牛肉质性状候选基因标记效应及其表达特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以西门塔尔牛、安格斯牛、鲁西牛、秦川牛、晋南牛、夏洛莱牛、利木赞牛、海福特牛和西门塔尔牛×蒙古牛9个群体共323个个体为实验材料。利用生物信息学PCR-RFLP、PCR-SSCP、实时荧光定量PCR、DNA测序、DNA序列分析技术,克隆和分析了牛CAV1和CAV3基因,并研究了CAV1、CAV3、CAPN1、CAPN3、CAST、HRSP12和CACNA2D1共7个候选基因的遗传变异,同时探讨了在试验群体中的遗传特征及其与肉质和胴体组成性状(宰前活重、胴体重、屠宰率、净肉率、大理石花纹评分、眼肌面积、肉色、脂肪颜色、背膘厚、嫩度和日增重)的关系,并检测了CAV1、CAV3、CAPN1和CAPN3基因的mRNA表达量,旨在获取相应的分子遗传学信息,找到与牛胴体和肉品质性状相关的DNA标记,为中国地方牛品种选育提高、品种改良及分子标记辅助选择提供科学依据。获得的主要结果如下:
     1.采用电子克隆(e-PCR)和反转录PCR(RT-PCR)等技术,从西门塔尔牛肌肉组织中克隆分离并得到了牛CAV1基因、CAV3基因cDNA的编码区(CDS)全长和部分非翻译区序列。
     2.推导CAV1、CAV3蛋白的氨基酸序列,并通过生物信息学方法对其特征和功能进行了预测分析,预测结果表明牛CAV1、CAV3基因分别编码178和151个氨基酸,它们都含有22个氨基酸的跨膜特征功能结构域。结构域序列保守程度极高。
     3. CAV1、CAV3、CAPN1、CAPN3、CAST、HRSP12和CACNA2D1基因在不同牛品种中,经扩增、克隆、测序和比对发现32个SNPs,其中颠换突变13个,转换突变19个。SNP突变中转换突变占突变的59.4%。
     4.牛CAV1、CAV3、CAPN1、CAPN3、CAST、HRSP12和CACNA2D1基因遗传变异位点与肉质和胴体组成性状存在效应差异,结果发现:
     (1)CAPN1-StuⅠ位点在大理石花纹评分和嫩度指标上,AA型显著大于BB型(P<0.05)。CAPN1-AgeⅠ位点在宰前活重指标上,AB、BB型个体显著大于AA型(P<0.05)。CAPN1-MaeⅡ位点在宰前活重指标上,BB型个体显著大于AA型个体(P<0.01);在屠宰率、净肉率、眼肌面积和嫩度指标上,AA型个体极显著大于AB、BB型个体(P<0.01),在日增重指标上,AB、BB型个体显著大于AA型(P<0.05)。SSCP-CAPN1α位点在嫩度上,AA型显著大于AB和BB型(P<0.01);在日增重上,AB和BB型显著大于AA型(P<0.05)。SSCP-CAPN1β位点在大理石花纹评分和嫩度上,AA型个体显著大于AB型(P<0.01);在背膘厚上,AA型个体显著大于BB型(P<0.05)。
     (2)CAPN3-TaqⅠ位点不同基因型与胴体重之间存在显著相关:AB型个体的胴体重显著高于BB型个体(P<0.05)。
     (3)CAST基因在大理石花纹评分上,BB型显著高于AA型(P<0.05);在嫩度指标上,BB型显著高于AA型和AB型(P<0.01)。
     (4)HRSP12-BsrⅠ位点在宰前活重和胴体重指标上,AB型个体显著大于BB型(P<0.01);在大理石花纹评分上,AA型个体显著大于BB和AB型(P<0.05)。
     (5)CAV1-AvaⅡ位点在宰前活重、胴体重、大理石花纹评分和嫩度指标上,BB型显著高于AA型(P<0.01)。CAV1-HinfⅠ位点在宰前活重和日增重指标上,BB型显著高于AA型(P<0.05)。CAV1-BglⅠ位点在宰前活重指标上,BB型显著高于AA型(P<0.05)。CAV1-MspⅠ位点在宰前活重、胴体重、眼肌面积和嫩度指标上,AA型显著高于AB型和BB型(P<0.05)。
     (6)CAV3基因在宰前活重指标上,BB型显著高于AB型(P<0.05);在屠宰率指标上,AA型显著高于BB型(P<0.05);在净肉率指标上,BB型显著高于AA型和AB型(P<0.05)。
     (7)CACNA2D1-HaeIII位点在胴体重和屠宰率指标上,BB型显著高于AB型(P<0.01);在净肉率指标上,AA型显著高于AB型(P<0.01);在背膘厚指标上,BB型显著高于AB型和AA型(P<0.01)。
     5.采用荧光定量PCR方法分析了CAPN1、CAPN3、CAV1、CAV3 4个基因在胎儿期、12月龄、24月龄和36月龄4个不同时期西门塔尔牛9种组织中的表达情况,结果如下:
     (1)CAPN1基因在肺脏、肌肉、肾脏、瘤胃、脾脏中胎儿期的mRNA表达量均显著高于其它三个时期(P<0.01)。
     (2)CAPN3基因在肌肉和心脏组织中胎儿期的表达量显著高于其它三个时期(P<0.01)。
     (3)CAV1基因在12月龄、24月龄、36月龄的脂肪中mRNA表达量显著高于胎儿期(P<0.01),CAV1基因在24月龄、36月龄的肌肉mRNA表达量显著高于12月龄和胎儿期(P<0.01)。
     (4)CAV3基因在24月龄、36月龄肌肉中的mRNA表达量显著高于12月龄和胎儿期(P<0.01),CAV3基因在12月龄、24月龄、36月龄小肠中的表达量显著高于胎儿期(P<0.01)。
