立方氮化硼基多晶材料的制备与功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立方氮化硼(cBN)具有禁带宽度大、热导率高、介电常数小等优良的功能特性,cBN基多晶材料作为陶瓷基板、热沉材料、微波窗口材料等的潜在应用亟待研究与开发。本文在高温高压条件下烧结制备cBN基多晶材料,研究了其微观结构形貌和电、热、光学等功能属性,分析了晶粒、晶界相等对多晶材料的烧结及功能特性的影响,并初步探讨了与cBN基多晶材料形成欧姆接触的银电极制备方法及其表面金属化用低熔玻璃料的一些性质。本论文的主要研究结果如下:
     1.高温高压条件下由cBN微粉快速烧结可制备具有近紫外发光特性的cBN基多晶材料。Si含量增多,Si-cBN多晶材料的发光强度增大。热处理对纯cBN多晶烧结材料的发光性质影响不大,但显著提高了Si-cBN多晶材料的近紫外发光强度。cBN多晶材料的短波长光发射和光谱振动结构均与cBN晶体的声子作用直接相关。Si在高温高压烧结过程中直接实现了对cBN多晶材料的n型浅掺杂。
     2. Mg对提高cBN多晶材料的相对密度效果明显,Mg-cBN多晶材料具有低电阻率(处于半导体电阻率范围)和近紫外发光特性。热处理对Mg-cBN多晶材料的表面形貌影响较大,对调整试样内部cBN晶粒形态作用较小;热处理生成的MgO晶体的声子与试样中hBN的声子作用产生声子伴线结构。
     3. Al与cBN反应生成晶界相AlN和AlB12,能够显著促进Al-cBN多晶材料的烧结,对热导率和光吸收性能影响显著。Al添加量增大,Al-cBN多晶材料的致密度增大,热导率增大,其吸收特性逐渐体现为AlN的吸收特性;晶界相的存在使Al-cBN多晶材料的热导率数值整体较小,使其禁带宽度变窄。
     4. Al-cBN多晶材料在高电压、高频下具有优良的电学和介电性能。Al-cBN多晶材料具有较高的体积电阻率和良好的高压电阻稳定性,具有与生长-烧结型cBN多晶接近的介电性质及较高的高频介电稳定性。研究得出了Al-cBN多晶材料的I-V之间具有低电压下的二次非线性和高电压下的e指数递增变化规律,Al-cBN多晶材料的介电常数及其与介电损耗之积和气孔率之间都存在e指数递减关系。
     5.使用导电银胶在cBN多晶烧结试样表面获得较好的欧姆接触;随着cBN基多晶材料中Si含量的增多,其电极接触的欧姆特性逐渐减弱。
Cubic boron nitride (cBN) has fascinating functional properties, such as wide band gap, high thermal conductivity, and relatively small dielectric constant, etc. The potential applications of cBN based polycrystalline materials as ceramic substrate, heat sink and microwave window materials need to be developed urgently. In this thesis, cBN polycrystalline materials were sintered under high temperature and high pressure conditions. The influences of grain, grain boundary phase, and defects on the sintering and functional properties of cBN based polycrystalline materials were studied through microstructure observation and investigations on the materials’electrical, thermal, and optical properties. Meanwhile, the preparation of silver electrode with ohmic contact and some properties of low melting glass frits for surface metallization of cBN based polycrystalline materials were generally researched. The main results of this thesis are as follows:
     1. cBN based polycrystalline materials could be rapidly sintered from cBN micro-powders under high temperature and high pressure conditions, and they showed near-ultraviolet(UV) light-emitting properties. The photoluminescence intensities of Si-cBN polycrystalline materials increased with the increase of Si additions. Heat treatment showed little effect on the luminescence properties of pure polycrystalline cBN sintered materials, but significantly improved the near-UV photoluminescence intensity of Si-cBN polycrystalline materials. The short-wavelength light emission and spectral vibration structure of cBN polycrystalline materials were directly related to the phonon interaction of cBN crystals. Moreover, n-type shallow doping of cBN polycrystalline materials was realized by Si during the high temperature and high pressure sintering process.
     2. Mg was an effective additive for improving the relative densities of cBN polycrystalline materials. As-prepared Mg-cBN polycrystalline materials had low electrical resistivity (within the semiconducting range) and near-UV light-emitting property. Heat treatment displayed a greater impact on the surface morphology of Mg-cBN polycrystalline materials than the adjustment of cBN grain morphology within the specimens. The interaction between phonons of annealing-related MgO crystals and phonons of hBN led to phonon replica structure.
     3. Al reacted with cBN to form grain boundary phase, AlN and AlB12, which significantly promoted the sintering of Al-cBN polycrystalline materials and showed notable influence on their thermal conductivities and optical absorption properties. When the amount of Al was increased, Al-cBN polycrystalline materials maintained increasing density and thermal conductivity, and their optical absorption characteristics were dominated by those of AlN. Existence of grain boundary phase in general resulted in the lower thermal conductivities and the narrower bandgap for Al-cBN polycrystalline materials.
     4. Al-cBN polycrystalline materials had high volume resistivities and good resistance stability at high voltage, high stability of dielectric properties at high frequency and the similar dielectric properties as growth-sintered type cBN polycrystals. The investigations on the electrical and dielectric properties of Al-cBN polycrystalline materials revealed the I-V relation exhibited a quadratic nonlinear growth at low voltage and an e exponential growth at high voltage, and indicated an e exponential decline of dielectric constant, the product of dielectric constant and dissipation vs porosity were existed.
     5. Ohmic contact with cBN polycrystalline materisls were formed using silver paste. With the increase of Si addition in cBN based polycrystalline materisls, the Ohmic contact character of the electrodes gradually weakened.
