-switching three-level dc/dc converter. Proc. CPES, 2000. 366-371.
    [5] Canales F, Barbosa P M, Aguilar C, et al. A high-power-density DC/DC converter for high-power distributed power systems. Proc. IEEE PESC, 2003. 11-18.
    [6] Barbosa P M, Canales F, Lee F C. A front-end distributed power system for high-power applications. Proc. IEEE Industry Applications Conference, 2000. 2546-2551.
    [7] Kim E S, Byun Y B, Kim Y H, et al. A three level ZVZCS phase-shifted DC/DC converter using a tapped inductor and a snubber capacitor. Proc. IEEE APEC, 2001. 980-985.
    [8] Jeon S J, Canales F, Barbosa P M, et al. A primary-side-assisted zero-voltage and zero-current switching three-level DC/DC converter with phase-shift control. Proc. IEEE APEC, 2002. 641-647.
    [9] Barbosa P M, Canales F, Burdio J M, et al. A three-level isolated power factor correction circuit with zero voltage switching. Proc. IEEE PESC, 2000. 347-352.
    [10] Dijkhuizen F R, Duarte J L. Proper choice of flying capacitors based on distinct power dissipation models. Proc. IEEE IAS, 1998. 1174-1180.
    [11] Ruan X, Zhou L, Yan Y. Soft-switching PWM three-level converters. IEEE Transactions on Power Electronics, 2001, 16(5): 612-622.
    [12] Pinheiro J R, Barbi I. Wide load range three-level ZVS-PWM dc-to-dc converter. Proc. IEEE PESC, 1993. 171-177.
    [13] Pinheiro J R, Barbi I. An improved TL-ZVS-PWM DC-DC converter. Proc. IEEE APEC, 1995. 907-912.
    [14] Pinheiro J R, Barbi I. Three-level zero-voltage-switching PWM DC-DC converters-a comparison. Proc. IEEE PESC, 1995. 914-919.
    [15] Jang Y, Jovanovic M M. A new three-level soft-switched converter. IEEE transactions on Power Electronics, 2005, 20(1): 75-81.
    [16] Song I H, Yoo S B, Suh B S, et al. A novel three-level ZVS PWM inverter topology for high-voltage DC/DC conversion systems with balanced voltage sharing and wider load range. Proc. IEEE IAS, 1996. 973-979.
    [17] Deschamps E, Barbi I. A new DC-to-DC ZVS PWM converter for high input voltage applications. Proc. IEEE PESC, 1998. 967-972.
    [18] Deschamps E, Barbi I. A comparison among three-level ZVS PWM isolated DC-to-DC converters. Proc. IEEE IECON, 1998. 1024-1029.
    [19] Ruan X, Xu D, Zhou L, Li B, Chen Q. Zero-voltage-switching PWM three-level converter with two clamping diodes. IEEE Transactions on Industrial Electronics, 2002, 49(4): 612-622.
    [20] Ruan X, Xu D, Zhou L. A simplified zero-voltage-switching PWM three-level converter with two clamping diodes. Proc. IEEE APEC, 2002. 975-980.
    [21] Jin K, Ruan X, Liu F. An improve ZVS PWM three-level converter. IEEE Transactions on Industrial Electronics, 2007, 54(1): 319-329.
    [22] Ruan X, Li B, Wang J, et al. Zero-voltage-switching PWM three-level converter with current-doubler-rectifier. IEEE Transactions on Power electronics, 2004, 19(6): 1523-1532.
    [23] Canales F, Barbosa P M, Lee F C. A zero-voltage and zero-current-switching three level dc/dc converter. Proc. IEEE APEC, 2000. 314-320.
    [24] Ruan X, Zhou L, Yan Y. A novel zero-voltage and zero-current-switching PWM three-level converter. Proc. IEEE PESC, 2001. 1075-1079.
    [25] Song T, Huang N, Ioinovic A. A zero-voltage and zero-current switching three-level dc-dc converter with secondary-assisted regenerative passive snubber. Proc. IEEE ISCAS, 2004. V-548-V-551.
