天女木兰演化结构及抗寒机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用石蜡连续切片、木材三切、木材离析技术,对天女木兰(Magnoliasieboldii K.Koch)幼苗的初生维管系统、不同生境下三种营养器官和木材解剖结构的演化进行了研究。同时,从质膜相对透性与膜脂过氧化作用、可溶性糖含量、活性氧与保护酶等方面探讨了天女木兰的抗寒生理机制。结果表明:天女木兰幼苗为下胚轴伸长、双子叶出土幼苗。其子叶节区很长(11-13mm),属向基移位型。子叶节区可分为子叶节区上部、中部、下部三部分。本研究完全证实了子叶节区的客观存在及子叶节区理论的正确性,发现天女木兰子叶节区下部的四原型管状中柱是迄今尚未发现的一种新的中柱结构,特称之为木兰型(Magnolia type),研究结果能够证实蕨类植物与被子植物确有共同起源。同时,本研究也为幼苗初生维管组织从子叶节区分别向根端和苗端演化提供了依据。在此研究中还可证实Zimmermann提出的髓起源的向基移位理论是完全正确的。
     天女木兰叶片的原始特征表明其在系统演化上处于原始地位。
     较干旱生境的天女木兰与较湿润生境的天女木兰相比,其叶片单位长度下表皮气孔数减少而栅海比和单位叶宽叶肉组织中油细胞的数目增加。在其它环境因子相同的情况下,光照强度增大可使天女木兰叶片栅栏组织厚度、栅海比、主脉维管束枚数和单位叶宽叶肉组织中油细胞的数目增加。在其它环境因子相同的情况下,土壤含水量较低,树龄较大的天女木兰与土壤含水量较高,树龄较小的天女木兰相比,其叶片厚度、栅栏组织厚度、海绵组织厚度、栅海比以及单位叶宽叶肉组织中油细胞的数目均大于后者。
     较干旱生境的天女木兰与较湿润生境的天女木兰相比,其叶柄角质层厚度、皮层厚度均增大,而木质部导管的直径减小。在其它环境因子相同时,土壤含水量较低、树龄较大的天女木兰与土壤含水量较高、树龄较小的天女木兰相比,其叶柄角质层厚度增大。
     较干旱生境的天女木兰与较湿润生境的天女木兰相比,其幼茎的角质层厚度和皮层厚度增大。在其它环境因子相同的条件下,光照强度增加使天女木兰幼茎的皮层厚度和髓直径增大。在其它环境因子相同时,土壤含水量较低、树龄较大的天女木兰与土壤含水量较高、树龄较小的天女木兰相比,其幼茎角质层厚度增大。
     天女木兰的次生木质部在系统演化中,保留着很多原始特征的同时,也有进化趋势。因此天女木兰在进化地位上属于保存了较原始特征的树种,由于对环境的适应,其次生木质部中也产生了具有进化趋势的结构。
     1.导管和纤维
     同一生境下,通化县天女木兰的茎材和枝材相比,导管直径、导管壁厚、纤维长度、纤维壁厚和纤维直径5项指标,两者间的差异显著,其中前4项为茎材大于枝材,最后1项为枝材大于茎材。较干旱生境的天女木兰与较湿润生境的天女木兰相比,其枝材的导管长度、导管长度与直径的比值、纤维长度和纤维壁厚均减小。
     2.射线
     同一生境下,通化县天女木兰的茎材和枝材相比,横切面上射线频率和横卧细胞宽度2项指标为枝材大于茎材。较干旱生境的天女木兰与较湿润生境的天女木兰相比,其枝材多列射线的高度减小,弦切面上射线频率增大。
     12℃的低温胁迫使天女木兰的MDA含量、可溶性糖含量增加,POD活性降低,SOD活性增大。
     在低温胁迫过程中,10℃处理的MDA含量先显著增加,而后开始回落,15℃处理的MDA含量变化趋势与10℃处理的大致相同。而对照植株的MDA含量表现出一定的稳定性。可溶性糖的积累随温度的降低而增加,随着胁迫时间的持续,其含量先增加而后有所回落。低温胁迫后,POD活性呈现出降低—升高—降低的变化趋势,10℃低温处理POD活性降低的幅度比15℃处理大。SOD活性表现出先升高而后降低的趋势,10℃低温处理SOD活性升高的幅度大于15℃处理。
The cotyledon node zone (CNZ) of seedling of Magnolia sieboldii K.Koch andanatomical structural development of vegetative organ and wood of M.sieboldii underdifferent ecological habitat were studied using the CNZ theory and series of methods,such asmaking the paraffin serial section,wood isolation and manual slicing techniques.In addition,the study on membrane leakage and membrane-lipid peroxidation,soluble sugar content,changes of defensive enzyme activity of M.sieboldii were carried out,the main purpose wasto disclose the physiological acclimation mechanisms.The results were as follows:
     The seedling ofM.sieboldii was epigaeous,the CNZ was very long (11-13 mm) andbelonged to basipetal shifting type,and it could be divided into three parts:upper,middle andlower.Current study proved the existence of CNZ and supported the CNZ theory.The tetrarchsiphonostele stele type in the lower part of the CNZ of M.sieboldii seedling,a new stelestructure,was found firstly and nominated as Magnolia type.The results testified that fernsand angiosperms originated from the same plant.In addition,the results provided evidence forthe developing of primary vascular system of seedling from the CNZ to root apex and shootapex,and further verified that basipetal shifting theory of pith origin proposed byZimmermann was correct.
