非平稳雷达信号多参量估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非平稳信号作为现实生活中普遍存在的信号形式,其分析处理在现代信号处理中占有特殊重要的地位。建立在平稳窄带假设基础上的传统阵列信号处理方法在分析处理这类信号时受到局限。在多通道阵列信号处理中,充分利用现代信号处理的优秀成果,将非平稳信号处理手段与传统的空域处理相结合,实现非平稳信号时频特征与空域参量联合估计,成为阵列信号处理发展的必然趋势。本文围绕非平稳阵列信号建模、线性类时频分析、宽带非平稳雷达信号多参量估计、信号个数估计、阵列校正等阵列信号处理问题展开深入研究,主要工作和贡献有:
     1、研究了基于窄带阵列模型的空间进化谱DOA估计问题。提出了基于联合块对角化方法和波束形成技术的高速高分辩率的信号到达角估计方法;针对时频平面不可分离的相干非平稳信号,提出了基于对称阵列的解相干方法。
     2、研究了线性调频信号参量估计和宽带雷达信号的空间谱估计问题。提出了基于线性调频类变换的高精度估计线性调频信号时频参量的方法;针对宽带相干信号模型,利用正交投影子空间方法和Toeplitz对角化方法估计信号到达角,并实现阵列位置误差校正;从波束空间角度出发,提出了不随频率变化的波束形成矩阵构造方法,并应用于宽带非平稳雷达信号DOA估计。
     3、研究了非平稳雷达信号多维参量联合估计问题。利用时频高阶矩谱估计正弦调频信号频率参量;针对相位编码信号,研究了时空欠采样条件下时频空三维参量联合估计的方法;提出了基于短时Fourier变换的相位编码信号时频参量估计方法,并能分辨二相编码信号和四相编码信号;结合波束空间ESPRIT算法,提出了基于空间非均匀L阵时空欠采样条件下,相位编码信号的时频空三维参量无模糊联合估计方法。
     4、研究了宽带信号个数估计和不同噪声背景下信号个数估计的关键问题。提出了基于频域bootstrap方法的宽带信号个数估计方法,并结合盖氏圆方法,提出了色噪声下宽带信号个数估计方法。
     5、研究了宽带非平稳信号条件下阵列误差的自校正方法。利用辅助阵元,针对存在阵元通道幅相误差、阵元位置误差、阵元间互耦的阵列,提出了宽带非平稳信号模型下阵列误差自校正的方法。
The analysis methods of nonstationary signals, which are widely exist in our real life, play an important role in modern signal processing. When dealing with the nonstationary signals, the performance of traditional methods in array signal processing may degrade heavily because of the narrowband and stationary signals assumptions. The aim of this dissertation is to use the achievements in modern signal processing, and to combine nonstationary signal processing with array/multiple channel signal processing for joint spatial and time signatures estimation of nonstationary radar signals. This is also an advanced and challenging problem to the array signal processing. We focus on array signal modeling, time-frequency analysis method, parameters estimation of wideband nonstationary radar signals, sources number estimation and array calibration to array processing in the presence of nonstationary signals. The main contributions of this dissertation are concentrating as follows:
     1. The application of spatial data-adaptive evolutionary spectral in nonstationary radar signal are discussed. A DOA estimation method of nonstationary radar signals is proposed by time-frequency analysis method and Joint-block diagonalization method. An algorithm for improving the angle resolution is proposed based on beamforming technique. A new direction finding method of coherent signals is proposed by constructing Toeplitz matrix using the output of symmetry array.
     2. The LFM transform and spatial spectral estimation method of wideband arrays model is discussed. A time-frequency parameters estimator of LFM signals is proposed using LFM transform. A DOA estimation technique of wideband array signals is proposed by orthogonality of projected subspaces and Toeplitz diagonalization method. The proposed method can calibrated the array position errors and deal with coherent signals. A frequency invariant beamforming method underling beamspace is proposed to analyze wideband nonstationary array signals.
     3. A joint estimation technique of time spatial parameters is discussed in undersampling conditions for non-linear frequency modulation signals. A time-frequency estimator is proposed for sine frequency modulation signals using high order cumulating of Wigner-Ville distribution. A new method to estimate the parameters of phase-coded signals is proposed by short-time Fourier transform. This method can distinguish between the binary-phase-coded signals and quadrature-phase-coded signals. And a joint estimation algorithm for the time spatial parameters of the signals is proposed using beamspace ESPRIT method and nonuniform L-arrays.
     4. The source enumeration of wideband signals underling white/color noise conditions is discussed. A new detection method of nonstationary sources is proposed using frequency domain bootstrap techniques. The proposed method can estimate the sources number under color noise by combining the bootstrap and Gerschgorin disk estimation methods.
     5. The method of array auto-calibration for wideband sources is discussed. A new method is proposed. This method can calibrate the unknown error of sensor gain and phase, array shape perturb and sensors coupling by assistant sensors.
引文