引文
[1]Mirkarimi P. B., McCarty K. F., Medlin D. L., Review of advances in cubic boron nitride film synthesis, Mater. Sci. Eng. R 1997, 21(2):47~100
    [2]Gao F. M., He J. L., Wu E. D., et al., Hardness of covalent crystals, Phys. Rev. Lett., 2003, 91(1):015502
    [3]Pavel B., Hard choice: Diamond or CBN, Gear Solutions, 2006, 2:28~33
    [4]Komatsu T., Kudate Y., Fujiwara S., Heat resistance of a shock-synthesized B-C-N heterodiamond, J. Chem. Soc. Faraday Trans., 1996, 92(24):5067~5071
    [5]Demazeau G., High pressure diamond and cubic boron nitride synthesis, Diamond Relat. Mater., 1995, 4(4):284~287
    [6]Solozhenko V. L., Turkevich V. Z., Holzapfel W. B., Refined phase diagram of boron nitride , J. Phys. Chem. B 1999, 103(15):2903~2905
    [7]Behrens V., Beiss P., Commandeur B., et al., Properties of diamond and cubic boron nitride, Berlin: Springer, 2003, 118~139
    [8]Ooi N., Adams J. B., Ab initio studies of the cubic boron nitride (110) surface, Surf. Sci., 2005, 574(2-3):269~286
    [9]Yuan X. L., Niitsuma J., Sekiguchi T., et al., Characterization of p–n junction formed at the boundary of facets in cubic-BN using scanning electron microscope, Diamond Relat. Mater., 2005, 14(11-12):1955~1959
    [10]Chan C. Y., Zhang W. J., Meng X. M., et al., The growth of thick cBN films employing fluorine chemistry and ECR deposition, Diamond Relat. Mater., 2003, 12(3-7):1162~1168
    [11]Gubanov V. A., Hemstreet L. A., Fong C. Y., et al., Lattice relaxation and pressure dependence of carbon and silicon impurity states in cubic boron nitride, Appl. Phys. Lett., 1996, 69(2):227~229
    [12]Gubanov V. A., Pentaleri E. A., Fong C. Y., et al., Electronic structure of defects and impurities in III-V nitrides. II. Be, Mg, and Si in cubic boron nitride, Phys. Rev. B 1997, 56(20):13077~13086
    [13]Taniguchi T., Tanaka J., Mishima O., et al., High pressure synthesis of semiconducting Be-doped polycrystalline cubic boron nitride and its electrical properties, Appl. Phys. Lett., 1993, 62(6):576~578
    [14]Mishima O., Era K., Tanaka J., et al., Ultraviolet light-emitting diode of a cubic boron nitride pn junction made at high pressure, Appl. Phys. Lett., 1988, 53(11):962~964
    [15]凌铃,半导体材料的发展现状,新材料产业,2003, 6(115): 6~10
    [16]Matthias R. W., Wolfgang R. F., Review on materials, microsensors, systems, and devices for high-temperature and harsh-environment applications, IEEE Transactions on Industrial Electronics, 2001, 48(2):249~257
    [17]Rutsc G., Werner M., Perspectives in rugged microsystems for harsh environments, MST News, 1998, 2:4~6
    [18]Shimada K., Sota T., Suzuku K., First-principles study on electronic and elastic properties of BN, AlN, and GaN, J. Appl. Phys., 1998, 84(9):4951~4958
    [19]Geick R., Perry C. H., Rupprecht G., Normal modes in hexagonal boron nitride, Phys. Rev., 1966, 146(2):543~547
    [20]Reich S., Ferrari A. C., Arsenal, R., et al., Resonant raman scattering in cubic and hexagonal boron nitride, Phys. Rev. B 2005, 71(20):1~12
    [21]Werninghaus T., Hahn J., Richter F., et al., Raman spectroscopy investigation of size effects in cubic boron nitride, Appl. Phys. Lett., 1997, 70(8):958~960
    [22]Lu M., Bousetta A., Sukach R., et al., Growth of cubic boron nitride on Si(100) by neutralized nitrogen ion bombardment, Appl. Phys. Lett., 1994, 64(12):1514~1516
    [23]Shishonok E. M., Taniguchi T., Watanabe K., et al., Low-frequency raman scattering of Be-doped cubic boron nitride, Diamond Relat. Mater., 2003, 12(3-7):1133~1137
    [24]张铁臣,邹广田,MgO在Mg-hBN体系中对合成cBN晶体的影响,高压物理学报,2002, 16(3):227~230
    [25]Lowther J. E., Sigalas I. J., Influence of some substitutional defects on the relative stability and cohesive properties of cubic boron nitride, Diamond Relat. Mater., 2006, 15(1):67~70
    [26]Parlinski K., Lattice dynamics of cubic BN, J. Alloys Compd., 2001, 328(1-2):97~99
    [27]Guo Y.D, Song X. S., Li X. B., et al., Thermodynamic properties of cubic boron nitride under high pressure from ab initio calculations, Solid State Commun., 2007, 141(10):577~581
    [28]Saib S., Bouarissa N., Density functional calculation of band-parameters for boron nitride at normal and high pressures, J. Alloys Compd., 2008, 448(1-2):11~16
    [29]Kobayashi K., Watanabe K., Taniguchi T., First-principles study of various hexagonal BN phases, J. Phys. Soc. Jpn., 2007, 76(10):104707~104709
    [30]Mota R., Piquini P., Schmidt T. M., et al. Electronic and structural properties of defects in c-BN, International J. Quantum Chem., 1997, 65(5):941~946
    [31]Ferhat M., Zaoui A., Certier M., et al. Electronic structure of BN, BP and BAs-The art of scientifique computing, Phys. B 1998, 252(3):229~236
    [32]MacNaughton J. B., Moewes A., Wilks R. G., et al., Electronic structure of boron nitride single crystals and films, Phys. Rev. B 2005,72(19):1~8
    [33]Wentzcovitch R. M., Chang R. J., Cohen M. L., Electronic and structural properties of BN and BP, Phys. Rev. B 1986, 34(2):1071~1079
    [34]Xu Y. N., Ching W. Y., Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B 1991, 44(15):7787~7798
    [35]Bross H., Bader R., Calculation of the ground state properties of diamond and cubic boron nitride, Phys. Status Solidi (b) 1995, 191(2):369~385
    [36]Park K. T., Terakura K., Hamada N., Band-structure calculation for boron nitrides with three different crystal structures, J. Phys. C 1987, 20:1241~1251
    [37]Al-Douri Y., Structural phase transition of boron nitride compound, Solid State Commun. 2004, 132(7):465~470
