中缅树鼩UCP-1的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从分子水平对中缅树鼩的冷适应性产热进行研究。中缅树鼩是分布于我国南方的典型热带、亚热带小型哺乳动物。本实验室的工作主要涉及到UCP1蛋白质及基因序列的研究。
     本论文主要内容有三个部分:
     1、中缅树鼩褐色脂肪组织解偶联蛋白质-1的纯化。
     2、中缅树鼩UCP1免疫学分析
     3、中缅树鼩UCP1高效液相色谱分析
     主要研究结果和结论如下:
     1、在lin等人纯化UCP1的方法基础,利用SDS银染法成功的分离出了UCP1。中缅树鼩UCP1分子量为33.142kDa。大约由306个氨基酸残基组成。与其它动物体内的UCP1相比较分子量相近。冷驯化后,中缅树鼩UCP1含量、线粒体总蛋白质含量及褐色脂肪组织重量显著增加。所以,冷驯化是影响哺乳动物UCP1含量变化的有效因子。
     2、我们酶联免疫实验结果表明UCP1浓度与冷驯化时间呈正相关。我们选择的时间梯度为0、0.1、0.8、1、7、14、21、28天。UCP1在前三天内增加不明显。在七天以后显著增加。21到28天增加开始平缓。28天以后,UCP1趋于稳定状态。同时实验室结果还证明了UCP1与兔抗中缅树鼩抗血清为单位位点结合,而抗血清浓度在1000~10000倍检测效果最佳。所以,UCP1具有组织特异性。仅存在于BAT中,是中缅树鼩适应性产热的分子机制所在。
     3、高效液相色谱图谱表明,我们所提纯的蛋白质溶液中含有两种成分。这两种成分分子量接近、吸收峰都在218和271左右。而UCP1和UCP3的氨基酸序列有71%的同源性,分子量接近,且都是线粒体内膜上的载体蛋白。虽然两者都可以产生质子泄露,但是机制不同。UCP1是通过氧化磷酸化与呼吸链解偶联。UCP3仅是打开质子通道,影响基础代谢。所以其含量较低。在冷驯
    
    化过程中,UCPI含量增加为线粒体总蛋白质增加的主要原因。
     以上的结果及结论表明:在持续冷胁迫条件下,中缅树的主要依赖于其褐
    色脂肪组织中的UCPI解偶联活动来产生热量维持体温。UCP3虽然分布于B八T
    和骨骼肌中,但是,对于非颇抖性产热并不产生影响。与基础代谢率有关的
    UCPZ分布与身体的各个部分,具有调节局部温度的功能。
The article is about the cold adaptative characters of the UCP1 on the molecular level during the cold exposure . The Tree Shrew, which was selected as the experimental animal in our research, is he representative tropic and sub-tropic small mammal distributed in the south of China . Our main work is to purify the UCP1 and analysis its sequences.
    This thesis is consists of three parts:
    1. The purification of UCP-l(Uncoupling protein -1) from BAT(brown adipose tissue) of the tree shrew.
    2. The preparation of antisersum of rabbit anti -UCP1 from brown adipose tissue in the tree shrew and enzyme linked immunosorbent assays.
    3. Analysis by the mean of high performance liquit chromatography .(HPLC). The main results and conclusions are show as follow:
    1. On the basis of the method of purification for UCP-1 in rodent by Lin et al. The UCP1 from adipose tissue in tree shrew was isolated and purified successfully. The MW of UCP-1 was about 33.142kDa, which is consisted of 306 amino acids. We measured the physical effect of UCP-1 of the BAT under the cold
    
    
    exposure. We found it increased abviously about 7 days cold acclimation. And after 28 day in the cold acclimation (4 ) , the content of the UCP-1 in the mitochondrion, the weight of the BAT and the total content of the protein in the mitochondrion began to smooth. So we conclude that cold exposure is an efficient factor which affect the content of UCP-1 in small mammal animal.
    2. The antiserum of rabbit anti-UCP1 from brown adipose tissue of tree shrew was prepared successfully . And the enzyme linked immunsorbent assays was established too. In our experiment, we select 0, 0.1, 0.8, 1- 3, 7, 14, 21, 28 days as our gradient by this means . We found the content of the UCP1 and the time of the cold exposure have the positive relation . The content of UCP1 keep stability after 7 days . And between 21 days and 28 days, it was liable to smooth. At the same time , we can conclude from our result: UCP1 and the rabbit anti-UCPl of tree shrew have a single tide-site . The content of rabbit anti-UCPl was about 1000-1000, which was the better content. We know now , UCP1 only can be found in the BAT .UCP2 exist in the tissue all of the body. But UCP3 only exist in BAT and muscle.
    3. From the map of the HPLC(high performance liquit chromatography), we can know that the thing we get from experiment maybe has 2 kinds of component o The characteristic of them were similar. The have the absorb peak are similar , which was about 218 and 271. Otherwise , the sequences of amino acids of UCP1 and UCP3 have the same sequences about 71 % , and also have the similar MW. UCP1 and UCP3 both the inner protein-carriers in the mitochondrion . Though they both can do the carry work of H+ , but the mechanism are different, UCP1 can uncouple the correlation between the
    