[1]L.Cohen.时一频分析:理论与应用.西安:西安交通大学出版社,1998
    [2]L.B.Almeida.The fractional Fourier transform and time-frequency representations.IEEE Transactions on Signal Processing,1994,42(11):3084-3091
    [3]王宏禹.信号处理相关理论综合与统一法.北京:国防工业出版社,2005
    [4]张贤达.非平稳信号分析与处理.北京:国防工业出版社,1999
    [5]A.S.Kayhan,A.Eljaroudi,L.F.Chaparro.Evolutionary Periodogram for Nonstationary Signals.IEEE Transactions on Signal Processing,1994,42(6):1527-1536
    [6]A.S.Kayhan,A.Eljaroudi,L.F.Chaparro.Data-Adaptive Evolutionary Spectral Estimation.IEEE Transactions on Signal Processing,1995,43(1):204-213
    [7]R.G.Baraniuk,D.L.Jones.A Signal-Dependent Time-Frequency Representation-Optimal Kernel Design.IEEE Transactions on Signal Processing,1993,41(4):1589-1602
    [8]刘永红,王宏禹.自适应径向巴特沃思核时频表示.通信学报,1998,19(7):13-17
    [9]W.A.Gardner.The Spectral Correlation Theory of Cyclostationary Time-Series.Signal Processing,1986,11(1):13-36
    [10]W.A.Gardner.Exploitation of spectral redundancy in cyclostationary signals.IEEE Signal Processing Magazine,1991,8(2):14-36
    [11]S.Qian,D.P.Chen.Signal Representation Using Adaptive Normalized Gaussian Functions.Signal Processing,1994,36(1):1-11
    [12]殷勤业,倪志芳,钱世锷.自适应旋转投影分解法.电子学报,1997,25(4):52-58
    [13]Q.Zhang,A.Benveniste.Wavelet networks.IEEE Transactions on Neural Networks,1992,3(6):889-898
    [14]陈喆.自适应与分数阶非平稳信号处理的研究:[学位论文].大连:大连理工大学,2003
    [15]N E Huang,Z Shen,S R Long.The empirical mode decomposition and the Hilbert spectrum for nonlinear nonstationary time series analysis.1998,903-995
    [16]张贤达.现代信号处理.北京:清华大学出版社,1999
    [17]P.Stoica,A.Nehorai.MUSIC,maximum likelihood,and Cramer-Rao bound.IEEE Transactions on Acoustics Speech and Signal Processing,1989,37(5):720-741
    [18]H.Krim,M.Viberg.Two decades of array signal processing research-The parametric approach.IEEE Signal Processing Magazine,1996,13(4):67-94
    [19]H.Clergeot,S.Tressens,A.Ouamri.Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds.IEEE Transactions on Acoustics Speech and Signal Processing,1989,37(11):1703-1720
    [20]王永良.空间谱估计理论与算法.北京:清华大学出版社,2004
    [21]Liu Fulai,Zhou Xiyuan,Li chun.A Robust Algorithm for Source Number Detection and 2-D DOA Estimation Based on Real-valued Computation.The 8~(th) International Conference in Signal Processing(ICSP),2006,(1):16-20
    [22]A.Paraschiv,C.Jutten,A.M.Ionescu.Estimation of the source number using array discrete wavelet transform.IEEE 28th Annual Conference on Industrial Elelctronics Society,2002:1520-1525
    [23]H.Wang,M.Kaveh.Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wideband Sources.IEEE Transactions on Acoustics Speech and Signal Processing,1985,33(4):823-831
    [24]Chongying Qi,Yongling Wang,Yongshun Zhang.Spatial difference smoothing for DOA estimation of coherent signals.IEEE signal processing letters,2005,12(11):800-802
    [25]Dayan Ranhamim,Joseph Tabrikian and Reuven Shavit.Source localization using vector sensor array in a multipath environment.IEEE Trans.on signal processing,2004,52(11):3096-3103
    [26]D.Angzhao.Multiple source location—A matrix decomposition approach.IEEE Transactions on Acoustics Speech and Signal Processing,1985,33(5):1086-1091
    [27]高世伟,保铮.利用数据矩阵分离实现对空间相干源的超分辨处理.通信学报,1988,9(1):4-13
    [28]J.m.Xin,A.Sano.Computationally efficient subspace-based method for direction of arrival estimation without eigendecomposition.IEEE Trans.on signal processing,2004,52(4):876-893
    [29]Y.M.Chen,J.H.Lee,C.C.Yeh.Bearing Estimation Without Calibration for Randomly Perturbed Arrays.IEEE Transactions on Signal Processing,1991,39(1):194-197
    [30]Samuli Visuri,Hannu Oja and Visa Koivunen.Subspace-based direction-of-arrival estimation using nonparametrie statistics.IEEE Trans.on signal processing,2001,49(9):2060-2073
    [31]G.N.Su,M.Morf.The Signal Subspace Approach for Multiple Wideband Emitter Location.IEEE Transactions on Acoustics Speech and Signal Processing,1983,31(6):1502-1522
    [32]H.S.Hung,M.Kaveh.Focusing Matrices for Coherent Signal-Subspace Processing.IEEE Transactions on Acoustics Speech and Signal Processing,1988,36(8):1272-1281
    [33] E.D.D. Claudio. Asymptotically perfect wideband focusing of multiring circular arrays. IEEE Trans. on signal processing, 2005, 53(10): 3661-3673
    
