演化计算系统及其综合设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用优化来描述各种问题尽管不是最佳的表述方式,但是它是一个相对简单和通用的手段——至少从原则来讲各种问题可以被表示为优化问题。本文采用优化来表征一个带求解的问题,进而以它为对象,对问题求解系统进行设计和分析。
     针对采用搜索机制进行对问题的求解的直接优化方法,前人曾做过大量的理论研究和实际应用。这些研究最终产生了演化计算这一领域。它通过模仿自然界或社会系统中的各式各样的自适应和学习机制来引导搜索过程的进行,从而实现优化这一目标。
     早期的演化计算理论不论是模式理论、马尔科夫模型和动态系统模型还是统计力学模型,它们都着力于模仿给定的计算模型的动态行为。但是这些理论在最终应用时,都面临着无法承受的计算负担。我们把其原因归结为这些理论过于一般化脱离了了待求问题的特点和实际求解要求。由于演化算法的核心机制是随机和启发式方法,因此单纯的模仿算法运行很难拿到针对特定问题求解时的准确或者说必然的结论。
     另一方面,在当前演化计算领域的研究中,人们都集中于直接模仿在然界和社会中存在的各类演化和学习机制,依赖于所模仿的机制的上下文,将各种仿真演化的模型设计成为特定名称的演化算法。随着这些求解模型的不断提出,名词术语上的多样性导致了研究和工程应用的障碍。很明显,现象的多样性不一定就说明内在自适应机制的多样性,相反一些新命名的仿真演化模型在本质上有相通和相似的机制。
     以上谈及的这两个趋势突出说明了建立一个通用的演化系统环境的必要性。这个通用的演化系统要能够应用各种演化机制来设计求解技术,进而能综合这些求解技术到某个整合的演化系统环境中定制特定系统来对特定的问题求解。其核心思想在于忽略单纯的模仿某种演化机制,而是根据待求问题的特点综合利用各类自适应机制和有效的搜索技术来设计问题求解的系统。
     在研究提出综合系统之前,我们首先总结并讨论了各类演化搜索算法的核心策略包括随机策略和启发式策略,以及根本指导原则包括最优性原理和评估等价性原理;进而总结并抽取出各类演化仿真系统中的本质运行机制。针对随机策略我们导论了其特点和特性,并且给出了全局搜索和局部搜索的实现机制;针对启发式策略我们阐述了其内涵和归纳了其种类和各类实现方式。我们给出了最优性原理中的基本收敛模式。我们依据文献[89,91]的讨论框架给出了评估等价性原理,通过此原理重新阐述了各类NFL定理的结论。这些理论结论为系统综合的原理和方法奠定了基本的依据。
     对前人工作的总结,特别是在各类演化算法中总结出根本原则和计算模型是接下来提出演化计算系统和提出相关理论和方法的基础。在理论研究和工程应用过程中人们提出了大量的演化计算模型,因此我们不是采用枚举当前演化计算领域各类模型,而是总结并抽取其三类本质的种群演化搜索模式。它们分别是基于遗传信息的演化、个体行为演化和社会行为演化。前者本质是编码空间搜索模式,另外两个分别是个体局部搜索学习和种群分布函数演化。在传统的演化计算领域里,这三类演化和学习机制被用于独立的创立各式计算模型,但是在我们将提出的综合演化环境中,他们将被利用于设计演化搜索算子,并集成在综合系统中进行合作协调搜索。
     接下来,我们提出了‘演化计算系统'的概念。作为系统综合环境的演化计算系统将被定制为各种实现用于具体问题的求解。变化算子集、控制算子集和能够独立维护搜索信息的演化个体是演化计算系统的根本组元。该系统之所以称为‘演化'是由于它使用演化和学习机制作为其搜索算子构建的核心机制;而要说明的是尽管称其为‘计算系统',但是它不同于传统意义下的算法,它使能够与外部计算系统甚至专家直接交换信息,实现交互式计算。
     所谓的‘综合'是指系统设计依赖于求解问题的特点和求解要求,同时抛开各类描述演化机制的名词术语界限强调综合应用和协调各类求解技术,定制针对问题特点的特定求解系统。为了实现这一目标,需要建立两个根本桥梁:其一,待求问题的特点和演化搜索算子的设计的关系;其二,求解要求和组织搜索算子和演化个体的控制算子之间的关系。
     紧紧围绕着这两个纽带,我们提出了演化计算系统综合设计的理论。首要的工作是算子设计的理论和模型。对于变化算子,我们详细讨论了其功能性和基本构建机制。依赖使用演化个体的个数,变化算子被分为个体学习型和全局学习型;依赖其搜索的功能性,它可被分为挖掘型和探索型。构建演化搜索算子的核心机制有随机搜索,启发式搜索和问题数学结构相关的传统搜索机制。控制算子包括了变化算子选择控制,个体选择控制,种群维护和交互接口控制几大类。我们分别给出了设计机制和性能。需要特殊说明的是,演化个体独立维护变化信息的机制是多个演化搜索算子共同协作的前提。
     综合设计理论的核心工作是系统综合的理论和模型。系统综合的基本实现手段是通过组织和协调参与演化搜索的各个变化算子和各类控制组元。在这一部分里,我们首先给出了有关综合目标和求解条件。接下来围绕着建立这两个基本桥梁,我们分别探讨了最优性原则和综合设计模式,以及可靠性原则和实现综合系统。
     针对最优性原则,我们给出了两个收敛定理,并且依据这两个收敛定理提供的条件提出了两套综合模式,即综合模式Ⅰ和Ⅱ。综合模式Ⅰ本质应用穷举的策略以达到求取最优解,它的运行的低效性使得其常应用于修正一个不收敛的演化计算系统为收敛的系统。比较来讲,综合模式Ⅱ则给出了一个有效的综合方案,通过协调配和使用挖掘型演化搜索算子和探索型演化搜索算子,系统可以在保证最优性的前提下实现高效的搜索求解。
     求解可靠性原则更关心在给定的求解时间内求取到满意解。求解过程虽然是质量与时间的一个平衡过程,但是我们可以抽取其两个极值的情形作为综合的标准,即求解速度可靠性和求解质量的可靠性。针对系统综合,我们提供了四类总体实现方案,同时针对每种方案我们给出了相应的设计指导原则和一般性能的讨论。
     为了举例说明我们给出的演化计算系统和综合理论的各方面设计原理和步骤,我们给出了三个挑战性的工程优化问题。它们分别是立体旋转货架的拣选作业调度优化问题,本构方程系统的参数标定问题,以及目标形状设计优化问题。其中第一个问题属于控制优化问题类,后两个问题属于设计优化问题类。
     针对问题一,我们突出说明了如何依赖具体问题的信息设计高效的挖掘型演化搜索算子,以及如何使用探索型搜索算子协调搜索行为。基于综合模式Ⅱ,最优性和可靠性标准在系统综合设计中得到实现;在比较实验中得到了经验验证。
     针对问题二,我们强调了多个演化搜索算子共同协调进行演化搜索的工作模式。系统综合模式Ⅱ作为基本执行框架得到了实现。同时,针对挖掘型算子的特点,我们配合设计了一种探索性搜索算子。实验环节以一套29个参数的系统进行标定,我们依据问题定制的演化计算系统给出了求解该问题目前最好的结论。
     针对问题三,我们补充说明了除主要系统综合理论之外的附属型组元的设计和有关考虑。其中突出说明了利用交互式接口,让专家担当智能变化算子,直接参与演化搜索。同时有关解空间表达问题、评估函数的设计问题、和策略参数的初始化等问题也给出了例证。
     最后,我们总结了本文实现的主要工作和贡献,并给出下一步工作的两个关键研究内容。
Optimization may not be the best language for expressing a problem, but it is relatively simple and quite general - all problem can, at least in principle, be expressed as optimization problems. Herein optimization terminology is employed to describe a problem to be solved and furthermore used to design and analyze the problem-solving system.