    [26] Song T, Huang N, Ioinovic A. A zero-voltage and zero-current switching three-level dc-dc converter with reduced rectifier voltage stress. Proc. IEEE APEC, 2004. 1071-1077.
    [27] Song T, Huang N, Ioinovic A. A family of zero-voltage and zero-current-switching (ZVZCS) three-level DC-DC converters with secondary-assisted regenerative passive snubber. IEEE Transactions on Circuits and Systems-Part I: Regular Papers, 2005, 52(11): 2473-2481.
    [28] Gao Q, Li X, Cai Z, et al. Novel zero-voltage and zero-current-switching (ZVZCS) three level DC/DC converter using a simple auxiliary circuit. Proc. IEEE PEDS, 2003. 1486-1490.
    [29] Lou Z, Li Y, Wei K, et al. Three-level zero-voltage zero-current soft-switching (ZVZCS) DC-DC converter using a tapped inductor. Proc. IEEEAPEC, 2005. 1246-1250.
    [30] Barbi I, Gules R, Redl R, et al. DC-DC converter, four-switches Vpk=Vin/2, capacitive turn-off snubbing, ZV turn on. IEEE Transactions on Power Electronics, 2004, 19(4): 918-927.
    [31] Baggio J E, Hey H L, Grundling H A, et al. Isolated interleaved-phase-shift-PWM DC-DC ZVS converter. IEEE Transactions on Industry Applications, 2003, 39(6): 1795-1802.
    [32] Zhu Y, Lehman B. Three-level switching cell for low voltage/high-current DC-DC converters. Proc. IEEE APEC, 2003. 121-125.
    [33] Qiu Y, Lu B, Lee F C. A high-frequency high efficiency three-level LCC Converter for high-voltage charging application. Proc. IEEE PESC, 2004. 4100-4106.
    [34] Gu Y, Lu Z, Hang L, et.al. Three-level LLC series resonant DC/DC converter. IEEE Transactions on Power Electronics, 2005, 20(4): 781–789.
    [35] Chen W, Gu Y, Lu Z. A Novel Three Level Full Bridge Resonant Dc-Dc Converter Suitable for High Power Wide Range Input Applications. Proc. IEEE APEC, 2007. 373-379.
    [36] Agamy M.S, Jain, P K. A single stage three level resonant LLC AC/DC converter. Proc. IEEE APEC, 2006. 411-416.
    [37] Sheng H, Fu D, Yang X, et al. Comparison of ZVS operation modes with and without phase shift for three-level resonant converters. Proc. IEEE APEC, 2006. 102-106
    [38] Ayyanar R, Mohan N. A novel full-bridge DC-DC converter for battery charging using secondary-side control combines soft switching over the full load range and low magnetics requirement. IEEE Transactions on Industry Applications, 2001, 37(2): 559-565.
    [39] Song W, Lehman B. Dual-bridge dc-dc converter: a new topology characterized with no deadtime operation. IEEE Transactions on Power Electronics, 2004, 19(1): 94-103.
    [40] Ayyanar R,Mohan N. An improved full-ZVS-range hybrid dc-dc converter with low filter requirement capable of adding and subtracting the controlled and uncontrolled sections. Proc. IEEE PESC, 2000. 179-184.
    [41] Ayyanar R,Mohan N. Novel soft-switching dc-dc converter with full zvs-range andreduced filter requirement—part I: regulated-output applications. IEEE Transactions on Power Electronics, 2001, 16(2): 184-192.
    [42] Ayyanar R, Mohan N. Novel soft-switching dc-dc converter with full zvs-range and reduced filter requirement—part II: constant-Input, variable-output applications. IEEE Transactions on Power Electronics, 2001, 16(2): 193-200.
    [43]李斌.三电平直流变换器的研究. [硕士学位论文].南京:南京航空航天大学, 2002.
    [44] Ruan X, Chen Z, Chen W. Zero-voltage-switching PWM hybrid full-bridge three-level converter. IEEE Transactions on Power Electronics, 2005, 20(2): 395-404.