    [34] L. Ta-Sung. Efficient wideband source localization using beamforming invariance technique. IEEE Transactions on Signal Processing, 1994,42 (6): 1376-1387
    
    [35] M.Uthansakul, M.E.Bialkowski. Fully spatial wide-band beamforming using a rectangular array of planar monopoles. IEEE Trans, on antennas and propagation, 2006,54(2): 527-533
    
    [36] A.Subramanian. Blind Identification and Linear Quadratic Frequency Invariant Beamforming Based Angle of Arrival Estimation. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2007, 2: 1077-1080
    
    [37] H.W.Chen, J.W.Zhao. Wideband MVDR beamforming for acoustic vector sensor linear array. IEEE Proc. Radar Sonar Navig., 2004,151(3): 158-162
    
    [38] S.W.Ellingson. Beamforming and interference canceling with very large wideband arrays. IEEE Trans, on antnnas and propagation, 2003, 51(6): 1338-1346
    
    [39] GM.Raz. An approach to adaptive beam-forming for wide-band systems using a subband decomposition. Sensor Array and Multichannel Signal Processing Workshop, 2000,300-305
    
    [40] B.Friedlander, A.J.Weiss.Direction finding using spatial smoothing with interpolated arrays. IEEE Transactions on Aerospace and Electronic Systems, 1992,28(2):574-587
    
    [41] P.Hyberg, M.Jansson and B. Ottersten. Array interpolation and DOA MSE reduction. IEEE Trans. on signal processing, 2005, 53(12):4464-4471
    