     In history, a series of fundamental work has been done for direct optimization by means of the trail-and-error mode and the fruitful outcome was the emergence of the field of evolutionary computation, which utilize various adaptive and learning mechanisms inspired from nature or social systems.
     In earlier, theories on evolutionary computation were interested in simulating the dynamical behavior for a fixed computational model to explain the behavior after implemented. All the theories face the unsolvable computing bounden for real application. It can be learned that the reason is partly because that they all ignored the characteristics of the problem to be solved and the practical requirements of the solution performance. As a result, these theories are all too general to be used in real analysis and algorithmic design.
     Currently, many concerns has been put into introducing various evolution and learning mechanisms from natural world or social systems to invent various evolutionary algorithms with the plenty of names. With the growth of the applicable solution techniques, the terminology barrier has also been formed with the complicated names and terminologies. Obviously the diversity of the phenomena do not definitely represent the diversity of the adaptive mechanisms, instead many mechanisms of these newly termed algorithms overlaps in essence.
     Both of the addressed trends essentially appeal the formulation of an uniform framework 1) to design or develop new solution techniques that are learned from nature or society, and 2) to synthesize the involved solution techniques into a comprehensive environment for realization of a specific problem solving system for the particular problem under the required solution reliability. The philosophy on the uniform framework is to DIY the evolvable system for solving the specific problem, instead of negatively simulating a single adaptive mechanism. With synthesis of a evolutionary system in the specific application context, the resultant system is expected to behave as we designed.
     Before the proposal of the comprehensive evolution environment, the essential strategies including the stochastic strategy and heuristic strategy, principles including the optimality and the equivalence in evaluation and computational models for producing simulated evolutionary search are summarized and subtracted. The corresponding theoretical results are also studied. Firstly, the stochastic strategy is indispensable in building the variation and transit mechanisms for an evolutionary search scheme, due to its versatility, simplicity, robustness and flexibility. Realization for global scope search and localized search are exemplified and a range of optimality results are discussed. Furthermore the other essential mechanism of the heuristic strategy is addressed from the aspect of the implications and the exemplified implementation. Secondly, the fundamental principle of NFL theorem for design of the problem solving system has been emphasized. We follow the framework in [89, 91] and generalize it to the theorem of equivalence in evaluation. These theoretical results support the philosophy and methodology on system synthesis.
     Summary of the previous work, especially on essential principles and various models of evolutionary computation is critical for proposal of the evolutionary computational system and development of the theories and methodologies to realize a synthesized system in specific solution context. Since numerous simulated evolution models have been developed in line of the theoretical research and engineering application, thus instead of enumerating the variety of simulated evolution models in current EC field, we subtract three essential population based search schemes by investigating the core mechanisms of various models. These three schemes are named as genetic information based evolution, individual behavioral evolution, and the social behavioral evolution. Along with the emphasizing the merits from population based search, the three schemes prominently exemplify three basic population search patterns: encoded solution space variation, individual learning, and the multiple sampling learning. In traditional EC field, the three types of evolution and learning mechanisms have been independently utilized to form the simulated evolution models respectively. However, in the proposed comprehensive evolution environment, these schemes will be employed to devise a variety of ready-to-use variation operators, which are used as components to synthesize the problem solving system.
     Then, we put forward the evolutionary computational system (ECS) as the comprehensive environment to devise the various solution models, where variation operators, control operators, self-maintained hyper-individuals are essential elements. Two fundamental characteristics distinguish the ECS from others including 1) this comprehensive environment is capable to employ both the evolution or learning mechanisms and the traditional effective techniques simultaneously to design the operators and devise the coordination rules; 2) this environment is beyond the traditional meanings of computation, which is allowed to open the interactive interfaces to interact with outer computing systems or even human being as variation operators or control operators. Although it is referred to as the computational system, it is not the computer algorithm in traditional sense.
     The so-called synthesis focus on the solution context including the problem characteristics and solution requirements. It leaves the original terminology aside and emphasizes the comprehensive application and coordination of various solution techniques within the ECS framework. To perform the synthesis in practical meaning, the core work concentrates on building two bridges across 1) the problem characteristics with the design of operators and 2) the solution requirements with the organization of operators.
     With considerations of the two connections, we propose the synthesis theories for the ECS system. The first contribution is the theory and models on the operator design. Variation operators are divided into individual learning type and global learning type according to the number of operands (hyper-individuals); the functionality is devised into localized intensive search and global information involved search; and the realization mechanisms are based on random featured operators, heuristic featured operators and mathematical structure based operators. The related realization diagrams are exemplified and discussed in depth. Moveover, the control operators including the individual selection control, variation operator control, population maintenance control and interactive interfaces are studied. The design rules and mechanisms are presented and the related functionalities are discussed.
     The second is the theory and patterns on system synthesis, that is the organization of the involving operators and other components. Firstly, the synthesis objective and solution conditions are specified in details. Establishment of the bridge between solution requirements on optimality, and the bridge between reliability of speed and quality are studied respectively.