     Compared with that of M.sieboldii under moister ecological habitat,the number ofstomata per 1mm leaf width on the lower epidermis of M.sieboldii under arider ecologicalhabitat decreased,but the ratio of thickness of palisade tissue to that of spongy tissue andnumber of oil cell per 1 mm leaf width in mesophyll tissue increased.Under the ecologicalhabitat with the same other environmental factors,increasing of light intensity made thethickness of palisade tissue,the ratio of thickness of palisade tissue to that of spongy tissue,the number of vascular bundles in main vein and number of oil cell per 1mm leaf width inmesophyll tissue increase.Under the ecological habitat with the same other environmentalfactors,the thickness of leaf,palisade tissue and spongy tissue,the ratio of thickness ofpalisade tissue to that of spongy tissue and number of oil cell per 1mm leaf width inmesophyll tissue of older plants with lower soil moisture content increased,compared withthat of younger plants with higher soil moisture content.
     The thickness of cuticle and cortex of petiole of plants under arider ecological habitatincreased,but the vessel diameter in xylem decreased,compared with that of plants undermoister ecological habitat.Under the ecological habitat with the same other environmentalfactors,the cuticle thickness of petiole of older plants with lower soil moisture contentincreased,compared with that of the younger plants with higher soil moisture content.
     Compared with that of plants under moister ecological habitat,the thickness of cuticle and cortex ofstem of plants under arider ecological habitat increased significantly.Under the ecological habitat withthe same other environmental factors,increasing of light intensity made the cortex thickness and pithdiameter of stem increase.Under the ecological habitat with the same other environmental factors,thecuticle thickness of stem of older plants with lower soil moisture content increased,compared withthat of younger plants with higher soil moisture content.
     Under the same ecological habitat at Tonghua county,the vessel diameter,vessel wallthickness,fibre length,fibre wall thickness of stemwood of M.sieboldii increased,but fibrediameter decreased,compared with that of branchwood.
     Compared with that of branchwood of M.sieboldii under moister ecological habitat,thevessel length,the ratio of vessel length to vessel diameter,fibre length and fibre wallthickness of branchwood ofM.sieboldii under arider ecological habitat decreased.
     Under the same ecological habitat at Tonghua county,the ray frequency on cross sectionand procumbent ray cell width of branchwood of M.sieboldii increased,compared with thatof stemwood.Compared with that of branchwood of M.sieboldii under moister ecologicalhabitat,the multiple ray height of branchwood of M.sieboldii under adder ecological habitatdecreased,but the ray frequency on tangential section increased.
     Cold stress at 12℃made MDA contents,soluble sugar content and SOD activity of M.sieboldii increase,POD activity of that decrease.
     During low temperature stress,the MDA content of the treatment at 10℃increasedfirstly,then fell after a rise,the MDA content of the treatment at 15℃had similar changetrend with that of the treatment at 10℃.While the temperature decreased,soluble sugarcontent increased.During low temperature stress,its content increased firstly,then fell after arise.
     During low temperature stress,POD activity displayed the change trend offalling-rising-falling,while SOD activity increased first,then fell after a rise.
引文
[1]Gu A G,Wang M,Wang L J.Studies on cotyledon node zone in some genera of the Ranunculaccae[J].Cathaya,1990(2):171-180.
    [2]谷安根,王立军.子叶节区理论与被子植物演化形态学的进展[M].长春:吉林科学技术出版社,2000.39.