    
    oxidation phophorylation and the respiratory chain or the flux of H+. But, UCP3 only form a protein transporter,which only affect the base metabolism . So in the cold acclimated time, the content of UCP1 increased, but not UCP3. Which is the molecular mechanism of the adaptive thermogenesis.
    Conclusion:
    In the course of cold acclimation, the main way of the tree shrew to keep the temperature is based on the UCP1(Uncoupling Protein-1) of the BAT. Although, UCP3 exist in BAT, but is has no the same function , UCP3 also exist in muscle . It has the effect on the base metablism. UCP2 has the extensive display, which maybe regulate the temperature of the special parts.
引文
Arvaniti K, Ricquier D, Champigny O, Richard D, 1998. Leptin and corticosterone have opposite effects on food intake and the expression of UCP1 mRNA in brown adipose tissue of lep(ob)/lep(ob) mice. 1998 Endocrinology. Sep; 139(9): 4000-3.
    Balogh A G, Ridley R G, Patel H V, Freeman K B, 1989. Rabbit adipose tissue uncoupling protein mRNA: use of only one of the two polyadenylation signals in its processing. Biochem.Biophys. Res. Commun. 161: 156-161.
    Bennett A F, Ruben J A, 1979. Endothermy and activity in vertebrates. Science, 206:649-654.
    Bozinovic F, F F Novoa, and C Velose, 1990.Seasonal changes in energy expenditure and digestive tract of Abrothrix andinus (Criedae) in the Andes Range. Physiol.Zool., 63(6): 1216-1231.
    Cadenas S, Buckingham J A, Samec S, Seydoux J, Din N, Dulloo A G, Brand-M D. 1999. FEBS-Lett. Dec 3, 462(3): 257-60
    Cannon B., A.Hedin and J.Nedergaard, 1982. Exclusive occurrence of thermogenin antigen in brown adipose tissue. FEBS LETTERS 150(1): 129-132.
    Casteilla L, Champigny O, Bouillaud F, Robelin J, Ricquier D, 1989. Sequential changes in the expression of mitochondrial protein RNA during the development of brown adipose tissue in bovine and ovine species. Biochem.J. 257: 665-671.
    Florez-Duquet, Maria, Barbara A Horwitz, Roger B. McDonald. 1998. Cellular proliferation and UCP content inbrown adipose tissue of cold-exposed aging Fischer 344 rats.Am. J. Physiol. 274 (Regulatory Integrative Comp. Physiol.43): 196-R203,.
    Gordon C J, 1993. Temperature regulation in laboratory rodents. Cambridge University Press. 1-276.
    Grodzinski W, Klekowski R Z, Duncan A, 1975. Methods for Ecological
    Bioenergetics. Blackwell Scientific Publications, Oxford London Edinburgh Melbourne. 309-313.
    
    
    Gross J E, Wang Z, Wunder B A,1985. Effects of food quality and energy ne, eds: changes in gut morphology and capacities of Microtus ochrogaster. J Mamm., 66: 661-667.
    Haim A, Izuake I, 1993. The ecological significance of resting metabolic rate and non-shivering thermogenesis for rodents. J. Therm Biol. 18(2): 71-81.
    Hammond K A, Wunder B A, 1991. The role of diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogaster. Physiol Zool., 64: 541-567.
    Hansen E S, Nedergaard J, Cannon B, Knudsen J, 1984. Enzyme-linked immunosorbent assay (ELISA)studies of the interaction between mammalian and avian anti-thermogenin antibodies and brown adipose tissue mitoehondria from different species. Comp. Biochem. Physiol. 79B(3): 441-445.
    Hayes J P and M A Chappell, 1986. Effects of cold acclimation on maximum oxygen consumption during cold exposure and treadmill exercise in deer mice, Peromyscus maniculatus. Physiol. Zool.. 59:453-459.
    Hayes J P, 1989. Altitudinal and seasonal effects on aerobic metabolism of deer mice. J. Comp. Physiol. 159B: 453-459.
    Heldmaler G, Steinlecher S, Rafael J, 1982. Nonshivering thermogenesis and cold resistance during seasonal acclimation in the Djungarian hamster. J. Comp. Physiol. B. 149: 1-9.
    Heldmaier G, Steinlechner S, Ruf T, Wiesinger H, Kliongenspor M, 1989. Photoperiod and thermoregulation in vertebrates: body temperature rhythm and thermogenesis acclimation. J. Biol. Rhythm. 4:251-265.
    Himms-Hagen J., 1990. Brown adipose tissue thermogenesis: role in thermoregulation, energy regulation, and obesity. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schonbaum and P.Lomax. New York: Pergamon.
    Hinds D S, MacMillen R E, 1984. Energy scaling in marsupials and heteromyid rodents. Physio. Zool. 58:282-298.
    Hinds D S, Rice-Warner C N, 1992. Maximum metabolism and aerobic capacity in heteromyid and other rodents. Physiol. Zool. 65(1): 188-214.
    