     The optimality principles are proposed with the presentation of convergence condition I and II, and correspondingly the synthesis patterns are formulated with respect to the two convergence conditions. The synthesis pattern I provides a foundation to modify a nonconver-gent evolutionary search process to a convergent one. In comparison, the synthesis pattern II outlines an effective synthesis scheme for organization of both exploitive variation operators and explorative operators to perform the search in collaboration. The synthesis pattern II is naturally employed as the default pattern to organize the variation and control operators only if some effective exploitation variation operator can be devised.
     The solution reliability concerns achieving the satisfying quality solutions within the allowed solution time slot. This is a balance of quality and time in practice, while separately they can be two criteria in the course of system synthesis process. Four types of combinatorial realization schemes are discussed; the performances are studied respectively; and the application principles are also provided.
     We illustrate the range of principles and methodologies with three engineering optimization problems which are all derived from our finished projects. The first application is a scheduling problem (a typical combinatorial optimization problem) for picking sequencing scheduling for an automated stereotype warehousing system. The second application is a target shape design optimization problem. The third application is parameter decision for materials modeling.
     To demonstrate the utilization of the theories and models of synthesizing the evolutionary computational system for solving the specific problem under the specific solution requirements. Three real engineering problems are selected including the order-pickup sequencing problem in the multi-carousal warehousing system, the calibration problem for the mechanism-based unified viscoplastic damage constitutive equations and the target shape design optimization problem.
     The case of the order-pickup sequencing problem belongs to the class of online problems, which requires the high speed solution and without the strict optimality but expected the best. In this case, we emphasize the employment of heuristic information on the characteristics of the problem to build the expletive variation operators and based on the synthesis pattern II to organize the control operators.
     For the last two problems, they are the cases of the off-line problems. In the study of the calibration of the descriptive system consisting of a set of mechanism-based unified viscoplastic damage constitutive equations, we mainly study the collaboration of multiple variation operators in the synthesized ECS system. At first we devise an effective exploitive variation operator and then to coordinate the exploitive search operator, we propose a new global learning variation operator, which has three adjustable items. To emphasize the explorative performance, we realize this variation operator in the explorative form, which satisfies the global reachable condition. Based on the synthesis pattern II, we devised the evolutionary computational system under the requirements of both solution optimality and solution reliability. The convergent result was proved and the reliability performance was demonstrated by the experimental comparisons. In comparison, in the study of the target shape design optimization problem, we ma-jorally demonstrate some secondary aspects on synthesizing an evolutionary computational system, addition to the forgoing two cases. We emphasize the influences of different evaluation mechanisms on the search process, a variable representation scheme on strategy parameter updating and introduction of the direct human expert as a non-computing variation operator. The influence of these secondary concerns are studied by a series of experiments and the general principles in practice are presented.
引文
[1]Alexandru Agapie.Modelling genetic algorithms:From markov chains to dependence with complete connections.In Parallel Problem Solving from Nature-PPSN V,pages 3-12.Springer,1998.22
    [2]Alexandru Agapie.Theoretical analysis of mutation-adaptive evolutionary algorithms.Evolutionary Computation,9:127-146,2001.22
    [3]D.Applegate,W.Cook,and A.Rohe.Chained Lin-Kernighan for large traveling salesman problems.INFORMS Journal on Computing,15(1):82-92,2003.48
    [4]J.W.Atmar.Speculation on the evolution of intelligence and its possible realization in machine form.PhD thesis,New Mexico State University,1976.87
    [5]Wirt Atmar.Notes on the simulation of evolution.IEEE Trans.on Neural Networks,5:130-147,1994.12,13
    [6]T B(a|¨)ck,D B Fogel,and T Michalewicz,editors.Evolutionary Computation 1:Basic Algorithms and Operators.Institute of Physics Publishing,2000.112,116,155
    [7]T.Back,U.Hammel,and H.-P.Schwefel.Evolutionary computation:comments on the history and current state.Evolutionary Computation,IEEE Transactions on,1(1):3-17,Apr 1997.92
    [8]Thomas B(a|¨)ck.Evolutionary Algorithms in Theory and Practice:Evolution Strategies,Evolutionary Programming,Genetic Algorithms.Oxford University Press,1996.11,81
    [9]Thomas B(a|¨)ck,David B.Fogel,and Zbigniew Michalewicz,editors.Handbook of Evolutionary Computation.Institute of Physics Publishing and Oxford University Press,1997.9
    [10]James E.Baker.Adaptive selection methods for genetic algorithms.In Proceedings of the 1st International Conference on Genetic Algorithms,pages 101-111,1985.59
    [11]James E.Baker.Reducing bias and inefficiency in the selection algorithm.In Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application,pages 14-21,1987.59
    [12]J.M.Baldwin.A new factor in evolution.In Richard K.Belew and Melanic Mitchell,editors,Adaptive individuals in evolving populations,chapter 5,pages 59-80.David Goehring,1996.87
    [13]Shummet Baluja.Population-based incremental learning:A method for integrating genetic search based function optimization and competitive learning.Technical report,Carnegie Mellon University,1994.95
    [14]N.A.Barricelli.Esempi numerici di processi di evoluzione.Methodos,6(21-22):45-68,1954.10,16
    [15]J.Bartholdi and L.K.Plazman.Retrieval strategies for a carousel conveyor.IIE Transactions,18(2):166-173,1986.143