    [3]谷安根,王立军.子叶节区理论与被子植物演化形态学的进展[M].长春:吉林科学技术出版社,2000.13.
    [4]王立军,汪矛,谷安根.肾叶唐松草幼苗初生维管系统的个体发育研究[J].植物研究,1990,10 (4): 101-105.
    [5]汪矛,谷安根,张友民,等.镰形角果毛茛幼苗的初生维管系统研究[J].吉林农业大学学报,1991,13(3):29-31.
    [6]王立军,张友民,谷安根,等.尖萼耧斗菜幼苗初生维管系统的解剖学研究[J].植物研究,1993,13(2):132-135.
    [7]王立军,谷安根,张友民,等.夏侧金盏花幼苗初生维管系统的解剖学研究[J].植物研究,1993,13(3):257-261.
    [8]王立军,谷安根,张友民,等.大花翠雀幼苗初生维管系统的解剖学研究[J].植物研究,1994,14(1):76-81.
    [9]张友民,王立军,贾伟平,等.蓝堇草幼苗初生维管系统的解剖学研究[J].吉林农业大学学报,1995,17 (2):45-48.
    [10]王立军,张友民,贾伟平,等.家黑种草幼苗初生维管系统的解剖学研究[J].植物研究,1995,15(2):215-220.
    [11]贾伟平,张友民,王立军,等.葛莱德拉幼苗初生维管系统的解剖学研究[J].植物研究,1995,15 (4):473-477.
    [12]张友民,姚芳杰,王立军,等.兔葵幼苗初生维管系统的个体发育研究[J].吉林农业大学学报,1996,18(增刊):5-7,14.
    [13]赵丽辉,谷安根,王立军,等.大白菜幼苗初生维管系统的解剖学研究[J].植物研究,1997,17(4):431-435.
    [14]张友民,姚方杰,王立军,等.黄瓜幼苗的初生维管系统研究[J].吉林农业大学学报,1997,19 (4):30-32.
    [15]张友民,王立军,谷安根,等.苦瓜幼苗初生维管系统的解剖学研究[J].吉林农业大学学报,1996,18(2):39-41.
    [16]张友民,姚方杰,王立军,等.西瓜幼苗初生维管系统的解剖学研究[J].吉林农业大学学报,1996,18(增刊):8-11.
    [17]赵丽辉,王立军,谷颐.大豆幼苗初生维管系统的解剖学研究[J].吉林农业大学学报,1998, 20(1):42-45.
    [18]张恕茗,谷安根,王立军,等.茄子幼苗初生维管系统的解剖学研究[J].植物研究,1997,17 (2):163-168.
    [19]王立军,谷安根,张友民,等.甜菜幼苗的分区及其肥大直根的定位研究[J].作物学报,2000,26(1):87-91.
    [20]赵丽辉,谷颐.胡萝卜的幼苗分区及其肥大直根的定位研究[J].吉林农业大学学报,1998,20(4):41-44.
    [21]谷安根,王立军.子叶节区理论与被子植物演化形态学的进展[M].长春:吉林科学技术出版社,2000.40-129.
    [22]陆静梅,李建东.同种不同生态环境植物解剖结构比较研究[J].东北师范大学学报,1994,3:100-104.
    [23]王勋陵,王静.植物的形态结构与环境[M].兰州:兰州大学出版社,1989.105-138.
    [24]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较[J].植物生态学报,2001,25: 90-98.
    [25]贺金生,陈伟烈,王勋陵.高山栎叶的形态结构及其与生态环境的关系[J].植物生态学报,1994,18: 219-227.
    [26]Sam 0,Jerez E,Dell'Amiico J,et al.Water stress induced changes in anatomy of tomato leaf epidermis[J].Biologia Plantum,2000,43: 275-277.
    [27]Bosabalidis AM,Kofidis G.Comparative effects of drought stress on leaf anatomy of two olive cultivars[J].Plant Science,2002,163: 375-379.
    [28]高建平,王彦涵,陈道峰.不同产地华中五味子叶表皮结构和导管分子的解剖学特征及其与环境因子的关系[J].西北植物学报,2003,23: 715-723.
    [29]章英才,闫天珍.花花柴叶片解剖结构与生态环境关系的研究[J].宁夏农学院学报,2003,24(1):31-34.
    [30]张晓艳,杨惠敏,侯宗东,等.土壤水分和种植密度对春小麦叶片气孔的影响[J].植物生态学报,2003,27: 133-136.