    [42] M.D.Zoltowski, S.D.Silverstein, C.P.Mathews. Beamspace Root-MUSIC for minimum redundancy linear arrays. IEEE Transactions on Signal Processing, 1993,41(7):2502-2507
    
    [43] A.Moffet. Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 1968,16(2):172-175
    
    [44] M.CDogan, J.M.Mendel. Applications of cumulants to array processing I. Aperture extension and array calibration. IEEE Transactions on Signal Processing, 1995,43(5):1200-1216
    
    [45] P.Chevalier, A.Ferreol. On the virtual array concept for the fourth-order direction finding problem. IEEE Transactions on Signal Processing, 1999,47(9) :2592-2595
    
    [46] P.Chevalier, L.Alvera, A.Ferreol. On the virtual array concept for higher order array processing. IEEE Trans. on signal processing, 2005, 53(4): 1254-1271
    
    [47] Z.Ming, Z.Zhao-Da. DOA estimation with sensor gain, phase and position perturbations. Proceedings of the IEEE on Aerospace and Electronics Conference, 1993, 67-69
    [48] Z.Ming, Z.Zhao-Da. Array shape calibration using sources in known directions. Proceedings of the IEEE on Aerospace and Electronics Conference, 1993, 70-73
    
    [49] N.Fistas,A.Manikas. A new general global array calibration method., IEEE International Conference on Acoustics Speech and Signal Processing, 1994, iv:73-76
    [50] B.C.Ng, S.Wee. Array shape calibration using sources in known locations. Singapore ICCS/ISITA '92. Communications on the Move, 1992, 836-840
    [51] E.K.L.Hung. Matrix-construction calibration method for antenna arrays. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3):819-828
    [52] Y.Rockah, P.Schultheiss. Array shape calibration using sources in unknown locations--Part I: Far-field sources. IEEE Transactions on Acoustics Speech and Signal rocessing, 1987, 35(3): 286-299
    [53] Y.Rockah, P.Schultheiss. Array shape calibration using sources in unknown locations--Part II: Near-field sources and estimator implementation. IEEE Transactions on Acoustics Speech and Signal Processing, 1987, 35(6):724-735
    [54] AJ.Weiss, B.Friedlander. Array shape calibration using eigenstructure methods. Twenty-Third Asilomar Conference on Systems and Computers, 1989, 2:925-929
    [55] AJ.Weiss, B.Friedlander. Array shape calibration using sources in unknown locations-a maximum likelihood approach. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, 37(12): 1958-1966
    [56] M.Viberg, A.L.Swindlehurst. A Bayesian approach to auto-calibration for parametric array signal processing. IEEE Transactions on Signal Processing, 1994,42(12):3495-3507
    [57] C.M.S.See, P.Boon-Kiat. Parametric sensor array calibration using measured steering vectors of uncertain locations. IEEE Transactions on Signal Processing, 1999, 47(4): 1133-1137
    [58] B.Friedlander, AJ.Weiss. Direction finding in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation, 1991, 39(3):273-284
    [59] C Qi, Y Wang, Y Zhang. DOA estimation and self-calibration algorithm for uniform circular array. Electronics letters, 2005, 41(20): 25-26
    [60] C Qi, Y Wang, Y Zhang. doa estimatio and self calibration algorithm for multiple subarrays in the presence of mutual coupling, IEE Proc. Radar Sonar Navig., 2006, 153(4):333-337
    [61] Eric, K.L.Hung. Matrix-construction calibration method for antenna arrays. IEEE Trans. on aerospeace and electronic systems, 2000, 36(3): 819-828
    [62] P.D.Fiore. A constant modulus matrix factorization for direction finding and array calibration. IEEE signal processing letters, 2002,9(9): 272-274
    [63] H.S.Mir, J.D.Sahr. Self-calibration of an airborne array, the 38th Asilomar Conference on Signals, Systems and Computers, 2004,2:2340-2344
    [64] H.S.Mir. A Generalized Transfer-Function Based Array Calibration Technique for Direction Finding. IEEE Trans, on signal processing, 2007,55(1): 1-4
    [65] F.Sellone, A.Serra. A Novel Online Mutual Coupling Compensation Algorithm for Uniform and Linear Arrays. IEEE Trans, on signal processing, 2007, 55(2): 560-573
    [66] B.P.Flanagan, K.L.Bell. Improved array self calibration with large sensor position errors for closely spaced sources. Proceedings of IEEE on Sensor Array and Multichannel Signal Pro- cessing Workshop, 2000,484-488
    