    [16]J L Bentley.Fast algorithms for geometric traveling salesman problems.ORSA Journal on Computing,4:387-411,1992.105
    [17]S.Boettcher and AG Percus.Extremal optimization:Methods derived from co-evolution.Proceedings of the Genetic and Evolutionary Computation Conference,1999.17
    [18]E.Bonabeau,M.Dorigo,and G.Theraulaz.Inspiration for optimization from social insect behaviour.Nature,406:39-42,2000.16
    [19]J.Frederic Bonnans and J.Charles Gilbert.Numerical Optimization:Theoretical and Practical Aspects.Springer-Verlag,second edition,2006.39
    [20]George E.P.Box.Evolutionary operation:A method for increasing industrial productivity.Applied Statistics,6:81-101,1957.10
    [21]H.J.Bremermann.Optimization through evolution and recombination.In Self-Organizing Systems,pages 93-106.Spartan,1962.10
    [22]A.Byde.Applying evolutionary game theory to auction mechanism design.E-Commerce,IEEE International Conference on CEC 2003,pages 347-354,June 2003.10
    [23]J.Cao and J.Lin.A study on formulation of objective functions for determining material models.International Journal of Mechanical Sciences,50(2):193-204,2008.164,165,171
    [24]Rapha Cerf.Asymptotic convergence of genetic algorithms.Advances in Applied Probability,30:521-550,1998.22
    [25]V.Cerny.Thermodynamical approach to the traveling salesman problem:an efficient simulation algorithm.Journal of optimization theory and applications,45(1):41-51,1985.17
    [26]B Chandra,H Karloff,and C Tovey.New results on the old k-opt algorithm for the TSP.In 5th ACM-SIAM Symposium on Discrete Algorithms,pages 150-159,1994.105
    [27]W.W.Chang,C.J.Chung,and B.Sendhoff.Target shape design optimization with evolutionary computation.Proceedings of CEC'03,3:1864-1870,2003.177
    [28]M.Clerc and J.Kennedy.The particle swarm-explosion,stability,and convergence in a multidimensional complex space.Evolutionary Computation,IEEE Transactions on,6:58-73,2002.93
    [29]Jack Copeland.Hypercomputation.MANDMS:Minds and Machines,12:461-502,2002.25
    [30]G A Croes.A method for solving traveling salesman problems.Operations Research,6:791-812,1958.105
    [31]Helena.Curtis and N.Sue.Barnes.Biology.Worth Publishers,,5th edition,1989.85
    [32]Lawrence Davis.Handbook of Genetic Algorithms.Van Nostrand Reinhold,1991.10,152
    [33]Thomas E.Davis and Jose C.Principe.A simulated annealing like convergence theory for the simple genetic algorithm.In ICGA '91,pages 174-181.Morgan Kaufmann Publishers,1991.22
    [34]Thomas E.Davis and Jose C.Principe.A markov chain framework for the simple genetic algorithm.Evolutionary Computation,1:269-288,1993.22
    [35]L.N.de Castro and J.Timmis.Artificial Immune Systems:A New Computational Intelligence Paradigm.SpringerVerlag,2002.16
    [36]K.A.De Jong and W.M.Spears.A formal analysis of the role of multipoint crossover in genetic algorithms.Annals of Mathematics and Artificial Intelligence,5:1-26,1992.20
    [37]Kenneth A.De Jong and William M.Spears.An analysis of the interacting roles of population size and crossover in genetic algorithms.In PPSN Ⅰ,pages 38-47.Springer,1991.20
    [38]Kenneth Alan De Jong.An Analysis of the Behavior of a Class of Genetic Adaptive Systems.PhD thesis,University of Michigan,1975.10
    [39]George E.Dieter.Engineering Design:A Materials and Processing Approach,3rd edition.McGraw-Hill,2000.176
    [40]M.Dorigo.Optimization,Learning and Natural Algorithms.PhD thesis,Politecnico di Milano,1992.16,17
    [41]Marco Dorigo and Christian Blum.Ant colony optimization theory:A survey.Theor.Comput.Sci,344:243-278,2005.
    [42]Marco Dorigo and Luca Maria GambardeUa.Ant colony system:A cooperative learning approach to the traveling salesman problem.IEEE Trans.on Evolutionary Computation,1:53-66,1997.94
    [43]Marco Dorigo,Vittorio Maniezzo,and Alberto Colorni.Ant system:Optimization by a colony of cooperating agents.IEEE Trans.on Systems,Man,and Cybernetics-Part B,26:29-41,1996.16,94
    [44]E.Eberbach.Evolutionary computation as a multi-agent search:a -calculus perspective for its completeness and optimality.In Evolutionary Computation,2001.Proceedings of the 2001 Congress on,volume 2,pages 823-830,2001.25
    [45]E.Eberbach.The role of completeness in convergence of evolutionary algorithms.In Evolutionary Computation,2005.The 2005 IEEE Congress on,volume 2,pages 1706-1713,2005.25
    [46]Eugene Eberbach.Toward a theory of evolutionary computation.Biosysterns,82:1-19,2005.25
    [47]R.Eberhart and J.Kennedy.A new optimizer using particle swarm theory.Proceedings of the Sixth International Symposium on Micro Machine and Human Science,pages 39-43,1995.16,17
    [48]A.E.Eiben,Emile H.L.Aarts,and Kees M.van Hee.Global convergence of genetic algorithms:A markov chain analysis.In PPSN Ⅰ,pages 4-12.Springer-Verlag,1991.22
    [49]A.E.Eiben and C.A.Schippers.On evolutionary exploration and exploitation.Fundamenta Informaticae,35:1-16,1998.114
    [50]Larry Eshelman,Richard A.Caruana,and J.David Schaffer.Biases in the crossover landscape.In J.D.Schaffer,editor,Proceedings of the Third International Conference on Genetic Algorithms.Morgan Kaufman,1989.20
    [51]W.J.Ewens.Mathematical Population Genetics,volume9.Springer-Verlag,1979.24
    [52]KT Fang and Y.Wang.Number-theoretic Methods in Statistics.Monographs on Statistics and Applied Probabilit.Chapman and Hall,1994.54
    [53]J.D.Farmer,N.H.Packard,and A.S.Perelson.The immune system,adaptation,and machine learning.Physica,22(2):187-204,1986.16,17
    [54]T.A.FEO and M.G.C.Resende.Greedy randomized adaptive search procedures.Journal of Global Optimization,6:109-134,1995.17
    [55]Sevan G.Ficici,Ofer Melnik,and Jordan B.Pollack.A game-theoretic and dynamical-systems analysis of selection methods in coevolution.IEEE Trans.Evolutionary Computation,9:580-602,2005.15
    [56]R.A.Fisher.The genetical theory of natural selection(1930/1958).Dover,1930.24
    [57]D.Floreano and F.Mondada.Evolutionary neurocontrollers for autonomous mobile robots.Neural Networks,11:1461-1478,1998.15
    [58]David Fogel,editor.Evolutionary Computation:The Fossil Record.IEEE,1998.9
    [59]David B.Fogel.Evolving Artificial Intelligence.PhD thesis,University of California,1992.11
    [60]David B.Fogel.An introduction to simulated evolutionary optimization.IEEE Trans.on Neural Networks,5:3-14,1994.86,93