    [31]Chartzoulakis K,Patskas A,Kofidis G,et al.Water stress affects leaf anatomy,gas exchange,water relations and growth of two avocado cultivars[J].Scientia Horticulturae,2002,95: 39-50.
    [32]Castro-Diez P,Puyravaud J P,Cornelissen J H C.Leaf structure and anatomy as related to leaf mass per area variation in seedlings of wide range of woody plant species and types[J].Oecologia,2000,124:476-486.
    [33]Dong X J,Zhang X S.Some observations of the adaptations of sandy shrubs to the arid environment in the Wu Us sandland leaf water relations and anatomic feature[J].Journal of Arid Environments,2001,48: 41-48.
    [34]Antonielli M,Pasqualini S,Batini P,et al.Physiological and anatomical characterization of Phragmites austrlis leaves[J].Aquatic Botany,2002,72: 55-66.
    [35]胡云,燕玲,李红.14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境,2006,20 (1) :202-208.
    [36]K·伊稍.种子植物解剖学[M].李正理译.上海:上海人民出版社,1973.268-271.
    [37]李广毅,高国雄,吕悦来,等.灰毛滨藜茎解剖结构与抗逆性研究[J].西北林学院学报,1995,10(3):16-20.
    [38]张来,刘宁,陈训.贵州花江峡谷不同生境条件下艳山姜茎的解剖研究[J].贵州科学,2004,22(3):86-88.
    [39]Lindorf H.Eco-anatomic wood features of species from a very dry tropical forest[J].IAWA,1994,15: 45-61.
    [40]张新英,曹宛虹.豆科7种沙生植物木质部的生态解剖[J].植物学报,1993,35(2):929-935.
    [41]Urbas P.Adaptive and inevitable morphological of three herbaceous species in a multi-species community:field experiment with manipulated nutrients and light[J].Acta Oecologic,2000,21:139-147.
    [42]Roscas G,Scarano FR.Leaf anatomical variation in Alchornea triplinervia (Spreng) Mull.Arg.(Euphorbiaceae) under distinct light and soil water regimes[J].Botanical Journal of the Linnean Society,2001,136:231-238.
    [43]Mendes M M,Gazarini L C,Rodrigues M L.Acclimation of Myrtus communis to contrasting Mediterranean light environments effects on structure and chemical composition of foliage and plant water relations[J].Environmental and Experimental Botany,2001,45:165-178.
    [44]蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应[J].应用生态学报,2004,15: 201-204.
    [45]Higuchi H,Sakuratani T,Utsunomiya N.Photosynthesis,leaf morphology and shoot growth as affected by temperatures in cherimoya(Annona cherimola Mill.)trees[J].Scientia Hort i cu l turae,1999,80:91-104.
    [46]费松林,方精云,樊拥军,等.贵州梵净山亮叶水青冈叶片和木材的解剖学特征及与生态因子的关系[J].植物学报,1999,41: 1002-1009.
    [47]贺金生,陈伟烈,王勋陵.高山栎叶的形态结构及其与生态环境的关系[J].植物生态学报,1994,18: 219-227.
    [48]刘全宏,王孝安,田先华.太白红杉叶的形态解剖学特征与环境因子的关系[J].西北植物学报,2001,21: 885-893.
    [49]王丽雪.葡萄叶片组织结构与抗寒性的关系[J].特产研究,1990 (3): 13-18.
    [50]戚英鹤,魏安靖,赵四清,等.脐橙抗寒性与叶片结构的关系[J].浙江林业科技,1995,15(2):27-29.
    [51]钟广炎,陈力耕.柑桔种质资源抗寒性与叶片结构的关系[J].中国柑桔,1994,23 (2): 16-17.
    [52]彭伟秀,杨建民,张芹,等.不同抗寒性的杏品种叶片组织结构比较[J].河北林果研究,2001,16(2):145-147.
    [53]金研铭,徐惠风,李亚东,等.牡丹引种及其抗寒性的研究[J].吉林农业大学学报,1999, 21(2):37-39.
    [54]房用,李秀芬,慕宗昭,等.茶树抗寒性研究进展[J].经济林研究,2004,22 (2): 69-72.
    [55]谢庭味,欧阳美珊.13种木兰科树种叶片解剖与其抗寒性[J].武汉植物学研究,1989,7 (3):234-238.
    [56]黄义江.苹果属果树抗寒细胞学鉴定[J].园艺学报,1982,9 (3): 23-30.