    [38]Rodriguez-Hernández P., González-Diaz M., Muńoz A., et al., Electronic and structural properties of cubic BN and BP, Phys. Rev. B 1995, 51(20):14705~14708
    [39]Miyata N., Moriki K., Mishima O., et al., Optical constants of cubic boron nitride, Phys. Rev. B 1989, 40(17):12028~12029
    [40]Chrenko R. M., Ultraviolet and infrared spectra of cubic boron nitride, Solid State Commun., 1974, 14(6): 511~515
    [41]Agui A., Shin S., Fujisawa M., et al., Resonant soft-x-ray emission study in relation to the band structure of cBN, Phys. Rev. B 1997, 55(4):2073~2078
    [42]Evans D. A., Vearey-Roberts A. R., Poolton N. R. J., Locating hexagonal and cubic phases in boron nitride using wavelength-selective optically detected X-ray absorption spectroscopy, Appl. Phys. Lett., 2006, 89(16):161107(1~3)
    [43]Evans D.A., McGlynn A. G., Towlson B. M., et al., Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy, J. Phys. Condens. Matter., 2008, 20(7): 07523
    [44]Novikov N. V., Osetinskaya T. D., Shul'zhenko A. A., et al., Dopov. Akad. Nauk. Ukr. RSR, Ser. A Fiz. Mat. Tekh. Nauki USSR, 1983:72~75
    [45]Wentorf R. H., Cubic form of boron nitride, J. Chem. Phys., 1957, 26: 956
    [46]O. Mishima, S.Yamaoka, O.Fukunaga, Crystal growth of cubic boron nitride by temperature difference method at ~55 kbar and ~1800℃, Appl. Phys., 1987, 61(8):2822~2825
    [47]Kagamida M., Kanda H., Akashi M., Crystal growth of cubic boron nitride using Li3BN2 solvent under high temperature and pressure, J. Cryst. Growth, 1989, 94(1):261~269
    [48]Devreis R. C., Fleisher J. F., Phase equilibria pertinent to the growth of cubic boron nitride, J. Cryst. Growth, 1972, 13-14 (C): 88~92
    [49]Fukunaga O., Nakano S., Taniguchi T., Nucleation and growth of cubic boron nitride using a Ca-B-N solvent, Diamond Relat. Mater., 2004, 3(9): 1709~1713
    [50]T. Kuratomi, Method of manufacturing cubic boron nitride single crystal with Ni solvent, Japan Patent, 0841010, 1974-08-12
    [51]T. Kuratomi, Method of manufacturing cubic boron nitride single crystal with Co solvent, Japan Patent, 0841011, 1974-09-10
    [52]T. Kuratomi, Method of manufacturing cubic boron nitride single crystal with Fe solvent, Japan Patent, 0841010, 1975-05-22
    [53]Taniguchi T., Yamaoka S., Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure, J. Cryst. Growth, 2001, 222(3): 549~554
    [54]Saito H., Ushio M., Nagano S., et al., Synthesis of cubic boron nitride single crystal with Fe-Al solvent, Yogyo Kyokai Zasshi [in Japanese], 1970, 74: 7
    [55]Taniguchi T., Growth of cubic boron nitride single crystals using a metal solvent under high pressure, New Diamond and Frontier Carbon Technology, 2004, 14 (5): 289~297
    [56]Kubota Y., Watanabe K., Taniguchi T., Synthesis of cubic and hexagonal boron nitrides by using Ni solvent under high pressure, Jpn. J. Appl. Phys., 2007, 46(1):311~314
    [57]Kubota. Y, Kosuda. K, Taniguchi. T, Effect of Al on the formation of cubic boron nitride Using Ni3Al solvent under high pressure,Japanese J. Appl. Phys., 2007, 46 (11):7388~7391
    [58]Kabayama T., Method of synthesizing cubic crystal structure boron nitride, U.S. Patent, 3959443, 1976-5-25
    [59]Kabayama T., synthesis of cubic boron nitride from hBN with Si as solvent, Jpn. J. Appl. Phys, 1973, 73(33):486~492
    [60]Oleknovich N. M., Pashkoskii O. I., Shipilo V. B., Study on Si Doping of Cubic Boron Nitride single crystal, Sverhtverd. Mater., 1983, 3: 11~12
    [61]Mazurenko A. M., Leusenko A. A., Shimanovich P. P., et al., Synthesis of cubic boron nitride from amorphous boron nitride containing oxide impurity using Si catalyst solvent, Sverhtverd. Mater., 1984, 5:12~13
    [62]Yoshihara H., Onodera A., Suito K., et al., Formation of novel sintered composites by high-pressure crystallization of amorphous ceramics, J. Mater. Sci. 1990, 25 (9):4157~4161
    [63]He D. W., Akaishi M., Tanaka T., High pressure synthesis of cubic boron nitride from Si-hBN system, Diamond Relat. Mater., 2001, 10(8):1465~1469
    [64]Ji X. R., Su Z. P., Yang D. P., et al., Direct nucleation and growth of cBN by the chemical reaction, Mater. Lett., 2008, 62(10-11): 1721~1723
    [65]Wentorf R. H., Preparation of semiconducting cubic boron nitride, J. Chem. Phys., 1962, 36(8): 1990~1992
    [66]Taniguchi T., Terajil T., Koizumi S., et al., Appearance of n-nype semiconducting properties of cBN single crystals grown at high pressure, Jpn. J. Appl. Phys. 2002, 41(2A):L109~ L111
    [67]Taniguchi T., Watanabe K., Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent, J. Cryst. Growth, 2007, 303(2): 525~529
    [68]Watanabe K., Taniguchi T., Kanda H., Ultraviolet luminescence spectra of boron nitride single crystals grown under high pressure and high temperature, Phys. Stat. Sol. (a) 2004, 201(11): 2561~2565
    [69]Erasmus R. M., Comins J. D., Fish M. L., Raman and photoluminescence spectra of indented cubic boron nitride and polycrystalline cubic boron nitride, Diamond Relat. Mater., 2000, 9(3-6):600~604
    [70]Taniguchi T., Koizumi S., Watanabe K., et al., High pressure synthesis of UV-light emitting cubic boron nitride single crystals, Diamond Relat. Mater., 2003, 12(3-7): 1098~1102
    [71]Taniguchi T., Watanabe K., Koizumi S., et al., Ultraviolet light emission from self-organized p–n domains in cubic boron nitride bulk single crystals grown under high pressure, Appl. Phys. Lett., 2002, 81(22):4145~4147.