    [61]David B.Fogel.An introduction to evolutionary computation.In Evolutionary Computation:the fossil record,chapter 1,pages 1-2.IEEE Press,1998.10
    [62]David B.Fogel.Some recent important foundational results in evolutionary computation.In Evolutionary Algorithms in Engineering and Computer Science.John Wiley & Son,1999.21
    [63]D.B.Fogel.Evolutionary computation:toward a new philosophy of machine intelligence.Wiley-IEEE Press,2th edition,1995.87,88
    [64]L.J.Fogel.Toward inductive inference automata.In IFIP Congress,pages 395-400,1962.11
    [65]L.J.Fogel,A.J.Owens,and M.J.Walsh.Artificial Intelligence through Simulated Evolution.John Wiley & Sons,1966.16
    [66]Lawrence J.Fogel.Intelligence Through Simulated Evolution:Forty Years of Evolutionary Programming.Wiley Series on Intelligent Systems.John Wiley & Sons,1999.11
    [67]Stephanie Forrest and Melanie Mitchell.What makes a problem hard for a genetic algorithm? some anomalous results and their explanation.Machine Learning,13:285-319,1993.10
    [68]D.Friedman.Evolutionary games in economics.Econometrica,59(3):637-666,1991.10
    [69]D.J.Futuyma.Evolution.Sinauer Associates,2005.85
    [70]Z.W.Geem,J.H.Kim,et al.A new heuristic optimization algorithm:Harmony search.Simulation,76(2):60,2001.17
    [71]J B Ghosh and C E Wells.Optimal retrieval strategies for carousel conveyors.Mathematical Computer Modeling,16(10):59-70,1992.143
    [72]F.Glover.Future paths for integer programming and links to artificial intelligence.Computers and Operations Research,13:533-549,1986.17
    [73]Fred Glover.Tabu search-part Ⅰ.ORSA Journal on Computing,1:190-206,1989.48
    [74]Fred Glover.Tabu search-part Ⅱ.ORSA Journal on Computing,2:4-32,1990.48
    [75]David E.Goldberg.Genetic algorithms and Walsh functions:Part Ⅰ,A gentle introduction.Complex Systems,3:129-152,1989.20
    [76]David E.Goldberg.Genetic algorithms and Walsh functions:Part Ⅱ,deception and its analysis.Complex Systems,3:153-171,1989.20
    [77]David E.Goldberg.Genetic Algorithms in Search,Optimization and Machine Learning.Addison-Wesley Publishing Company,1989.10,19,20,52,59
    [78]David E.Goldberg and Kalyanmoy Deb.A comparative analysis of selection schemes used in genetic algorithms.In Foundations of Genetic Algorithms,pages 69-93.Morgan Kaufmann,1991.20
    [79]Dina Q.Goldin,Scott A.Smolka,and Peter Wegner.Turing machines,transition systems,and interaction.Electr.Notes Theor.Comput.Sci,52:101-128,2001.25
    [80]John J.Grefenstette.Deception considered harmful.In Foundations of Genetic Algorithms 2.Morgan Kaufman,1993.20
    [81]M H Han,L F Mcginnis,and J A White.Analysis of rotary rack operation.Material Flow,4:283-293,1988.143
    [82]Nikolaus Hansen and Stefan Kern.Evaluating the CMA evolution strategy on multimodal test functions.In PPSN VIII,LNCS,pages 282-291.Springer-Verlag,2004.11,84,166
    [83]Nikolaus Hansen and Andreas Ostermeier.Adapting arbitrary normal mutation distributions in evolution strategies:The covariance matrix adaptation.In International Conference on Evolutionary Computation,pages 312-317,1996.93
    [84]Nikolaus Hansen and Andreas Ostermeier.Completely derandomized self-adaptation in evolution strategies.Evolutionary Computation,9:159-195,2001.11,48,80,84,93,166,191
    [85]Nikolans Hansen,Andreas Ostermeier,and Andreas Gawelczyk.On the adaptation of arbitrary normal mutation distributions in evolution strategies:The generating set adaptation.In Proceedings of the Sixth International Conference on Genetic Algorithms,pages 57-64.Morgan Kaufmann,1995.11,48,84
    [86]WK Hastings.Monte carlo sampling methods using markov chains and their applications.Biometrika,57(1):97-109,1970.16
    [87]Michael Herdy.Reproductive isolation as strategy parameter in hierarchically organiized evolution strategies.In Parallel problem solving from nature 2,pages 207-217.North-Holland,1992.11
    [88]D.W.Hillis.Co-evolving parasites improve simulated evolution in an optimization procedure.Physica D,42:228-234,1990.15
    [89]Y.C.Ho and D.L.Pepyne.Simple explanation of the No-Free-Lunch Theorem and its implications.Journal of Optimization Theory and Applications,115(3):549-570,2002.ⅱ,30,46,69,70,71
    [90]Yu-Chi Ho and D.L.Pepyne.A conceptual framework for optimization and distributed intelligence.In Decision and Control,2004.CDC.43rd IEEE Conference on,volume 5,pages 4732-4739,2004.30
    [91]Yu-Chi Ho,Qian-Chuan Zhao,and D.L.Pepyne.The no free lunch theorems:complexity and security.Automatic Control,IEEE Transactions on,48(5):783-793,2003.ⅱ,30,46,69
    [92]Steven A.Hofmeyr and S.Forrest.Architecture for an artificial immune system.Evolutionary Computation,7(1):45-68,1999.16
    [93]J.Holland.Adaptation in Natural and Artificial Systems.University of Michigan Press,1975.10,16,19
    [94]John H.Holland.Genetic algorithms and the optimal allocation of trials.SIAM Journal on Computing,2(2):88-105,1973.21
    [95]D.C.Image and J.Klinowski.Taboo search:an approach to the multiple minima problem.Science,267:664-666,1995.48
    [96]D.Karaboga and B.Basturk.On the performance of artificial bee colony (ABC) algorithm.Applied Soft Computing Journal,8(1):687-697,2008.17
    [97]J.Kennedy and R.Eberhart.Particle swarm optimization.IEEE International Conference on Neural Networks,4,1995.16,17
    [98]J.Kennedy and R.Eberhart.Particle swarm optimization.Neural Networks,1995.Proceedings.,IEEE International Conference on,4,1995.82,93
    [99]James Kennedy,Russell C.Eberhart,and Yuhi Shi.Swarm Intelligence.Evolutionary Computation Series.Morgan Kaufman,2001.16
    [100]Rafal Kicinger,Tomasz Arciszewski,and Kenneth A.De Jong.Evolutionary computation and structural design:A survey of the state of the art.Computers(?) Structures,83(23-24):1943-1978,2005.176
    [101]S.Kirkpatrick,C.D.Gelatt,and M.P.Vecchi.Optimization by simulated annealing.Science,220:671-680,1983.17,22,52
    [102]Z.L.Kowalewski,D.R.Hayhurst,and B.F.Dyson.Mechanisms-based creep constitutive equations for an aluminium alloy.J.Strain Anal.,29:309-316,1994.161
    [103]John R.Koza.Genetic Programming:On the Programming of Computers by Means of Natural Selection.MIT Press,1992.10
    [104]John R.Koza.Introduction to genetic programming.In Advances in Genetic Programming,chapter 2,pages 21-42.MIT Press,1994.