The bioinformatics, PCR-RFLP, PCR-RFLP, RT-PCR, DNA sequencing and DNA sequence analysis techniques were applied to (1) clone bovine CAV1 and CAV3 gene, (2) analyze the genetic variations and characters of CAV1、CAV3、CAPN1、CAPN3、CAST、HRSP12 and CACNA2D1 genes and (3) their association with meat quality traits and carcass composition traits, including Live weight (LW), Carcass weight (CW), Dressing percentage (DP), Meat percent(MP), Marbling score (MS), Loin muscle area (LMA), Meat color (MC), Fat color (FC), Backfat thickness (BF), Meat tenderness(MT) and Average daily gain(ADG) in 323 cattle, which comprised of nine breeds, namely, Simmental (n=110), Angus (n=48), Luxi (n=30), Qinchuan (n=29), Jinnan (n=24), Charolais (n=30), Limousin (n=25), Hereford (n=30) and Simmental×Mongolian, (4) analyze the expression of CAV1、CAV3、CAPN1 and CAPN3 gene. These results will benefit for the application of DNA marker related to the economic traits on marker-assist-selection (MAS), improvement and promotion of local cattle breeds. The main results were shown below:
     1.Whole coding sequence (CDS) and partial untranslated sequence (UTR) of bovine CAV1 and CAV3 gene were isolated from the muscle of Simmental by e-PCR and RT-PCR techniques.
     2. The amino acids sequence deduced by ORF of CAV1 and CAV3 cDNA were analyzed while the character and protein domain were predicted by bio-informatics, The results showed that bovine CAV1 and CAV3 protein were consisted of 178 and 151 amino acids respectively. They both contained Transmembrane domains (was consisted of 22 amino acids). The amino acids sequence in the domain showed high conservation in different species.
     3. 32 SNPs were identified by PCR-RFLP, PCR-SSCP and sequencing in bovine CAV1、CAV3、CAPN1、CAPN3、CAST、HRSP12 and CACNA2D1 gene and 19 of them were transition mutation.
     4. Genetic variations in bovine CAV1、CAV3、CAPN1、CAPN3、CAST、HRSP12 and CACNA2D1 genes were associated with carcass and meat quality traits. The results showed that:
     (1) CAPN1-StuⅠsite was significantly associated with MS and MT. Animals with AA genotype were significantly higher than those with BB genotype (P<0.05). CAPN1-AgeⅠsite was significantly associated with LW. Animals with AB and BB genotype were significantly higher than those with AA genotype (P<0.05). CAPN1-MaeⅡsite was significantly associated with LW, DP, MP, LMA, MT and ADG. Animals with BB genotype had significantly higher LW than those with AA (P<0.01). Animals with AA genotype had significantly higher DP, MP, LMA and MT than those with AB and BB (P<0.01). Animals with AA and BB genotype had significantly higher ADG than those with AA genotype (P<0.05). SSCP-CAPN1αsite was significantly associated with MT ADG and FC. Animals with AA genotype had significantly higher MT (P<0.05) and lower ADG and FC (P<0.01) than those with AB and BB genotype. SSCP-CAPN1βsite was significantly associated with BF, MS and MT. Animals with AA genotype had higher MS and MT than those with AB genotype (P<0.01), and had higher BF than those with BB genotype (P<0.01).