    [57]刘世彪,陈菁,胡正海.7种番荔枝果树的叶片结构及其与抗寒性关系的研究[J].果树学报,2004,21 (3):241-246.
    [58]彭伟秀,杨建民,张芹,等.几个仁用杏品种枝条组织结构与抗寒性关系的初步研究[J].河北农业大学学报,2002,25(1): 48-50.
    [59]赵香兰,郭守华,齐秀东,等.丽红桃休眠枝芽的抗寒性[J].河北果树,2005 (3): 6-7.
    [60]郭修武.葡萄根系抗寒性鉴定方法研究[J].葡萄栽培与酿酒,1994 (4): 26-29.
    [61]李美茹,刘鸿先,王以柔.低温下水稻幼苗叶片细胞膜膜脂过氧化和膜磷脂脱酯化反应[J].广西植物,1998,18 (2): 173-176.
    [62]王连敏,王立志,张国民,等.苗期低温对玉米体内脯氨酸、电导率及光合作用的影响[J].中国农业气象,1999,20 (2): 28-31.
    [63]孙德岭,方文慧,张宝珍,等.温度变化对番茄幼苗抗寒性的影响[J].华北农学报,1999,14(3):75-78.
    [64]王松华,周阮宝.三叶期前水稻幼苗抗寒生理研究[J].安徽农业技术师范学院学报,1998,12(3):15-18.
    [65]梅俊学.逆境下发菜脯氨酸含量及质膜透性的变化与含水量的关系[J].山东师大学报(自然科学版),2000,15 (2): 178-181.
    [66]刘娥娥,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8 (3): 235-238.
    [67]Olien C R.Preliminary Classification of polysaccharide[J].Freezing Inhibitors,Corp Sc i,1967,(7):156-176.
    [68]余文琴,刘星辉.低温胁迫下芒果叶片若干生理生化变化[J].福建农业大学学报,2001,30 (2):180-184.
    [69]王丽雪,李荣富.葡萄枝条中淀粉,还原糖及脂类物质变化与抗寒性的关系[J].内蒙古农牧学院学报,1994,15 (4): 1-6.
    [70]Santarius K A.The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance[J].Planta,1973,113:105-114.
    [71]Steponkus P L.Role of the plasma membrane in freezing injury and cold acclimation[J].Ann Rev Plant Physiol,1984,35:543-584.
    [72]曾庆平,郭勇.植物的逆境应答与系统抗性诱导[J].生命的化学,1997,17 (3): 31-33.
    [73]林植芳.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    [74]Bowler C,Van Montagn C,Inze D.Superoxide dismutase and stress tolerance[J].Ann Rev Plant Physiol Plant Nol Biol,1992,43:83-116.
    [75]Asada K.The water-water cycle in chloroplasts.Scavenging of active oxygens and dissipation of excess photons[J].Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639.
    [76]Lee D H,Kim Y S,Lee C B.The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.)[J].J Plant Physiol,2001,158: 737-745.
    [77]Fridovich I.Superoxide dismutases:An adaptation to a paramagnetic gas[J].J Biol Chem,1989,264:7761-7764.
    [78]Allen R D.Dissection of oxidative stress tolerance using transgenic plants[J].Plant Physiol,1995,107:1049-1054.
    [79]孙昌祖,刘家琪.低温胁迫对青杨叶片O_2 、 MDA、膜透性、叶水势及保护酶的影响[J].内蒙古林学院学报,1998,20 (3): 32-36.
    [80]靳月华,陶大立,杜英君.沈阳五种针叶树的抗冻性、色素与超氧物歧化酶[J].植物学报,1990,32 (9): 702-706.
    [81]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报,2000,42(2):148-152.
    [82]以柔,曾韶西,刘鸿先.冷锻炼对水稻和黄瓜幼苗SOD、 GR活性及GSH、 ASA含量的影响[J].植物学报,1995,37(10): 776-780.
    [83]郑家基,谢厚钗,肖燕慧,等.香蕉越冬期ATPase和保护酶的活性及膜脂过氧化[J].福建农业大学学报,1996,25 (4): 420-424.
    [84]邹志荣,陆帼一.低温对辣椒幼苗膜脂过氧化和保护酶系统变化的影响[J].西北农业学报,1994,3(3):51-56.
    [85]火树华,康木生,姚庆渭,等.树木学[M].北京:中国林业出版社,1980.78.
    [86]高尚士 珍稀木本花卉—天女花[J].广东园林,1996 (2): 35.