    [105]John R.Koza,David Andre,Forrest H Bennett Ⅲ,and Martin Keane.Genetic Programming 3:Darwinian Invention and Problem Solving.Morgan Kanfman,1999.10
    [106]J.R.Koza.Non-linear genetic algorithms for solving problems,Filed May 20,1988.Issued June 19,1990.US Patent 4,935,877.17
    [107]A.Kunjur and S.Krishnamurty.Genetic algorithms in mechanism synthesis.Proc.of Fourth Applied Mechanisms and Robotics Conference,pages 95-068,1995.10
    [108]P.Larranage,J.A.Lozano,and E.Bengoetxea.Estimation of distribution algorithms based on multivariate normal and ganssian networks.Technical Report KZAA-IK-1-01,University of the Basque Country,2001.84
    [109]B.Li,J.Lin,and X.Yao.A novel evolutionary algorithm for determining unified creep damage constitutive equations.Int.J.of Mech.Sci.,44:987-1002,2002.161,162,164,165
    [110]J.Lin and D.R.Hayhurst.Constitutive equations for multi-axial straining of leather under uni-axial stress.Eur.J.Mech.A:Solids,12:471-492,1993.161
    [111]J.Lin,A.D.Foster,Y.Liu,and T.A.Dean.On micro-damage in hot metal working part 2:constitutive modelling.Engineering Transactions,54:271-287,2006.162,164,171,173,174,175
    [112]J.Lin and Y.Liu.A set of unified constitutive equations for modelling microstructure evolution in hot deformation.J.of Materials Processing Technology,pages 143-144,2003.162,164
    [113]J.Lin and J.Yang.Ga based multiple objective optimization for determining viscoplastic constitutive equations for superplastic alloys.Int.J.of Plasticity,15:1181-1196,1999.161
    [114]Jiaheng Lin,Zhao Wang,and Liu Changyou.An optimization method for the storage and retrieval in the single carousel.In Proceedings of CDC' 95,pages 412-415,1995.151
    [115]S.Lin.Computer solutions of the traveling salesman problem.Bell System Technical Journal,10:2245-2269,1965.105
    [116]S.Lin and B.W.Kernighan.An effective heuristic algorithm for the traveling salesman problem.Operations Research,21:498-516,1972.105
    [117]W.G.Macready and D.H.Wolpert.Bandit problems and the exploration/exploitation tradeoff.IEEE Trans.on Evolutionary Computation,2:2-22,1998.21
    [118]E.Mayr.Toward a New Philosophy of Biology:Observations of an Evolutionist.Harvard University Press,1988.12,96
    [119]P.P.Menon,D.G.Bates,and I.Postlethwaite.A deterministic hybrid optimisation algorithm for nonlinear flight control systems analysis.In American Control Conference,2006.10
    [120]P.Merz.Memetic Algorithms for Combinatorial Optimization Problems:Fitness Landscapes and Effective Search Strategies.PhD thesis,Department of Electrical Engineering and Computer Science,University of Siegen,2000.10,96
    [121]P.Merz and B.Freisleben.Fitness landscape analysis and memetic algorithms for the quadratic assignment problem.IEEE Transactions on Evolutionary Computation,4:337-352,2000.15
    [122]RE Michod.Darwinian dynamics:evolutionary transitions in fitness and individuality.Princeton University Press,1999.24
    [123]R.Milner.The pi calculus and its applications.In Proceedings of the JICSLP-98,pages 3-4.MIT Press,1998.25
    [124]Robin Milner.Calculi for interaction.Acta Informatica,33:707-737,1996.25
    [125]P.Moscato.On evolution,search,optimization,genetic algorithms and martial arts:Towards memetic algorithms.Technical report,California Institute of Technology,1989.15,17,96
    [126]C.E.Moustakas.Heuristic Research:Design,Methodology,and Applications.Sage,1990.64
    [127]F.Moyson and B.Manderick.The collective behaviour of ants:an example of self-organisation in massive parallelism.Proceedings of AAAI Spring Symposium on Parallel Models of Intelligence,1988.17
    [128]H.Miihlenbein and G.Paass.From recombination of genes to the estimation of distributions i.binary parameters.Proceedings of PPSN Ⅳ,pages 178-187,1996.17
    [129]S.Nakrani and C.Tovey.On honey bees and dynamic server allocation in internet hosting centers.Adaptive Behavior-Animals,Animats,Software Agents,Robots,Adaptive Systems,12(3-4):223-240,2004.17
    [130]Michael Nashvili,Markus Olhofer,and Bernhard Sendhoff.Morphing methods in evolutionary design optimization.In Proceedings of GECCO'05,pages 897-904.ACM,2005.177
    [131]A.E.Nix and M.D.Vose.Modeling genetic algorithms with Markov chains.Annals of Mathematics and Artificial Intelligence,5:78-88,1992.22,23
    [132]M.Olhofer,Y.Jin,and B.Sendhoff.Adaptive encoding for aerodynamic shape optimization using evolution strategies.In Proceedings of the IEEE Conference on Evolutionary Computation,volume 1,pages 576-583,2001.177,180,185,191
    [133]Markus Olhofer,Toshiyuki Arima,Toyotaka Sonoda,and Bernhard Sendhoff.Optimisation of a stator blade used in a transonic compressor cascade with evolution strategies.In Adaptive Computing in Design and Manufacture (ACDM),pages 45-54.Springer Verlag,2000.176
    [134]Yew-Soon Ong and A.J.Keane.Meta-Lamarckian learning in memetic algorithms.IEEE Trans.Evolutionary Computation,8:99-110,2004.15
    [135]I Or.Traveling Salesman-Type Combinatorial Problems and their Relation to the Logistics of Regional Blood Banking.PhD thesis,Northwestern University,1976.105
    [136]Esben H.Ostergaard and Henrik Hautop Lund.Co-evolving complex robot behavior.In Evolvable Systems:From Biology to Hardware,ICES 2003,volume 2606 of LNCS,pages 308-319.Springer-Verlag,2003.15
    [137]A.Ostermeier,A.Gawelczyk,and N.Hansen.Step-size adaptation based on non-local use of selection information.In PPSN Ⅲ,volume 866 of Lecture Notes in Computer Science,pages 189-198.Springer Verlag,1994.11,84,93
    [138]Andreas Ostermeier,Andreas Gawelczyk,and Nikolaus Hansen.A derandomized approach to self-adaptation of evolution strategies.Evolutionary Computation,2:369-380,1994.11
    [139]C.H.Papadimitriou.Computational Complexity.Addison-Wesley,1994.40,41
    [140]Konstantinos E.Parsopoulos and Michael N.Vrahatis.Recent approaches to global optimization problems through particle swarm optimization.Natural Computing,1:235-306,2002.16,82
    [141]M.Pelikan,D.E.Goldberg,and E.Cantu-Paz.Boa:The bayesian optimization algorithm.Proceedings of the Genetic and Evolutionary Computation Conference,1:525-532,1999.17
    [142]M.Pelikan,D.E.Goldberg,and E.Cantu-Paz.Linkage problem,distribution estimation,and bayesian networks.Evolutionary Computation,8(3):311-340,2000.10,48,95
    [143]Les Piegl and Wayne Tiller.The NURBS Book.Springer-Verlag,second edition edition,1997.179,185
    [144]R.Poli and C.R.Stephens.Theoretical analysis of generalised recombination.In IEEE Congress on Evolutionary Computation,volume 1,pages 411-418,2005.21
    [145]Riccardo Poli.Schema theorems without expectations.In Proc.of the Genetic and Evolutionary Computation Conf.GECCO-99,page 806.Morgan Kaufmann,1999.