    [67] A.Belouchrani, M.GAmin. Blind source separation based on time-frequency signal representations. IEEE Transactions on Signal Processing, 1998,46(11):2888-2897
    [68] A.Belouchrani, M.G.Amin. Time-frequency MUSIC. IEEE Signal Processing Letters, 1999, 6 (5):109-110
    [69] Y.M.Zhang, W.F.Mu, M.GAmin. Subspace analysis of spatial time-frequency distribution matrices. IEEE Transactions on Signal Processing, 2001,49(4):747-759
    [70] N.Ma, J.T.Goh. Ambiguity-function-based techniques to estimate DOA of broadband chirp signals. IEEE Transactions on Signal Processing, 2006, 54(5): 1826-1839
    [71] A.B.Gershman, M.GAmin. Coherent wideband DOA estimation of multiple FM signals using spatial time-frequency distributions. IEEE International Conference on Acoustics Speech and Signal Processing, 2000, 5:3065-3068
    [72] G.Wang, X.GXia. Iterative algorithm for direction of arrival estimation with wideband chirp signals. IEE Proceedings on Radar Sonar and Navigation, 2000,147(5):233-238
    [73] F.Aigang, Z.Zheng, Y.Qinye. Wideband direction-of-arrival estimation using fast chirplet-based adaptive signal decomposition algorithm.Vehicular Technology Conference, 2001, 3:1432-1436
    [74] A.S.Kayhan, M.GAmin. Spatial evolutionary spectrum for DOA estimation and blind signal separation. IEEE Transactions on Signal Processing, 2000,48(3):791-798
    [75] Y.M.Zhang, W.F.Mu, M.GAmin. Time-frequency maximum likelihood methods for direction finding. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2000, 337(4):483- 497
    [76] Y.M.Zhang, M.G. Amin. Spatial averaging of time-frequency distributions for signal recovery in uniform linear arrays. IEEE Transactions on Signal Processing, 2000,48(10):2892-2902
    [77] Y.M.Zhang, BA.Obeidat, M.GAmin. Spatial polarimetric time-frequency distributions for direction-of-arrival estimations. IEEE Transactions on Signal Processing, 2006, 54 (4): 1327-1340
    [78] M.GAmin, A.Belouchrani, Y.M.Zhang. The spatial ambiguity function and its applications. IEEE Signal Processing Letters, 2000, 7(6):138-140
    [79] M.GAmin, Y.M.Zhang. Direction finding based on spatial time-frequency distribution matrices. Digital Signal Processing, 2000, 10(4):325-339
    
    [80] 张贤达.矩阵分析与应用.北京:清华大学出版社,2004
    
    [81] GM.Kautz, M.D.Zoltowski. Beamspace DOA estimation featuring multirate eigenvector processing. IEEE Transactions on Signal Processing, 1996,44(7):1765-1778
    [82] M.D.Zoltowski, G.M.Kautz, S.D.Silverstein. Beamspace Root-Music. IEEE Transactions on Signal Processing, 1993,41(1):344-364
    [83] W.Du, RX.Kirlin. Improved spatial smoothing techniques for DOA estimation of coherent signals. IEEE Transactions on Signal Processing, 1991, 39(5):1208-1210
    [84] W.Hongyi, K.J.R.Liu. 2-D spatial smoothing for multipath coherent signal separation. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2):391-405
    [85] S.U.Pillai,B.H.Kwon.Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics Speech and Signal Processing, 1989,37(1):8-15
    [86] B.D.Rao, K.V.S.Hari. Effect of spatial smoothing on state space methods/ESPRIT. Fifth ASSP Workshop on Spectrum Estimation and Modeling, 1990,377-381
    [87] B.D.Rao, K.V.S.Hari. Effect of spatial smoothing on the performance of MUSIC and the minimum-norm method. IEE Proceedings on Radar and Signal Processing, 1990,137(6):449-458
    [88] N.Tayem, H.M.Kwon, H.L.Yong. DOA estimation for coherent sources with spatial smoothing without eigendecomposition under unknown noise field. IEEE Global Telecommunications Con- ference, 2005,4:5-9
    