    [87]马吉龙,李艳君 天女花种子繁殖及其在园林中的应用栽培[J].河北林果研究,1999,14(3):238-241.
    [88]宋连芳,富玉,秦丽 建立天女木兰资源保护区的探讨[J].吉林林业科技,2001,30 (2):35-38.
    [89]王志杰,及华,张海新.天女花种子处理与苗木年生长过程的研究[J].河北林业科技,1996(2):11-12.
    [90]王志杰,田宝宁.天女木兰种子催芽方法研究初报[J].河北林果研究,1996,11 (3-4):195-198.
    [91]田洪,于翠兰,赵占英,等.天女木兰的栽培技术[J].吉林蔬菜,1997,(6): 25.
    [92]王志杰,董明.天女花种子品质检验和苗木生长规律的研究[J].河北林业科技,2000,(2):13-14.
    [93]王志杰,樊屹松,蔡德义,等.赤霉素和多效唑对天女花移植苗生长的影响[J].河北林果研究,2000,15 (4): 349-352.
    [94]张绪成,赵秉义,杨文峰.天女木兰精油的化学成分及应用[J].吉林林业科技,1993,(2):13-15.
    [95]季怡萍,杨振华,李兴林.天女木兰油的分析鉴定[J].分析化学,1993,21 (4): 419-421.
    [96]陆静梅,李彦舫,韩立娟,等.天女木兰与北五味子的比较解剖学研究[J].东北师大学报自然科学版,1992 (1): 107-110.
    [97]Haruhiko Tada,Reiko Fujioka and Yohko Takayama.15-Acetoxycostunolide from Magnolia sieboldii[J].Phytochemistry,1982,21(2):458-459.
    [98]Choi J H,Ha J,Park J H,et al.Costunolide triggers apoptosis in human leukemia U937 cells by depleting intracellular thiols[J].Jpn J Cancer Res,2002,93(12):1327-1333.
    [99]Lim S S,Shin K H,Ban H S,et al.Effect of the essential oil from the flowers of Magnolia sieboldii on the lipopolysaccharide-induced production of nitric oxide and prostaglandin E2 by rat peritoneal macrophages[J].Planta Med,2002,68(5):459-462.
    [100]Kikuchi S,Isagi Y.Microsatellite genetic variation in small and isolated populations of Magnolia sieboldii ssp.Japonica[J].Heredity,2002,88(4): 313-321.
    [101]Park H J,Kwon S H,Han Y N,et al.Apoptosis-Inducing costunolide and a novel acyclic monoterpene from the stem bark of Magnolia sieboldii[J].Arch Pharm Res 2001,24 (4):342-348.
    [102]Park S H,Choi S U,Lee C 0,et al.Costunolide,a sesquiterpene from the stem bark of Magnolia sieboldii,inhibits the RAS-farnesyl-proteintransf erase [J].Planta Med 2001,67(4):358-359.
    [103]Park H J,Jung W T,Basnet P,et al.Syringin 4-O-beta-glucoside,a new phenylpropanoid glycoside,and costunolide,a nitric oxide synthase inhibitor,from the stem bark of Magnolia sieboldii[J].J Nat Prod,1996,59(12):1128-1130.
    [104]谷安根,王立军.子叶节区理论与被子植物演化形态学的进展[M].长春市:吉林科学技术出版社,2000.34-38.
    [105]谷安根,王立军.子叶节区理论与被子植物演化形态学的进展[M].长春市:吉林科学技术出版社,2000.40-43.
    [106]Namboodiri K K,Beck C B.A comparative study of the primary vascular system of conifers.Ⅰ.Genera with helical phyllotaxis[J].Amer J Bot,1968,55:447-451.
    [107]Namboodiri K K,Beck C B.A comparative study of the primary vascular system of conifers.Ⅱ .Genera with opposite and whorled phyllotaxis[J].Amer J Bot,1968,55:458-463.
    [108]Namboodiri K K,Beck C B.A comparative study of the primary vascular system of conifers.Ⅲ.Stelar evolution in gymnosperms[J].Amer J Bot,1968,55:464-472.
    [109]Devadas C,Beck C B.Development and morphology of stelar components in the stems of some members of the Leguminosae and Rosaceae[J].Amer J Bot,1971,58:432-446.
    [110]Devadas C,Beck C B.Comparative morphology of the primary vascular system in some species of Rosaceae and Leguminosae[J].Amer J Bot,1972,59:557-567.
    [111]Jeffrey,E C.Stelar theory[J].Phil Trans Ro Soc London,1902,B195:119-146.