    [146]Riccardo Poli.Schema theory without expectations for GP and GAs with one-point crossover in the presence of schema creation.Technical Report CSRP-99-13,University of Birmingham,School of Computer Science,1999.
    [147]Riccardo Poli,Nicholas Freitag McPhee,and Jonathan E.Rowe.Exact schema theory and markov chain models for genetic programming and variable-length genetic algorithms with homologous crossover.Genetic Programming and Evolvable Machines,5:31-70,2004.21
    [148]A.Pr(u|¨)gel-Bennett and A.Rogers.Modelling genetic algorithm dynamics.In Theoretical Aspects of Evolutionary Computing,pages 59-85.Springer,2001.24
    [149]Adam Pr(u|¨)gel-Bennett and Jonathan L.Shapiro.An analysis of genetic algorithms using statistical mechanics.Physical Review Letters,72:1305-1309,1994.24
    [150]Nicholas J.Radcliffe and Patrick D.Surry.Formal memetic algorithms.In Evolutionary Computing:AISB Workshop,pages 1-16.Springer,1994.15
    [151]Lars Magnus Rattray and Jonathan L.Shapiro.The dynamics of a genetic algorithm for a simple learning problem.Journal of Physics A,29:7451-7473,1996.24
    [152]I.Rechenberg.Cybernetic solution path of an experimental problem.Technical report,Royal Air Force Establishment,1965.11,16
    [153]Ingo Rechenberg.Evolutionsstrategie:Optimierung technischer Systeme nach Prinzipien der biologischen Evolution.frommann-holzbog,1973.11
    [154]Ingo Rechenberg.Evolutionsstrategie '94.frommann-holzbog,1994.11
    [155]Craig W.Reynolds.Competition,coevolution and the game of tag.In Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems,pages 59-69.MIT Press,1994.15,17
    [156]H.Robbins and S.Monro.A stochastic approximation method.Annals of Mathematical Statistics,22(3):400-407,1951.16
    [157]Alex Rogers and Adam Pr(u|¨)gel-Bennett.Modelling the dynamics of a steady state genetic algorithm.In FOGA,pages 57-68.Morgan Kaufmann,1998.24
    [158]R.Y.Rubinstein.Optimization of computer simulation models with rare events.European Journal of Operational Research,99(1):89-112,1997.17
    [159]Guenter Rudolph.Reflections on bandit problems and selection methods in uncertain environments.In Proceedings of the ICGA '97.Morgan Kaufmann,1997.21
    [160]G(u|¨)nter Rudolph.Convergence analysis of canonical genetic algorithms.IEEE Transactions on Neural Networks,5(1):96-101,1994.22
    [161]G(u|¨)nter Rudolph.Convergence of evolutionary algorithms in general search spaces.In Proc.of the Third IEEE Conf.on Evolutionary Computation,pages 50-54.IEEE Press,1996.22
    [162]G(u|¨)nter Rudolph.Convergence properties of evolutionary algorithms.Kovac,1997.
    [163]Giinter Rudolph.Finite Markov chain results in evolutionary computation:A tour d'horizon.Fundamenta Informaticae,35:67-89,1998.22
    [164]Giinther Rudolph.On correlated mutations in evolution strategies.In Proceedings of PPSN Ⅱ,1992.11
    [165]A.M.Sabatini.A hybrid genetic algorithm for estimating the optimal time scale of linear systems approximations using laguerre models.Automatic Control,IEEE Transactions on,45(5):1007-1011,2000.10
    [166]D.B.Saravanan,N.and Fogel and K.M.Nelson.A comparison of methods for self-adaptation in evolutionary algorithms.Biosystems,36:157-166,1995.11
    [167]N.Saravanan and David B.Fogel.Evolving neurocontrollers using evolutionary programming.In International Conference on Evolutionary Computation,pages 217-222,1994.11
    [168]J.David Schaffer and Larry J.Eshelman.On crossover as an evolutionary viable strategy.In Proceedings of the ICGA '91,pages 61-68.Morgan Kaufmann Publishers,1991.20
    [169]Lothar M.Schmitt.Theory of genetic algorithms.Theoretical Computer Science,259:1-61,2001.22
    [170]Lothar M.Schmitt,Chrystopher L.Nehaniv,and Robert H.Fujii.Linear analysis of genetic algorithms.Theoretical Computer Science,200:101-134,1998.22
    [171]H.P.Schwefel.Kybernetische evolution als strategie der experimentelen forschung in der stromungstechnik.Master's thesis,Technical University of Berlin,1965.11
    [172]H.P.Schwefel.Numerical Optimization of Computer Models.John Wiley & Sons,1981.11
    [173]Hans Paul Schwefel.Evolution and Optimum Seeking.Sixth-Generation Computer Technology Series.John Wiley & Sons,Inc.,1995.11,82,93
    [174]Bernhard Sendhoff,Martin Kreutz,and Werner von Seelen.A condition for the genotype-phenotype mapping:Causality.In Proceedings of the 7th International Conference on Genetic Algorithms.Morgan Kaufmann,1997.179
    [175]J.L.Shapiro.Statistical mechanics theory of genetic algorithms.In Theoretical Aspects of Evolutionary Computing,pages 87-108.Springer,2001.24
    [176]Xin she yang.Nature-Inspired Metaheuristic Algorithms,chapter 8 Firefly Algorithm.Luniver Press,2008.17
    [177]J.M.Smith.The Theory of Evolution.Cambridge University Press,1993.86
    [178]R.E.Smith and J.E.Smith.New methods for tunable,random landscapes.In Foundations of Genetic Algorithms 6,pages 47-67.Morgan Kaufmann,2001.20
    [179]S.F.Smith.A learning system based on genetic adaptive algorithms.PhD thesis,University of Pittsburgh,1980.16
    [180]Francisco J.Solis and Roger J-B.Wets.Minimization by random search techniques.Mathematics of Operations Research,6(1):19-30,1981.62