     (2) CAPN3-TaqⅠsite of CAPN3 gene was significantly associated with CW. Animals with AB genotype had larger CW than those with BB genotype (P<0.05).
     (3) CASTαsite was significantly associated with MS and MT. Animals with BB genotype had larger MS than those with AA genotype (P<0.05). Animals with BB genotype had larger MT than those with AA or AB genotype (P<0.01).
     (4) HRSP12-BsrⅠsite of HRSP12 gene was significantly associated with LW, CW and MS. Animals with AB genotype had larger LW and CW than those with BB genotype (P<0.01). Animals with AA genotype had larger MS than those with BB and AB genotype (P<0.05).
     (5) Animals with BB genotype in CAV1-AvaⅡsite had larger LW, CW, MS and MT than those with AA genotype (P<0.01). Animals with BB genotype in CAV1-HinfⅠsite had larger LW and ADG than those with AA genotype (P<0.05). Animals with BB genotype in CAV1-BglⅠsite had larger LW than those with AA genotype (P<0.05). Animals with AA genotype in CAV1-MspⅠsite had larger LW, CW, LMA and MT than those with AB and BB genotype (P<0.05).
     (6) CAV3 gene was significantly associated with LW, DP and MP. Animals with BB genotype had larger LW than those with AB genotype (P<0.05). Animals with AA genotype had larger DP than those with BB genotype (P<0.05). Animals with BB genotype had larger MP than those with AA and AB genotype (P<0.05).
     (7) CACNA2D1-HaeIII site was significantly associated with CW, DP, MP and BF. Animals with BB genotype had larger CW and DP than those with AB genotype (P<0.01). Animals with AA genotype had larger MP than those with AB genotype (P<0.01). Animals with BB genotype had larger BF than those with AA and AB genotype (P<0.01) and there was no significant difference between animals with AA and AB genotype.
     5. Expression of four candidate genes (CAPN1、CAPN3、CAV1、CAV3) were detected in 9 tissues, which were collected from four different physiological phases: embryonic phase、12 months old、24 months old and 36 months old, by RT-PCR and Real-time Q-PCR, and the results showed that:
     (1) The CAPN1 mRNA expression in lung, muscle, kidney, rumen and spleen in embryonic phase was significantly higher than the other phases.
     (2) The CAPN3 mRNA expression in muscle and heart in embryonic phase was higher than the other three phases (P<0.01).
     (3) The CAV1 mRNA expression in fat tissue in the 12 months old, 24months old and 36months old was significantly higher than the embryonic phase (P<0.01). The CAV1 mRNA expression in muscle in 24months old and 36months old was significantly higher than the 12 months old and embryonic phase (P<0.01).
     (4) The CAV3 mRNA expression in muscle in the 24months old and 36 months old was higher than the embryonic phase and 12 months old (P<0.01). The CAV3 mRNA expression in small intestine in the 12 months old,24months old and 36months old was significantly higher than the embryonic phase (P<0.01).
引文
曹阳,牛春华,张国梁,金海国. 2009.草原红牛CAPN1基因第5外显子多态性与肉质性状的相关研究.吉林畜牧兽医, 8~9.
    常泓,南庆贤,岳文斌. 2006.μ-calpain激活因子UK114的克隆与序列分析.畜牧兽医学报, 37(7):629~634.
    李建华,杨明生,徐宁迎. 2007.猪CACNA2D1基因3'UTR单核苷酸多态性与肉质性状的效应研究.华北农学报, 22(4):76~79.
    李重生,陈瑶生,王翀,等.猪肌肉组织差异表达ESTs的克隆与分析.中国科学C辑.2006,36 (2): 139-144
    韩瑞华.2008.秦川牛及其杂种牛UCP3\IGF2\CAPN1基因多态性于胴体、肉质性状关系研究.[硕士学位论文].陕西杨凌:杨凌西北农林科技大学
    刘安芳,刘益平,蒋小松,李亮,杜华瑞,朱庆. 2008.鸡CAST基因编码区的单核苷酸多态与肌纤维性状的相关研究.畜牧兽医学报, 39(4):437~442.
    薛慧良,徐来祥. 2008.猪CAST基因的单核苷酸多态性及其对肉质性状的效应.生态学报, 28(6):2937~2944.
    杨秀芹,刘慧,郭丽娟,关庆芝,许尧,刘娣. 2008.猪CAPN1基因部分外显子及3′UTR区的SNPs检测.遗传, 30(6):741~746.