    [89] S.Tie-Jun, M.Wax, T.Kailath. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics Speech and Signal Processing, 1985, 33(4): 806-811
    [90] T.Kah-Chye, O.Geok-Lian. Estimating directions-of-arrival of coherent signals in unknown correlated noise via spatial smoothing. IEEE Transactions on Signal Processing, 1997, 45(4): 1087-1091
    [91] A.J.Weiss, B.Friedlander.Performance analysis of spatial smoothing with interpolated arrays. IEEE Transactions on Signal Processing, 1993,41(5):1881-1892
    [92] R.T.Williams, S.Prasad, A.K.Mahalanabis. An improved spatial smoothing technique for bearing estimation in a multipath environment. IEEE Transactions on Acoustics Speech and Signal Processing, 1988, 36(4):425-432
    [93] D.Angzhao, T.Lisheng. Matrix decomposition and multiple source location. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1984, 9:722-725
    [94] J.A.Cadzow, Y.S.Kim, D.C.Shiue. General direction-of-arrival estimation: a signal subspace approach. IEEE Transactions on Aerospace and Electronic Systems, 1989,25(1):31-47
    [95] H.Hung, M.Kaveh. On the statistical sufficiency of the coherently averaged covariance matrix for the estimation of the parameters of wideband sources. IEEE International Conference on Acoustics Speech and Signal Processing, 1987,12:33-36
    [96] J.Yang, M.Kaveh. Wideband adaptive arrays based on the coherent signal-subspace transformation. IEEE International Conference on Acoustics Speech and Signal Processing, 1987, 12:2011-2014
    [97] A.Shaw, R.Kumaresan. Estimation of angles of arrivals of broadband signals. IEEE International Conference on Acoustics Speech and Signal Processing, 1987,12:2296-2299
    [98] W.Hong, M.Kaveh. On the performance of signal-subspace processing-Part II: Coherent wideband systems. IEEE Transactions on Acoustics Speech and Signal Processing, 1987, 35(11): 1583-1591
    [99] R.Foka. Properties of Toeplitz approximation method (TAM) for direction finding problems. IEEE International Conference on Acoustics Speech and Signal Processing, 1987, 12:2233- 2236
    [100]S.Kung, C.Lo, R.Foka. AToeplitz approximation approach to coherent source direction finding. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1986, 11:193-196
    [101] D.M.Wikes, M.H.Hayes. Iterated Toeplitz approximation of covariance matrices. IEEE International Conference on Acoustics Speech and Signal Processing, 1988,1663-1666
    [102]D.A.Linebarger. Redundancy averaging with large arrays. IEEE Transactions on Signal Processing, 1993,41(4):1707-1710
    [103]H.Fang-Ming, Z.Xian-Da. An ESPRIT-like algorithm for coherent DOA estimation.Antennas and Wireless Propagation Letters, 2005,4:443-446
    [104]S.Mann, S.Haykin. The chirplet transform: physical considerations. IEEE Transactions on Signal Processing, 1995,43(11):2745-2761
    [105]G.Bienvenu. Eigensystem properties of the sampled space correlation matrix. IEEE International Conference on Acoustics Speech and Signal Processing, 1983, 8:332-335
    [106]M.Wax, S.Tie-Jun, T.Kailath. Spatio-temporal spectral analysis by eigenstructure methods. IEEE Transactions on Acoustics Speech and Signal Processing, 1984, 32(4):817-827
    [107]M.Allam, A.Moghaddamjoo. Two-dimensional DFT projection for wideband direction-of- arrival estimation. IEEE Transactions on Signal Processing, 1995,43(7):1728-1732
    [108]T.S.Lee. Efficient Wide-Band Source Localization Using Beamforming Invariance Technique. IEEE Transactions on Signal Processing, 1994,42(6):1376-1387
    [109]T.S.Lee, T.T.Lin. Adaptive beamforming with interpolated arrays for multiple coherent interferers. Signal Processing, 1997, 57(2): 177-194
    [110]Y.S.Yoon, L.M.Kaplan, J.H.McClellan. TOPS: New DOA estimator for wideband signals. IEEE Transactions on Signal Processing, 2006, 54(6): 1977-1989
    