    [45] Ruan X, Li B. Zero-voltage and zero-current-switching PWM hybrid full-bridge three-level converter. IEEE Transactions on Industrial Electronics, 2005, 52(1): 213-220.
    [46]陈志英. ZVS PWM复合式全桥三电平变换器的研究. [硕士学位论文].南京:南京航空航天大学, 2004.
    [47]陈武.复合式全桥三电平变换器的软开关技术研究. [硕士学位论文].南京:南京航空航天大学, 2006.
    [48] Jin K, Ruan X. Hybrid full-bridge three-level LLC resonant converter - A novel DC-DC converter suitable for fuel cell power system. Proc. IEEE PESC, 2005. 361-367.
    [49] Zhang Z, Ruan X. Zero-voltage-switching PWM full bridge three-level converter. Proc. IEEE Power Electronics and Motion Control Conference, 2004. 1085-1090.
    [50]马运东.直流变换器的三电平拓扑及其控制. [博士学位论文].南京:南京航空航天大学, 2003.
    [51]霍建华,薛明哲. DC750V地铁动车辅助电源系统的改进.机车电传动, 2000, (5): 46-47.
    [52]郑琼林,张奕黄,郝荣泰.城市轨道交通交流传动逆变器系统国产化方案.北方交通大学学报, 1998, 22(6): 82-87.
    [53]潘晓萍.城市轨道车辆辅助电源设计.大连铁道学院学报, 2000, 21(4): 28-31.
    [54]中华人民共和国铁道部, TB/T 3063-2002,旅客列车DC600V供电系统技术条件, 2002.
    [55] Song B M, McDowell R, Bushnell A, et al. A three-level dc-dc converter with wide-input voltage operations for ship-electric-power-distribution systems. IEEE Transactions on Plasma Science, 2004, 32(5): 1856-1863.
    [56] Cheok A D, Kawamoto S, Matsumoto T, et al. High power ac/dc and dc/ac inverter for high speed train. Proc. IEEE TENCON, 2000. I-423-I-428.
    [57] BiCMOS advanced phase-shift PWM controller UCC3895. http://focus.ti.com/lit/ds /symlink/ucc3895.pdf.
    [58] Zhang Z, Ruan X. A novel double phase-shift control scheme for full-bridge three-level converter. Proc. IEEE APEC, 2005. 1240-1245.
    [59]阮新波,严仰光.脉宽调制DC/DC全桥变换器的软开关技术.北京:科学出版社, 1999.
    [60]张之梁.零电压开关PWM全桥三电平变换器. [硕士学位论文].南京:南京航空航天大学, 2005.
    [61] Sable D M, Lee F C. The operation of full-bridge, zero-voltage-switched PWM converter. Proc. VPEC, 1989. 92-97.
    [62] Cho J G, Sabate J A, Hua G C, et al. Zero-voltage and zero-current-switching full-bridge PWM converter for high power applications. IEEE Transactions on Power Electronics, 1996, 11(4): 622-628.
    [63]阮新波.移相控制零电压开关PWM变换器的研究. [博士学位论文].南京:南京航空航天大学, 1996.
    [64]阮新波,严仰光.直流开关电源的软开关技术.北京:科学出版社, 2000.
    [65]阮新波. PWM DC/DC全桥变换器的软开关技术的研究. [博士后研究报告].南京:南京航空航天大学, 1998.
    [66] Schmitt M, Schulze H J, Schl?gl A, et al. A comparison of electron, proton and helium ion irradiation for the optimization of the CoolMOSTM body diode. Proc. ISPSD, 2002. 229-232.
    [67] http://pdf1.alldatasheet.com/datasheet-pdf/view/80105/INFINEON/SPW20N60C3.html
    [68] http://pdf1.alldatasheet.com/datasheet-pdf/view/80106/INFINEON/SPW20N60CFD.html
    [69] Sabate J A, Vlatkovic V, Ridley R B, et al. Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter. Proc. IEEE APEC 1990. 92-97.
    [70] Erickson R W, Maksimovic D. Fundamentals of power electronics. 2nd Edition, Publisher: Kluwer Academic Publishers, 2001.