    
    Hulbert A J, Hinds D S, MacMillen, 1985. Minimal metabolism, summit metabolism and plasma thyroxine in rodents from different environments. Comp. Biochem. Physiol., 81A: 687-693.
    Jansky L, 1973. Non-shivering thermogenesis and thermoregulatory significance. Biol. Rev. 48: 85-132.
    Karasov W H, 1986. Energetics, physiology and vertebrate ecology. Trends Ecol. Evol. 1: 101-104.
    Konarzewski M, Diamond J,1994. Peak sustained metabolic rate and its individual variation in cold stressed mice. Physiological Zoology. 67(5): 1186-1212.
    Koteja P, 1986.Maximum cold-induced oxygen consumption in the house sparrow Passer domesticus L. Physiol. Zool. 59: 43-48.
    Koteja P, 1987. On the relation between basal and maximum metabolic rate in mammals. Comp. Biochem. Physiol. 87A:205-208.
    Koteja P, E Krol, and J Stalinski, 1994. Maximum cold- and lactation induced rate of energy assimilation in Acomys cahirinus. Pol. Ecol.Stud. 20: 369-374.
    Koteja P, 1996.Limits to the energy budget in a rodent, Peromyscus maniculatus: The central limitation hypothesis. Physiological Zoology. 69(5):981-993.
    Kotejia P,1996.Limits to the energy budget in a rodent, Percomyscus maniculatus: The central limitation hypothesis. Physiol. Zool., 69:981~993.
    Laemmli U K,1970. Nature 227(680-685).
    Lechner A J, 1978. The scaling of maximal oxygen consumption and pulmonary dimension in small mammals. Respir. Physiol. 34:29-44.
    Lin C S, Klingenberg M, 1980. Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 611:103-110.
    Larrouy D, Laharrague P, Carrera G, Viguede-Bascands N, Levi-Meyrueis C, Fleury C, Pecqueur C, Nibbelink M, Andre M, Casteilla L, Riequier D.1997. Biochem.
    
    Biophys. Res. Commun. 235:760-764
    Matthias A, Jacobsson A, Cannon B, Nedergaard J, 1999. The Bioenergetics ofBrown Fat Mitoehondria from UCP1-ablated Mice. The Journal of BiologicalChemestry. 274 (40): 28150- 28160.
    McDevitt R M, Speakman J R, 1994a. Limits to sustainable metabolic rate during transient exposure to temperatures in short-tailed voles (Microtus agrestis).Physiol. Zool., 67(5):1103-1116.
    McNab B K, 1980. Food habits, energetics, and the population biology of mammals. Am. Nat. 116:106-124.
    McNab B K,1995. Energy expenditure and conservation in frigivorous and mixed-diet carnivores. J. Mammal. 76(1):206-222.
    Merritt J F, Zeger D, 1991. Seasonal thermogenesis and body mass dynamics of clethrionomys gapper. Can. J.Zoology. 69: 2271-2777.
    Nicholls D.G., Locke R.M., 1984. Physiol. Rev. 64: 1-64.
    Oufara S, Barre H, Rouanet J L, Chatonet J, 1987. Adaption to extreme ambient temperature in cold-acclimated gerbils and mice. Am. J. Physiol. 253: R39-R45.
    Peterson C C, K A Nagy, and J M Diamonnd, 1990. Sustained metabolic scope. Proc. Natl.Acad.. Sci.USA 87: 2324-2328.
    Refinetti R, Menaker M, 1992. Body temperature rhythm of the tree shrew, Tupaia belanged. The Journal of experimental Zoology. 263: 453-457.
    Refinetti R,1996. Comparison of the body temperature rhythms of diurnal and nocturnal rodents. The Journal of experimental Zoology. 275: 67-70.
    Regina M M, John R S, 1994. Limits to sustainable metabolic rate during transient exposure to low temperature in short-tailed field voles (Microtus agrestis). Physiol. Zool. 67(5): 1103-1116.
    Robinson E, Fuller C A, 1999. Endogenous thermoregulatory rhythms of squirrel monkeys in thermoneutrality and cold. Am. J. Physiol.276(Regulatory Intergrative Comp. Physiol.45):R1397-R1407.
    