    [111] D.B.Ward, R.A.Kennedy, R.C.Williamson. FIR filter design for frequency invariant beam- formers. Signal Processing Letters, IEEE, 1996,3(3):69-71
    [112] J.R.Fonoliosa, C.T.Nikias. Wigner Higher Order Moment Spectra: Definition, Properties, Com- putation and Application to Transient Signal Analysis. IEEE Transactions on Signal Processing, 1993, 41(1):245-266
    [113] W.Gardner. Spectral Correlation of Modulated Signals: Part I--Analog Modulation. IEEE Transactions on Communications, 1987, 35(6):584-594
    [114] W.Gardner, W.Brown, C.Chih-Kang. Spectral Correlation of Modulated Signals: Part II-- Digital Modulation. IEEE Transactions on Communications, 1987, 35(6):595-601
    [115] W.A.Gardner. Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity. Proceedings of the IEEE, 1988, 76(7):845-847
    [116] H.Yan, H.H.Fan. DOA estimation for wideband cyclostationary signals under multipath environment. IEEE International Conference on Acoustics Speech and Signal Processing, 2004, 2:77-80
    [117]G.Burel,C.Bouder.Blind estimation of the pseudo-random sequence of a direct sequence spread spectrum signal.21st Century Military Communications Conference Proceedings,2000,2:967-970
    [118]Y.T.Chan,J.W.Plews,K.C.Ho.Symbol rate estimation by the wavelet transform.Proceedings of IEEE International Symposium on Circuits and Systems,1997,1:177-180
    [119]M.D.Zoltowski,C.P.Mathews.Real-Time Frequency and 2-D Angle Estimation with Sub-Nyquist Spatiotemporal Sampling.IEEE Transactions on Signal Processing,1994,42(10):2781-2794
    [120]H.Akaike.A new look at the statistical model identification.IEEE Transactions on Automatic Control,1974,19(6):716-723
    [121]G.Schwartz.Estimaion the dimension of a model.Ann.statistic,1978,6:461-464
    [122]S.Tie-Jun,A.Paulraj,T.Kailath.On smoothed rank profile tests in eigenstructure methods for directions-of-arrival estimation.IEEE Transactions on Acoustics Speech and Signal Processing,1987,35(10):1377-1385
    [123]H.T.Wu,J.F.Yang.A Gerschgorin radii based source number detection:Analysis and simulations.IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences,1996,(8):1166-1172
    [124]H.T.Wu,J.F.Yang,F.K.Chen.Source Number Estimators Using Transformed Gerschgorin Radii.IEEE Transactions on Signal Processing,1995,43(6):1325-1333
    [125]A.M.Zoubir,B.Boashash.The bootstrap and its application in signal processing.IEEE Signal Processing Magazine,1998,15(1):56-76
    [126]王布宏,王永良,陈辉.方位依赖阵元幅相误差校正的辅助阵元法.中国科学E辑,2004,34(8):906-918
    [127]王布宏,王永良,陈辉.均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正.中国科学E 辑,2004,34(2):229-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700