    [72]Sekiguchi T., Koizumi S., Taniguchi T., Characterization of p–n junctions of diamond and c-BN by cathodoluminescence and electron-beam-induced current, J. Phys.: Condens. Matter 2004, 16(2):S91~ S97
    [73]Erasmus R. M., Comins J. D., Photoluminescence spectroscopy of electron-irradiation induced defects in cubic boron nitride (cBN), Phys. Stat. Sol. (c) 2004, 1(9):2269~2273
    [74]Watanabe K., Taniguchi T., Kanda H., Polarized Raman scattering of impurity modes in beryllium-doped cubic boron nitride single crystals, Appl. Phys. Lett., 2003, 82(18):2972~2974.
    [75]Shishonok E. M., Raman scattering of light in doped cubic boron nitride, J. Appl. Spectrosc., 2004, 71(6):880~887
    [76]Vetter U., Taniguchi T., Wahl U., et al., Lanthanide doped cubic boron nitride, Materials Research Society Symposium– Proceedings, 2002, 744: 555~560
    [77]Shishonok E. M., Leonchik S. V., Steeds J. W., et al., Strong ultraviolet luminescence from cerium- and gadolinium-doped cubic boron nitride, Diamond Relat. Mater., 2007, 16 (8): 1602~1607
    [78]Shishonok E. M., Philipp A. R., Shishonok N. A., et al., Luminescence in cubic boron nitride doped by rare-earth impurity, Phys. Stat. Sol. (b) 2005, 242(8): 1700~1704
    [79]Shishonok E. M., Leonchik S. V., Steeds J. W., Photoluminescence of cubic BN doped with Europium and codoped with Europium and Chromium, Inorg. Mater., 2008, 44(5):490~499.
    [80]Shishonok E. M., Leonchik S. V., Steeds J. W., Luminescence from europium, europium-chromium, erbium, samarium and terbium-activated powder, ceramic and polycrystalline cubic boron nitride, Phys. Stat. Sol. (b) 2007, 244(6):2172~2179
    [81]Shishonok E. M., Leonchik S. V., Steeds J. W., Luminescence of samarium-activated cubic boron nitride, J. Appl. Spectrosc., 2008, 75(1):89~95
    [82]Nakayama A., Taniguchi T., Kubota Y., et al., Characterization of luminous-cubic boron-nitride single-crystals doped with Eu3+ and Tb3+ ions, Appl. Phys. Lett., 2005, 87(21):211~213
    [83]Sokolowski M., Deposition of wurtzite type boron nitride layers by reactive pulse plasma crystallization, J. Cryst. Growth, 1979, 46(1):136~138
    [84]邓金祥,王波,严辉等,宽带隙立方氮化硼薄膜制备,半导体学报,2001, 22(1):66~68
    [85]Lu M., Bousetta A., Bensaoula A., et al., Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition, Appl. Phys. Lett., 1996, 68(5):622~624
    [86]Litvinov D., Taylor C. A., Clarke R., Semiconducting cubic boron nitride, Diamond Relat. Mater., 1998, 7(2-5):360~364
    [87]Ronning C., Feldermann H., Hofs?ss H., Growth, doping and applications of cubic boron nitride thin films, Diamond Relat. Mater., 2000, 9(9-10)1767~1173
    [88]Ronning C., Banks A.D., McCarson, B. L., et al., Structural and electronic properties of boron nitride thin films containing silicon, J. Appl. Phys., 1998, 84(9):5046~5051
    [89]Litvinov D., Clarke R., Taylor II C. A., et al., Real-time strain monitoring in thin film growth: Cubic boron nitride on Si (100), Mater. Sci. and Engineering B 1999, 66(1):79~82
    [90]Nose K., Oba H., Yoshida T., Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc, Appl. Phys. Lett., 2006, 89(11):112124(1~3)
    [91]Liao K. J., Wang W. L., Kong C. Y., Study on microstructure and semiconducting properties of doped c-BN-containing films, Surf. Coat. Technol., 2001, 141(2-3):216~219
    [92]Vetter U., Reinke P., Ronning C., et al., Europium doping of c-BN and Ta-C thinfilms, Diamond Relat. Mater., 2003, 12(3-7):1182~1185
    [93]Gielisse P. J., Mitra S. S., Plendl J. N., et al., Lattice infrared spectra of boron nitride and boron monophosphide, Phys. Rev. B 1967, 155(3):1039~1046
    [94]Demazeau L. V., Etourneau J., Cubic boron nitride: Synthesis, physicochemical properties and application, Mater. Sci. Eng. B 1991, 10(2):149~164
    [95]Powers M. J., Benjamin M. C., Porter L. M., et al., Observation of anegative electron affinity for boron nitride, Appl. Phys. Lett., 1995, 67(26):3912~3914
    [96]Kimura C., Yamamoto T., Sugino T., Field emission characteristics of boron nitride films deposited on Si substrates with cubic boron nitride crystal grains, J. Vac. Sci. Technol. B, 2001, 19(3):1051~1054
    [97]Wang B., Zhou R. Z., Yan X. H., et al., Field emission mechanism from nanocrystalline cubic boron film, Microelectron. J., 2004, 35(4):371~374
    [98]Funakawa S., Yamamuro Y., Luo H. T., et al., Field emission characteristics of boron nitride nanofilms deposited on substrate with various work functions, Diamond Relat. Mater., 2004, 13(4-8):994~998
    [99]Komatsu S., Okudo A., Kazami D., et al., Electron field emission from self-organized micro-emitters of sp3-bonded 5H boron nitride with very high current density at electric field, J. Phys. Chem. B 2004, 108(17):5182~5184