    
    Samec S, Seydoux J, Dulloo A G, 1998. Role of UCP homologues in sdeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB: 715-724.
    SOPPELA-P; NIEMINEN-M; SAARELA-S; KEITH-J-S; MORRISON-J-N; MACFARLANE-F; TRAYHURN-P,1991. Brown-fat-specific mitochondrial uncoupling protein in adipose tissues of newborn reindeer.: AMERICAN JOURNAL OF PHYSIOLOGY 260(6 PART 2): R1229-R1234
    Sparti A, 1992. Thermogenic capacity of shrew(Mammalia, Soricdae) and its relationship with basal rate of metablism. Physio. Zool. 65(1):77-96.
    Taylor C R, 1982. Scailing limits of metabolism to body size: implication for animal design. In Taylor C R, Johansen K, Blolis L. A companion to animal physiology. Cambridge: Cambridge University Press. 161-170.
    Terry L D, Mitzi W A, 1998. Changes in gut capacity with location and cold-exposure in a species with low rates of energy use, the pine vole(Microtus pintorum). Physiological Zoology, 71(6): 611-623.
    Tomasi T E and T H Horton, 1992. Mammalian Energetics: Interdisciplinary Views of Metabolism and Reproduction. Comstock, Ithaca, N.Y.
    Tomothy J B, Wade G N, 1985. Photoperiodic control of seasonal body weight cycles in Hamsters. Neuroscience & Biobehavioral Reviews. 9: 599-612.
    Townsend C R, 1987. Bioenergetics: linking ecology, biochemistry and evolutionary theory. Trends Ecol.Evol. 2: 3-4.
    Weiner J, 1992. Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. Trends Ecol. Evol.7: 384-388.
    蔡理全,低温诱导长爪沙鼠(Merious unguiculatus)适应性产热的建立过程,硕士论文,1997。
    李庆芬 李宁 孙儒泳,1994。布氏田鼠对低温的适应性产热,兽类学报 14:286-293。
    刘世褶 张文远 王泽盛 戴菊秀,1982。树鼩24小时昼夜节律探讨。动物学报1(2):221-231。
    
    
    彭燕章 叶智章 邹如金等,1991.树鼩生物学.昆明:云南科技出版社,1-422.
    汪谦主编,现代医学试验方法。人民卫生出版社,1997。第341-347,712-715页。
    王德华 王祖望,1990。小哺乳动物在高寒环境中的适应对策Ⅱ:高原鼠兔和根田鼠非颤抖性产热的季节性交化兽类学报 10:40-53。
    王德华,王祖望,2000.高寒地区高原鼢鼠消化道形态的季节变化..兽类学报,2000(4):270-276.
    王德华.1995.高寒地区小型兽类适应环境的生理生态特征.中国科学院研究所博士后研究工作报告.
    王德华等,1996。根田鼠冷驯化过程中的适应性产热特征。动物学报42(4):368-376。
    王应祥.1993.云南动物多样性的现状与危机.云南生物多样性学术讨论会论文集.云南科技出版社.昆明.P101-104.
    王政昆.1996.我国热带小型兽类适应性产热的比较研究.北京师范大学.博士论文
    王政昆 李庆芬 孙儒泳 刘璐,1999.光周期和温度对中缅树鼩产热能力的影响.动物学报 45(3):287-293。
    王政昆 李庆芬 孙儒泳.1995b.中缅树鼩的非颤抖性产热及细胞呼吸特征.动物学研究.16(3):239-248.
    王政昆 李庆芬 孙儒泳.1996.褐色脂肪组织产热及其调节机制.生理科学进展27(4):353-355.
    王政昆 孙儒泳 李庆芬 1995a.倭蜂猴静止代谢率和体温的研究.动物学报 4(12):149-157.
    王政昆 孙儒泳 李庆芬 房继明.1994.中缅树鼩静止代谢率的研究.北京师范大学学报(自然科学版).30(3):408-414.
    王政昆,李庆芬,孙儒泳.2000.外源性褪黑激素对中缅树鼩适应性产热特征的影响.动物学报 46(2):154-159.
    王祖望 曾缙祥 韩永才 张晓爱,1980.高山草甸生态系统小哺乳动物能量动态的
    
    研究Ⅰ.高原鼠兔和中华鼠分鼠对天然食物的消化率和同化水平的测定.动物学报26(2):184-195.
    王祖望、张知彬等,1996.鼠害治理的理论与实践。北京:科学出版社。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700