    [112]谷安根,陆静梅,王立军.维管植物演化形态学[M].长春:吉林科学技术出版社,1993.63-67.
    [113]Zimmermann W.On the phylogeny of the stele[J],Bot Tokyo,1956,69:401-409.
    [114]Metcalfe C R,Chalk L.Anatomy of the Dicotyledons[M].Oxford:Clarendon Press,1950.1:16-21.
    [115]Metcalfe C R.Anatomy of the Dicotyledons[M].2nd ed.Oxford:Clarendon Press,1987.3:24-33.
    [116]Baranova M.Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families[J].Taxon,1972,21 (4):447-469.
    [117]West W C.Ontogeny of oil cells in the woody Ranales[J].Bull Torrey Bot Club,1969,96(3):329-344.
    [118]Tucker S C.The terminal idioblasts in Magnoliaceous leaves[J].Amer J Bot,1964,51(10):1051-1062.
    [119]蔡霞,胡正海.中国木兰科植物的叶结构及其油细胞的比较解剖学研究[J].植物分类学报,2000,38(3):218-230.
    [120]Zimmermann M H.Hydraulic architecture of some diffuseporous[J].Can J Bot,1978,56:2286-2295.
    [121]苏印泉,张军侠.10种茶树叶片比较解剖学及与抗性关系的研究[J].西北林学院学报,1997,13(4):1-8.
    [122]唐耀.云南热带及亚热带材[M].北京:科学出版社,1964.97-103.
    [123]黄桂铃,李正理.山铜材属木材的比较解剖观察[J].植物学报,1982,24 (6) : 506-511.
    [124]黄桂铃.中国产金缕梅科木材的比较解剖[J].中山大学学报,1986 (1): 22-28.
    [125]Metcalfe C R,Chalk L.Anatomy of the Dicotyledons[M].Oxford:Clarendon Press,1957.Vol.1:587-593.
    [126]Solerender H.Systematic Anatomy of the Dicotyledons[M].Oxford:Clarendon Press,1908.Vol.1:328-332.
    [127]Crongquist J M.An Integrated System of Classification of the Flowering Plants[M].New York:Columbia University Press,1981.163-177.
    [128]谷安根,陆静梅,王立军.维管植物演化形态学[M].长春:吉林科学技术出版社,1993.124-127.
    [129]Outer R W den.Variation in wood anatomy of species with a distribution covering both rain forest and Savanna areas of the Ivory coast,West Africa[M].Leiden: Leiden University Press,1976.In:Leiden Botanical Series No.3,182-195.
    [130]王昌命,张新英.不同生境下蓝桉的木材解剖研究[J].植物学报,1994,36 (1): 31-38.
    [131]陈少裕,膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27 (2): 84-90.
    [132]Girotti A W.Photodynamic lipid peroxidation in biological systems[J].Photochem Photobiol,1990,51:497-509.
    [133]孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999.160-179.
    [134]Pryor W A,Castle L.Chemical methods for the detection of lipid hydroperoxides[J].Methods Enzymol,1984,105:293-305.
    [135]Berbezy P,Legendre L,Maujean A.Alfa-amylase isoform pattern changes during the winter season in the winter-resting stem internodes of Vitis vinifera[J].Plant Physiol Bioch,1997,35:685-691.
    [136]Komiyama S,Yamazaki T,Hori E,et al.Degradation of storage starch in tulip bulb scales induced by cold temperature[J].Jpn J Soil Sci Plant Nutr,1997,68:23-29.
    [137]Nomura K,Ogasawara Y,Uemukai H,et al.Change of sugar content in chestnut during low temperature storage[J].Acta Hortic,1995,398:265-276.
    [138]黄永红,沈洪波,陈学森.杏树抗寒生理研究初报[J].山东农业大学学报自然科学版,2005,36(2):191-195.
    [139]Chinnasamy G,Bal A K.Seasonal changes in carbohydrates of perennial root nodules of beach pea[J].J Plant Physiol,2003,160:1185-1192.
    [140]Ju Z,Yuan Y,Liu C,et al.Effects of low temperature on H_2O_2 and heart browning of Chili and Yali pear (Pyrus bretscheideri,R.)[J].Sci Agric Sinica,1994,27:77-81.
    [141]Saruyama H,Tanida M.Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and-tolerant cultivars of rice (Oryza sativa L.)[J].Plant Sci,1995,109:105-113.