    [100]Wojak G. J., Choi W. B., Myers A. F., et al., Field emission from aluminum nitride and cubic boron nitride coating, In: Proceedings of the IEEE International Vacuum Microelectronics Conference, St. Petersburg: 1996. 217~220
    [101]Sugino C., Yanika K., Kawasaki S., et al. Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition, Jpn. J. Appl. Phys. 1997, 36(4B):L463~ L466
    [102]Chana C. Y., Zhanga W. J., Matsumotob S., et al., A nanoindentation study of thick cBN films prepared by chemical vapor deposition, J. Cryst. Growth, 2003, 247(3-4): 438~444
    [103]Zhu P. W., Zhao Y. N., Wang B., et al., Prepared low stress cubic boron nitride film by physical vapor deposition, J. Solid State Chem., 2002, 167(2): 420~424
    [104]Robert F. Davis, III-V nitrides for electronic and optoelectronic applications, In: Proceedings of the IEEE, 1991, 79(5):702~712
    [105]王光祖,院兴国,超硬材料,郑州:河南科学技术出版社,1996. 223~240
    [106]孙振武,翟中庆,立方氮化硼烧结体制造方法浅析,金刚石与磨料磨具工程,1996, 92(2):34~35
    [107]刘一波,屠厚泽,齐秀华等,聚晶立方氮化硼(PcBN)结合剂的研究,超硬材料与工程, 1996, 4:22~25
    [108]Sumiya H., Uesaka S., Satoh S., Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method, J. Mater.Sci., 2000, 35(5):1181~1186
    [109]Hideaki I., Tsuneaki M., Shigeharu N., Preparation of c-BN Sintered Compact by Reaction Sintering under High Pressure, Science and Technology of New Diamond, Tokyo: KTK Scientific Publishers, 1990. 211~215
    [110]Taniguchi T., Akaishi M., Yamaoka S., Sintering of cubic boron nitride without additives at 7.7 GPa and above 2000℃, J. Mater. Res., 1999, 14(1):162~169
    [111]Benko E., Morgiel J., Czeppe T., BN Sintered with Al: Microstructure and Hardness, Ceram. Int., 1997, 23(1):89~91
    [112]Benko E., Stanisaw J., Skrzypek B. K., et al., cBN-TiN, cBN-TiC composites: chemical equilibria, microstructure and hardness mechanical investigations, Diamond Relat. Mater., 1999, 8 (10):1838~1846
    [113]Benko E., Klimczyk P., Morgiel J., et al., Electron microscopy investigations of the cBN-Ti compound compacts, Mater. Chem. Phys., 2003, 81 (2-3):336~340
    [114]Benko E., Wyczesany A., Barr T. L., cBN-metal/metal nitride compacts, Ceram. Int., 2000, 26(6):639~644
    [115]Benko E., Morgiel J., Czeppe T., et al., Microstructure and hardness of cBN-Zr composite, J. Eur. Ceram. Soc., 1998, 18(4):389~393
    [116]Klimczyk P., Benko E., Lawniczak-Jablonska K., et al., Cubic boron nitride-Ti/TiN compacts: hardness and phase equilibrium as function of temperature, J. Alloys Compd., 2004, 382(1-2):195~205
    [117]Sithebe H. S. L., McLachlan D., Sigalas I., et al., Pressure infiltration of boron nitride performs with molten aluminum, Ceram. Int., 2008, 34(6): 1367~1371
    [118]Bezhenar M. P., Bozhko S. A., Bilyavina N. M., et al., The structure formation in reaction sintering of cubic boron nitride submicron and nanosized powders with aluminum at the stage of high-pressure infiltration, J. Superhard Mater., 2008, 30(1):28~37
    [119]Rong X. Z., Yano T., TEM investigation of high-pressure reaction-sintered cBN-Al composites, J. Mater. Sci., 2004, 39(14):4705~ 4710
    [120]Rong X. Z., Tsurumi T., Fukunag O., et al., High-pressure sintering of cBN-TiN-Al compacts for cutting tool application, Diamond Relat. Mater., 2002, 11(2):280~286
    [121]Walmsley J. C., Lang A. R., A transmission electron microscope study of a cubic boron nitride-based compact material with AlN and AlB2 binder phases, J. Mater. Sci., 1987, 22(11):4093~4102
    [122]Li Y. J., Li S. C., Lv R., et al., Study of high-pressure sintering behavior of cBN composites starting with cBN-Al mixtures. J. Mater. Res., 2009, 23(9): 2366~2372
    [123]Lv R., Liu J., Li Y. J., et al., High pressure sintering of cubic boron nitridecompacts with Al and AlN, Diamond Relat. Mater., 2008, 17(12): 2062~2066
    [124]Zhao Y. C., Wang Mi. Z., Cubic BN sintered with Al under high temperature and high pressure, Chin. Phys. Lett., 2007, 24(8):2412~2414
    [125]Zhao Y. C., Wang Mi. Z., Preparation of polycrystalline cBN containing nanodiamond, J. Mater. Process. Technol., 2008, 198(1-3):134~138
    [126]臧建兵,王明智,王艳辉等,ZrO2(Y2O3)增韧的Si3N4中介结合的聚晶立方氮化硼,材料研究学报,2000, 14(6):595~598
    [127]刘一波,聚晶立方氮化硼合成工艺及烧结机理的研究:[硕士学位论文],徐州:中国矿业大学,1997
    [128]Lembit K., Eduard K., Investigations of structure and tribological properties of the lightweight c-BN-based composites, Mater. Sci., 2005, 11(4):394~397
    [129]Hotta M., Goto T., Densification and microstructure of Al2O3-cBN composites prepared by spark plasma sintering, J. Jpn. Ceram. Soc., 2008, 116(1354): 744~748
    [130]Zhao Y. C., Wang M. Z., Effect of sintering temperature on the structure and properties of polycrystalline cubic boron nitride prepared by SPS, J. Mater. Process. Technol., 2009, 209(1):355~359