    [181]William M.Spears.Crossover or mutation? In Proceedings of the Second Workshop on Foundations of Genetic Algorithms,pages 221-238.Morgan Kaufmann,1993.20
    [182]William M.Spears.Evolutionary Algorithms:the role of mutation and recombination.Springer,2000.20
    [183]William M.Spears and Kenneth De Jong.Dining with GAs:Operator lunch theorems.In Foundations of Genetic Algorithms 5,pages 85-101.Morgan Kaufmann,1999.21
    [184]William M.Spears and Kenneth A.De Jong.Analyzing GAs using Markov models with semantically ordered and lumped states.In Proceedings of the 4th Workshop on Foundations of Genetic Algorithms,pages 85-100.Morgan Kaufman,1997.23
    [185]Chris Stephens and Henri Waelbroeck.Schemata evolution and building blocks.Evolutionary Computation,7(2):109-124,1999.21
    [186]R.Storn and K.Price.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces.Journal of Global Optimization,11:341-359,1997.17,81
    [187]T.Stfitzle and H.H.Hoos.MAX-MIN ant system.Future Generation Computer Systems,16(9):889-914,2000.94
    [188]Chwen-Tzeng Su.Performance evaluations of carousel operation.Production Planning(?) Control,5:477-488,1998.143
    [189]J.Suzuki.A Markov chain analysis on simple genetic algorithms.IEEE Transactions on Systems,Man,and Cybernetics,25:6-659,1995.22
    [190]H.Takagi.Active user intervention in an ec search.5th Joint Conf.on Information Sciences,pages 995-998,2000.17
    [191]Dirk Thierens and David E.Goldberg.Mixing in genetic algorithms.In Proceedings of the Fifth International Conference on Genetic Algorithms,pages 38-45.Morgan Kaufrnan,1993.20
    [192]Guohui Tian,Changyou Liu,and Xinhe Xu.Specification and analysis of the running progress of the carousel system based on temporal logic.Acta Automatica Sinica,24:373-376,1998.143,150
    [193]Aimo T(o|¨)rn and A.Zhilinskas.Global optimization,volume 350 of Lecture Notes in Computer Science.Springer-Verlag Inc.,1989.42,69
    [194]Ioan Cristian Trelea.The particle swarm optimization algorithm:convergence analysis and parameter selection.Inf.Process.Lett.,85:317-325,2003.16
    [195]A.M.Turing.Computing machinery and intelligence.Mind,49:433-460,1950.10
    [196]A.M.Turing.Intelligent machinery.Machine Intelligence,5:3-23,1969.10
    [197]J P Van Den Berg.Multiple order pick sequencing in a carousel system:a solvable case of the rural postman problem.Material Flow,47:1504-1515,1996.143
    [198]Erik van Nimwegen,James P.Crutchfield,and Melanie Mitchell.Statistical dynamics of the royal road genetic algorithm.Theoretical Computer Science,229:41-102,1999.23
    [199]J.yon Neumann.Theory of Self-Reproducing Automata.University of Illinois Press,1966.10
    [200]Michael D.Vose.The simple genetic algorithm:foundations and theory.MIT Press,1999.23
    [201]Michael D.Vose and Gunar E.Liepins.Punctuated equilibria in genetic search.Complex Systems,5:31-44,1991.23
    [202]Zhao Wang,Jiaheng Lin,Changyou Liu,and Xilin Li.Order picking optimization for a multi-carousel-single-server system solved by improved annealing procedure.Controls and Decisions,11:182-187,1996.143,144,150
    [203]P.Wegner.Why interaction is more powerful than algorithms.Communications of the ACM,40:80-91,1997.25
    [204]Peter Wegner and Eugene Eberbach.New models of computation.The Computer Journal,47:4-9,2004.25,40
    [205]U.P.Wen and D.T.Chang.Picking rules for a carousel conveyor in an automated warehouse.Omega,6(2):145-151,1988.143
    [206]L.Darrell Whitley.Fundamental principles of deception in genetic search.In Foundations of genetic algorithms,pages 221-241.Morgan Kaufmann,1991.20
    [207]D.H.Wolpert and W.G.Macready.No free lunch theorems for search.Technical Report SFI-TR-95-02-010,The Santa Fe Institute,1995.19
    [208]David H.Wolpert and William G.Macready.No free lunch theorems for optimization.IEEE Trans.on Evolutionary Computation,1:67-82,1997.19
    [209]S.Wright.The roles of mutation,inbreeding,crossbreeding,and selection in evolution.In Proceedings of the Sixth Congress on Genetics,volume 1,page 365,1932.24
    [210]Xin-She Yang.Pattern formation in enzyme inhibition and cooperativity with parallel cellular automata.Parallel Comput.,30(5-6):741-751,2004.17
    [211]Xin Yao,Yong Liu,and Guangming Lin.Evolutionary programming made faster.Evolutionary Computation,IEEE Transactions on,3(2):82-102,1999.93,171
    [212]Pan Zhang,Lei Jia,and Guohui Tian.Pick sequencing optimization problem in the rotary rack S/R system.Journal of Control Theory and Applications,2:229-238,2004.15
    [213]Pan Zhang,Guohui Tian,and Lei Jia.A new hybrid genetic algorithm for solving the order-picking optimization problem in a multi-carousel system.Chinese Journal of Mechanical Engineering,40:34-38,2004.15,143,144,151
    [214]Pan Zhang,Xin Yao,Lei Jia,B.Sendhoff,and T.Schnier.Target shape design optimization by evolving splines.In Proceedings of IEEE Congress on Evolutionary Computation,pages 2009-2016,2007.177,192
    [215]M.Zhou and F.P.Dunne.Mechanism-based constitutive equations for the superplastic behaviour of a titanium alloy.J.Strain Anal.,31:187-196,1996.161,162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700