    [71] Redl R, Sokal N O, Balogh L. A novel soft-switching full-bridge dc/dc converter: analysis, design considerations, at 1.5KW, 100kHz. IEEE Transactions on Power Electronics, 1991, 6(3): 408-418.
    [72] Redl R, Balogh L, Edwards D W. Optimal zvs full-Bridge dc/dc converter with pwm phase-shift control: analysis, design considerations, and experimental results. Proc. IEEE APEC, 1994. 159-165.
    [73] Ruan X, Liu F. An improved zvs pwm full-bridge converter with clamping diodes. Proc. IEEE PESC, 2004. 1476-1481.
    [74]刘福鑫.高压直流电源系统中DC/DC变换器的研究. [硕士学位论文].南京:南京航空航天大学, 2004.
    [75] Ruan X, Yan Y. A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg. IEEE Transactions on Industrial Electronics, 2001, 48(4): 777-785.
    [76] Cho J G, Rim G H, Lee F C. Zero voltage and zero current switching full bridge PWM converter with secondary active clamp. Proc. IEEE PESC, 1996. 657-663.
    [77] Cho J G, Back J W, Jeong C Y, et al. Novel zero-voltage and zero-current-switching (ZVZCS) full bridge PWM converter using a simple auxiliary circuit. Proc. IEEE APEC, 1998. 834-839.
    [78] Kim E S, Joe K Y, Kye M H, et al. An improved ZVZCS PWM full-bridge dc/dc converter using energy recovery snubber. Proc. IEEE APEC, 1998. 1014-1019.
    [79] Cho J G, Back J W, Yoo D W, et al. Novel zero-voltage and zero-current-switching (ZVZCS) full bridge PWM converter using transformer auxiliary winding. Proc. IEEE PESC, 1997. 227-232.
    [80] http://ixdev.ixys.com/DataSheet/99041.pdf.
    [81] Bloom G, Severns R. The generalized use of integrated magnetics and zero-ripple techniques in switch mode power converters. Proc. IEEE PESC, 1984. 15-33.
    [82] Ed Bloom. New integrated-magnetic DC-DC power converter circuits & systems. Proc. IEEE APEC, 1987. 57-66.
    [83] Chen W, Hua G, Sablle D, et al. Design of high efficiency, low profile, low voltage converter with integrated magnetics. Proc. VPEC, 1997. 14-20.
    [84] Cheng D K, Wong L P, Lee Y S. Design, modeling and analysis of integrated magnetics for power converter. Proc. IEEE, 2000. 320-325.
    [85] Wong L P, Lee Y S, Cheng D K. A new approach to the analysis and design of integrated magnectics. Proc. IEEE PESC, 2001. 1196-1202.
    [86]陈乾宏.开关电源中磁集成技术的应用研究. [博士学位论文].南京:南京航空航天大学, 2001.
    [87]蔡宣三,龚绍文.高频功率电子学.北京:科学出版社, 1993.
    [88] Wei J, Xu P, Wu H P, et al. Comparison of three topology candidates for 12V VRM. Proc. IEEE APEC, 2001. 245-251.
    [89] Staffiere D, Sarjeant J. Power technology roadmap. Proc. IEEE APEC, 1998. 3-8.
    [90] Ed Bloom. New integrated-magnetic DC-DC power converter circuits & systems. Proc. IEEE APEC, 1987. 57-66.
    [91] Xu P, Wu Q, Wong P, et al. A novel integrated current doubler rectifier. Proc. IEEE APEC, 2000. 735-740.
    [92]赵修科.适用电源技术手册(磁性元件分册).辽宁:辽宁科学技术出版社, 2002.
    [93] FDK Corporation. Ferrite cores for power supply.
    [94]姬海宁,兰中文,张怀武.高频开关电源变压器的设计方法.磁性材料及器件, 2004, 35(2): 31-35.
    [95] Gao X, Ayyanar R. Integrated magnetics scheme for ZVS hybrid converter with improved performance. Proc. IEEE PESC, 2004. 3681-3687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700