    [131]Yaman B., Mandal H., Spark plasma sintering of Co–WC cubic boron nitride composites, Mater. Lett., 2009, 63(12): 1041~1043
    [132]Wakatsuki M., Ichinose K., Aoki T., Synthesis of polycrystalline cubic BN, Mater. Res. Bull., 1972, 7(9):999~1004
    [133]Maxwell J. C., A treatise on electricity and magnetism, London: Oxford University Press, 1892. 435~449
    [134]Xu Y. B., Kinugawa J., Yagi K., Development of thermal conductivity prediction system for composites, Mater. Trans., 2003, 44(4):629~632
    [135]Xu Y. B., Yagi K., Calculation of the thermal conductivity of randomly dispersed composites using a finite element modeling method, Mater. Trans., 2004, 45(8):2602~2605
    [136]Xu Y. B., Yagi K., Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement, Comput. Mater. Sci., 2004, 30(3-4):242~250
    [137]B?hm H. J., Nogales S., Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions, Compos. Sci. Tec., 2008, 68(5):1181~1187
    [138]Hadjov K., Dontchev D., Differential medium theory to predict the thermal conductivity of composites by finite particle concentration, Journal of the University of Chemical Technology and Metallurgy, 2008, 43(4):438~442
    [139]田民波,电子封装工程,北京:清华大学出版社,2003. 322~325
    [140]Fujii H., Nakae H., Okada K., Interfacial reaction wetting in the boron nitride/molten aluminum system, Acta Metall. Mater., 1993, 41(10): 2963~2971
    [141]Fujii H., Nakae H., Okada K., Application of wetting to fabrication of boron nitride/aluminum composites. In: Proceedings of the International Conference on Advanced Composite Materials, 1993, 1001~1007
    [142]Kolesnichenko G. A., Naidich Y. V., Brazing of materials based on dense modifications of boron nitride, Poroshkovaya Metallurgiya, 1992, 8: 31~34
    [143]Kolesnichenko G. A., Naidich Y. V., Soldering of materials on the base of dense boron nitride modification, Poroshkovaya Metallurgiya, 1992, 8(356):31~34
    [144]Naidich Y. V., Zhuravlev V. S., Gab I. I., et al., Liquid metal wettability and advanced ceramic brazing, J. Eur. Ceram. Soc. 2008, 28 (4):717~728
    [145]Borom M. P., Slack G. A., Szymasze J. W., Thermal conductivity of commercial aluminum nitride, Am. Ceram. Soc. Bull. 1972, 51(11):852~856
    [146]Tummala R. R., Ceramics in microelectronic packaging, Am. Ceram. Soc. Bull. 1988, 67(4):752~758
    [147]Schubert Th., Neubauer E., Weissg?rber T., Fast hot pressing of diamond composites for electronics’cooling applications, In: Proceedings of the 2008 world congress on powder metallurgy & particulate materials, Washington, USA, 2008
    [148]Schubert Th., Trindade B., Wei?g?rber T., et al., Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng. A 2008, 475(1-2):39~44
    [149]Schubert Th., Ciupiński ?., Zieliński W., et al., Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications, Scripta Mater., 2008, 58(4):263~266
    [150]He X. B., Qu X. H., Ren S. B., et al., Net-shape forming of composite packages with high thermal conductivity, Science in China Series E: Technological Sciences, 2009, 52(1):238~242
    [151]Kidalov S. V., Shakhov F. M., Vul A. Y., Thermal conductivity of nanocomposites based on diamonds and nanodiamonds, Diamond Relat. Mater., 2007, 16(12):2063~2066
    [152]Benko E., Sobczak N., Bielanska E., et al., Wettability studies of cBN by AlNi, In: Proc. Int. Conf. High Temperature Capillarity, Cracow(Poland), 1997
    [153]石安家,大尺寸PCBN合成研究:[硕士学位论文],长春;吉林大学,2005
    [157]郭健,浅析差示扫描量热法测定材料的比热容,高分子材料研究,2007, 165(10):19~20
    [155]杨洁,王文晶,硅掺杂半导体立方氮化硼单晶的制备,长春理工大学学报,2004,27(3):107~109
    [156]杨洁,用四探针方法测量立方氮化硼的电阻率,长春理工大学学报,2005,28(2):96~97
    [157]Parsons J. L., Milberg M. E., Vibrational spectra of vitreous B2O3·xH2O, J. Am. Ceram. Soc., 1960, 43(6):326~330
    [158]Broadhead P., Newman G. A., The vibrational spectra of orthoboric acid and its thermal decomposition products, J. Mol. Struct. 1971, 10(2):157~172
    [159]Kirn K., Lambrecht W. R. L., Segall B., Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN, Phys. Rev. B 1996, 53(24): 6310~16326
    [160]张锐,SPS条件下cBN与结合剂组元相互作用研究:[硕士学位论文],秦皇岛;燕山大学,2007
    [161]R.科埃略(法),B.阿拉德尼兹(法)著,张冶文等译,电介质材料及其介电性能,北京:科学出版社,2000. 27~32
    [162]Sanjurjo J. A., Lopez-Cruz E., Vogi P., et al, Dependence on volume of the phonon frequencies and the ir effective charges of several III-V semiconductors. Phys. Rev. B 1983, 28 (8):4579~4584
    [163]Bose D. N., Hensch H. K., Effects of degree of three-dimensional order and Fe impurities on photoluminescence of boron nitride, J. Am. Ceram. Soc., 1970, 92(2):281~284
    [164]Yao B., Shen Z. X., Liu L., et al., Strong deep-blue photoluminescence of mesographite boron nitride, J. Phys.: Condens. Matter 2004, 16(12):2181~2186
    [165]Krasnoperov V. A., Vekshina, N. V., Khusidman M. B., et al., Radiation induced luminescence processes in c-BN, Zh. Prikl. Spektr., 1969, 11(2): 299~303