    [142]Zhang J,Cui S,Li J,et al.Protoplasmic factors,antioxidant responses,and chilling resistance in maize[J].Plant Physiol Biochem,1995,33:567-575.
    [143]Scebba F,Sebastiani L,Vitagliano C.Protective enzymes against activated oxygen species in wheat(Tri ticum aestivum L.)seedlings:responses to cold acclimation[J].J Plant Physiol,1999,155:762-768.
    [144]Janda T,Szalai G,Rios-Gonzalez R,et al.Comparative study of frost tolerance and antioxidant activity in cereals[J].Plant Sci,2003,164: 301-306.
    [145]Bowler C,Van Montagu M,Inz(?) D.Superoxide dismutase and stress tolerance[J].Annu Rev Plant Physiol Plant Mol Biol,1992,43:83-116.
    [146]Purvis A C,Shewfelt R L.Does the alternative polyamine pathway ameliorate chilling injury in sensitive plant tissues? [J].Physiol Plant,1993,88:712-718.
    [147]Hariyadi P,Parkin K L.Chilling-induced oxidative stress in cucumber fruits[J].Postharvest Biol Technol,1991,1:33-45.
    [148]Sala J M.Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits[J].Postharvest Biol and Technol,1998,13:255-261.
    [149]Monk L S,Fagerstedt K V,Crawford R M M.Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress[J].Physiol Plant,1989,76:456-459.
    [150]Vavilin D V,Ducruet J M,Matorin D N,et al.Membrane lipid peroxidation,cell viability and photosystemⅡ activity in the green alga Chlorella pyrenoidosa subjected to various stress conditions[J].Journal of Photochemistry and Photobiology B:Biology.1998,42:233-239.
    [151]Slooten L,Van Montagu M,Inz(?) D.Manipulation of oxidative stress tolerance in transgenic plants,in:K.Lindsey (Ed.),Transgenic Plant Research[M].Amsterdam:Harwood Academic Publishers,1998.241-262.
    [152]沈慧娟,曾斌.逆境对衫木幼苗体内一些酶活性的影响[J].南京林业大学学报,1992,16 (4):54-57.
    [153]Abarca D,Roldan M,Martin M,et al.Arabidopsis thaliana ecotype Cvi shows an increased tolerance to photo-oxidative stress and contains a new chloroplastic copper/zinc superoxide dismutase isoenzyme[J].J Exp Bot,2001,52:1417-1425.
    [154]Sahoo R,Kumar S,Ahuja P S.Induction of a new isozyme of superoxide dismutase at low temperature in Potentilla astrisanguinea Lodd.Variety argyrophylla (Wall.ex.Lehm),Griers[J].J Plant Physiol,2001,158:1093-1097.
    [155]Sch(o|¨)ner S,Krause H.Protective systems against active oxygen species in spinach:Response to cold acclimation in excess light[J].Planta 1990,182:383-389.
    [156]Sepp(a|¨)nen M M,Fagerstedt K.The role of superoxide dismutase activity in response to cold acclimation in potato[J].Physiol Plant,2000,108:279-285.
    [157]刘西平,胥耀平,王姝清,等.低温胁迫下栾树幼苗衰老与膜脂质过氧化关系[J].西北林学院学报,1995,10 (4): 72-75.
    [158]刘鸿先,曾韵西,王以柔,等.低温对不同耐寒力的黄瓜(Cucumic sativus)幼苗子叶各细胞器中超氧物歧化酶(SOD)的影响[J].植物生理与分子生物学学报,1985,1: 12-15.
    [159]Jones M M,Tuner N C.Osmotic adjustment in leaves of sorghum in response to water deficits[J].Plant Physiol,1978,61:122-128.
    [160]Morgan J M.Osmoregulation and water stress in higher plants[J].Ann Rev Plant Physiol,1984,35:299-319.
    [161]Kontunen-Soppela S, Lankila J, L(a|¨)hdesm(a|¨)ki P, et al.Response of protein and carbohydrate metabolism of Scots pine seedling to low temperature[J].J Plant Physiol,2002,159:175-180.
    [162]Bourion V,Lejeune-H(?)naut I,Munier-Jolain N,et al.Cold acclimation of winter and spring peas:carbon partitioning as affected by light intensity[J].Europ J Agronomy,2003,19:535-548.
    [163]陈星,李俊全,王君玲,等.低温下棕榈某些生理变化及低温锻炼对棕榈耐寒性的影响[J].北京师范大学学报自然科学版,1999,35 (2): 257-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700