    [166]Ageev V., Klimentov S., Urganov M., et al., Enhanced free carrier generation in boron nitride films by pulsed laser radiation, Appl. Surf. Sci., 1999, 138~139 (1):364~369
    [167]Williams E. W., Boron nitride phonon wavenumbers and frequencies, Phys. Status Solidi, 1968, 25(4): 493~498
    [168]Pokrovskii Y. E., Radiative recombination in semiconductors [in Russian], Nauka, Moscow, 1972. 45~49
    [169]Mishima O., Era K., in Electronic Refractory Materials, edited by Kumashilo Y., Marcel Dekker, New York, 2000. 495~496
    [170]Zhang W. J., Kanda H., Matsumoto S., Cathodoluminescence of cubic boron nitride films deposited by chemical vapor deposition, Appl. Phys. Lett., 2002, 81(18):3356~3358
    [171]Rumyantsev S. L., Levinshtein M. E., Jackson A. D., et al., Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, Eds. M.E.Levinshtein, S. L. Rumyantsev, M.S. Shur, New York: John Wiley & Sons, 2001. 67~69
    [172]Huang W. Q., Zhang R. T., Wang H. X., et al., Laser on porous silicon after oxidation by irradiation and annealing, Opt. Commun., 2008, 281(20):5229~5233
    [173]Zhao Y. Ch, Wang M. Zh, Interaction of CBN with Al, Si, Ti under high pressure high temperature, In: Doctoral Forum of China-Material Science and Engineering, Beijing, 2006
    [174]Colinge J. P., Colinge C. A., Physics of semiconductor devices, New York: Kluwer Academic Publishers, 1981. 78~84
    [175]Misho R. H., Murad W. A., Band gap measurements in thin films of hematite Fe2O3, pyrite FeS2 and troilite FeS prepared by chemical spray pyrolysis, Solar Energy Mater. Solar Cells, 1992, 27(4):335~345
    [176]Lindberg J. D., Absorption coefficient of atmospheric dust and other strongly absorbing powders: an improvement on the method of measurement, Appl. Optics., 1975, 14(12):2813~2815
    [177]Strens R. G. J., Wood B. J., Diffuse reflectance spectra and optical properties of some iron and titanium oxides and oxyhydroxides, Mineral Mag., 1979, 43(6):347~354
    [178]Taniguchi T., Watanabe K., Koizumi S., Defect characterization of cBN single crystals grown under HP/HT, Phys. Stat. Sol. (a) 2004, 201(11): 2573~2577
    [179]Siwiec J., Sokolowska A., Olszyna A., et al., Photoluminescence properties of nanocrystalline, wide band gap nitrides (C3N4, BN, AlN, GaN), Nanostructured Mater. 1998, 10(4):625~634
    [180]Mishima O., Tanaka J., Yamaoka S., et al., High-temperature cubic boron nitride P-N junction diode made at high pressure, Science, 1987, 238(4824): 181~183
    [181]Rebane K. K., Controllable broadening of zero-phonon lines by means of the Doppler effect and prospects of using spectral hole burning in optical informatics, Opt. Spectrosc., 2005, 98(5):776~779
    [182]Chawla S., Jayanthi K., Chander H., et al., Synthesis and optical properties of ZnO/MgO nanocomposite, J. Alloys Compd. 2008, 459(1-2):457~460
    [183]Tamboli S. H., Patil R. B., Kamat S. V., et al., Modification of optical properties of MgO thin films by vapour chopping, J. Alloys Compd. 2009, 477(1-2): 855~859
    [184]Karch K., Bechstedt F., Ab initio lattice dynamics of BN and AIN: covalent versus ionic forces, Phys. Rev. B 1997, 56 (12):7404~7415
    [185]Shishonok E. M., Luminescence centers in cubic boron nitride, J. Appl. Spectrosc. 2007, 74(2):272~277
    [186]O'Brien W. L., Jia J., Dong Q. Y., et al., Phonon relaxation in soft-x-ray emission of insulators, Phys. Rev. B 1993, 47(1):140~143
    [187]Schütt O., Pavone P., Windl W., et al., Ab initio lattice dynamics and charge fluctuations in alkaline-earth oxides, Phys. Rev. B 1994, 50(6): 3746~3753
    [188]Parlinski K., ?a?ewski J., Kawazoe Y., Ab initio studies of phonons in MgO by the direct method including LO mode, J. Phys. Chem. Solids, 2000, 61(1):87~90
    [189]Hall A., Economy J., The Al(L) + AIB12?AlB2 peritectic transformation and its role in the formation of high aspect ratio AlB2 flakes, J. Phase Equilib., 2000, 21(1):63~69
    [190]Wang X. M.,The formation of AlB2 in an Al-B master alloy,J. Alloys Compd., 2005, 403(1-2):283~287
    [191]梁英教,车荫昌,无机物热力学数据手册,沈阳:东北大学出版社,1993. 45~49
    [192]Yoder M. N., Wide bandgap semiconductor materials and devices, IEEE Transitions on electron devices, 1996, 43(10):1633~1636
    [193]马海涛,立方氮化硼光学和电学的非线性研究:[硕士学位论文],长春;吉林大学,2004
    [194]耿东锋,立方氮化硼热激发电流与非线性伏安特性的研究:[硕士学位论文],长春;吉林大学,2005
    [195]窦庆萍,立方氮化硼二阶非线性光学性质及电致发光的研究:[博士学位论文],长春;吉林大学,2006
    [196]Rose A., Space-charge-limited currents in solids, Phys. Rev., 1955, 7(6): 1538~1544
    [197]Shocey W., Prim C., Space-charge-limited emission in semiconductors, Phys. Rev., 1953, 90(5):753~756
    [198]Onodera A., Nakatar M., Kobayashi M., et al., Pressure dependence of the optical-absorption edge of cubic boron nitride, Phys. Rew. B 1993, 48(4):2777~2780
    [199]Slack G.A., Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids, 1973, 34(2):321~335
    [200]Makedon I. D., Petrov A. V., Fei'dgun L. I., Temperature dependence of thermal conductivity of zinc blende boron nitride, Neorganich. Mater., 1972, 48(4):765~766
    [201]Penn S. J., Alford N. M., Templeton A., et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc., 1997, 80(7):1885~1888
    [202]Bose S. K., Kirkpatrick S. K., Dennis W. M., Anharmonic phonon decay in disordered systems, Phys. B 1999, 271(1-4):198~204
    [203]Bose, S. K., Kirkpatrick S. K., Dennis W. M., Effects of disorder on anharmonic phonon relaxation. J. Luminescence, 1997, 72-74:422~424
    [204]Alford N. M., Breeze J., Wang X., et al., Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K, J. Euro. Ceram. Soc., 2001, 21(15):2605~2611
    [205] Peng T., Piprek J., Qiu G., et al., Band gap bowing and refractive index spectra of polycrystalline AlxIn1-xN films deposited by sputtering, Appl. Phys. Lett., 1997, 71(17):2439~2441
    [206]Slaack G. A., McNelly T. F., Growth of high purity AlN crystals,J. Cryst. Growth, 1976, 34:263~279
    [207]Youngman R. A., Harris J. H., Luminescence studies of oxygen-related defects in aluminum nitride, J. Amer. Soc., 1990,73(11):3238~3246
    [208] Carlone C., Lakin K. M., Shanks H. R., Optical phonons of aluminum nitride, J. Appl. Phys., 1984, 55(11):4010~4014.
    [209] Prokofyeva T., Seon M., Vanbuskirk J., et al., Vibrational properties of AlN grown on (1 1 1)-oriented silicon, Phys. Rev. B 2001, 63(12):125313
    [210] Sanjurjo J. A., López-cruz E., Vogl P., et al., Dependence on volume of phonon frequencies and the ir effective charges of several III-V semiconductors, Phys. Rev. B 1983, 28(8):4578~4584
    [211]Mohammad S. N., Electrical characteristics of thin film cubic boron nitride, Solid-State Electron., 2002, 46(2):203~222
    [212]Brillson L. J., Contacts to semiconductors: fundamentals and technology, Park Ridge, NJ: Noyes Publishing Co., 1993. 11~15
    [213]Nussbaumer H., Baumgartner F. P., Willeke G., et al., Hall mobility minimum of temperature dependence in polycrystalline silicon, J. Appl. Phys., 1998, 83(1):292~296
    [214]Taniyasu Y., Kasu M., Aluminum nitride deep-ultraviolet light-emitting p–n junction diodes, Diamond Relat. Mater., 2008, 17(7-10):1273~1277
    [215]Gottfried K., Fritsche H., Kriz J., et al., A high-temperature stable metallization scheme for SiC-technology operating at 400℃in air, Mater. Sci. Forum, 1998, 264-268(2): 795~798
    [216]Okojie R. S., Lukco D., Chen Y. L., et al., Reaction kinetics of thermally stable contact metallization on 6H-SiC, In: Proc. Mater. Res. Soc. Symp., 2001, 640: H7.5.1~H7.5.6
    [217]Neudeck P. G., Okojie R. S., Chen L.Y., High-temperature electronics-a role for wide bandgap semiconductors, In: Proc. of the IEEE, 2002, 90(6):1065~1076
    [218]Kim T. J., Holloway P. H., Wide Bandgap Semiconductors, New York: William Andrew Publishing, 1999. 80~150
    [219]He B., Zhang W. J., Zou Y. S., et al., Electrical properties of Be-implanted polycrystalline cubic boron nitride films, Appl. Phys. Lett., 2008, 92(10):102108
    [220]Yin H., Boyen H. G., Zhang X. W., Fabrication of ohmic Au/Cr contacts on top of cubic boron nitride films, Diamond Relat. Mater., 2007, 16(1):46~49
    [221]Lu M., Bousetta A., Bensaoula A., et al., Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition, Appl. Phys. Lett., 1996, 68(5):622~624
    [222]Szmidt J., Werbrowy A., Jarzebowski L., et al., Effect of annealing on the structure and electrical properties of sulfur-doped amorphous c-BN layers, J Mater. Sci., 1996, 31(10):2609~2613
    [223]Sobczak N., Seal S., Barr T., et al., Wetting and interfacial chemistry in CuTi/BN system, In: Third International Conference on Composites Engineering, ICCE/3, LA: New Orleans Press, 1996. 111~112
    [224]Kolesnichenko G. A., Primachuk V. L., Zyukin N. S., Wetting by molten metals of boron nitride base materials of different phase composition, Poroshkovaya Metallurgiya, 1992, 8(6):31~34
    [225]Martirosjan A. M., Transition metal nitride functional coatings, Adgenzja Rasplavov I Pajka Materialov [in Russian], 1991, 26: 17~20
    [226]Kolesnichenko G. A., Physicochemical bases of metallizing technology and soldering of superhard materials and increasing the operating capacity of tools made from them, Sverkhtverdye Materialy, 1987, 4:17~20
    [227]Dou Q. P., Ma H. T., Jia G., Light emission from cBN crystal synthesized at high pressure and high temperature, Appl. Phys. Lett., 2006, 88:154102
    [228]刘志平,氮化铝陶瓷及其表面金属化研究:[博士学位论文],天津;天津大学,2008年
    [229]龙乐,低温共烧陶瓷基板及其封装应用,电子与封装,2006,6 (11): 5~9
    [230]李志宏,陶瓷磨具制造,北京:中国标准出版社,2000. 55~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700