    张增荣,朱庆,蒋小松,杜华锐. 2007.钙蛋白酶Ⅰ(CAPN1)基因多态性与鸡肉嫩度和屠体性状的相关研究.29(8).:982~988
    Baki, A., P. Tompa, A. Alexa, O. Molnar,P. Friedrich. 1996. Autolysis parallels activation of mu-calpain. Biochem J, 318 ( Pt 3)(897~901.
    Barendse, W., B. E. Harrison, R. J. Bunch,M. B. Thomas. 2008. Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC Genet, 9(41.
    Barendse, W., B. E. Harrison, R. J. Bunch,M. B. Thomas. 2008. Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC Genet, 9(41.
    Barendse, W., B. E. Harrison, R. J. Hawken, D. M. Ferguson, J. M. Thompson, M. B. Thomas,R. J. Bunch. 2007. Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. Genetics, 176(4):2601~2610.
    Barendse, W. J. 2002. DNA markers for meat tenderness. International patent application PCT/AU02/00122. International patent publication WO 02/064820 A1.
    Barnoy, S., T. Glasner,N. S. Kosower. 1996. The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion. Biochem Biophys Res Commun, 220(3):933~938.
    Barnoy, S., Y. Zipser, T. Glaser, Y. Grimberg,N. S. Kosower. 1999. Association of calpain (Ca(2+)-dependent thiol protease) with its endogenous inhibitor calpastatin in myoblasts. J Cell Biochem, 74(4):522~531.
    Buitkamp, J., D. Ewald, J. Masabanda, M. D. Bishop,R. Fries. 2003. FISH and RH mapping of the bovine alpha (2)/delta calcium channel subunit gene (CACNA2D1). Anim Genet, 34(4):309~310.
    Cameron, P. L., J. W. Ruffin, R. Bollag, H. Rasmussen,R. S. Cameron. 1997. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci, 17(24):9520~9535.
    Capozza, F., T. P. Combs, A. W. Cohen, Y. R. Cho, S. Y. Park, W. Schubert, T. M. Williams, D. L. Brasaemle, L. A. Jelicks, P. E. Scherer, J. K. Kim,M. P. Lisanti. 2005. Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Physiol, 288(6):C1317~C1331.
    Carlson, B. M., J. A. Carlson, E. I. Dedkov,I. S. McLennan. 2003. Concentration of caveolin-3 at the neuromuscular junction in young and old rat skeletal muscle fibers. J Histochem Cytochem, 51(9):1113~1118.
    Casas, E., R. T. Stone, J. W. Keele, S. D. Shackelford, S. M. Kappes,M. Koohmaraie. 2001. A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J Anim Sci, 79(4):854~860.
    Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Jr Chase, D. D. Johnson,T. P. Smith. 2006. Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J Anim Sci, 84(3):520~525.
    Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Jr Chase, D. D. Johnson,T. P. Smith. 2006. Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J Anim Sci, 84(3):520~525.
    Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Jr Chase, D. D. Johnson,T. P. Smith. 2006. Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J Anim Sci, 84(3):520~525.
    Chang, S. H., D. Feng, J. A. Nagy, T. E. Sciuto, A. M. Dvorak,H. F. Dvorak. 2009. Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol, 175(4):1768~1776.
    Cheong, H. S., D. H. Yoon, B. L. Park, L. H. Kim, J. S. Bae, S. Namgoong, H. W. Lee, C. S. Han, J. O. Kim, I. C. Cheong,H. D. Shin. 2008. A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genet, 9(33.
    Chung, H., B. Choi, G. Jang, K. Lee, H. Kim, S. Yoon, S. Im, M. Davis,H. Hines. 2007. Effect of variants in the ovine skeletal-muscle-specific calpain gene on body weight. J Appl Genet, 48(1):61~68.
    Croall, D. E., C. A. Slaughter, H. S. Wortham, C. M. Skelly, L. DeOgny,C. R. Moomaw. 1992. Polyclonal antisera specific for the proenzyme form of each calpain. Biochim Biophys Acta, 1121(1-2):47~53.
    Croall, D. E., L. M. Vanhooser,R. E. Cashon. 2008. Detecting the active conformation of calpain with calpastatin-based reagents. Biochim Biophys Acta, 1784(11):1676~1686.
    Croall, D. E.,G. N. DeMartino. 1991. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev, 71(3):813~847.
    Croall, D. E.,K. Ersfeld. 2007. The calpains: modular designs and functional diversity. Genome Biol, 8(6):218.
    Curi, R. A., L. A. Chardulo, M. C. Mason, M. D. Arrigoni, A. C. Silveira,H. N. de Oliveira. 2009. Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim Genet, 40(4):456~462.
    Delgado, E. F., G. H. Geesink, J. A. Marchello, D. E. Goll,M. Koohmaraie. 2001. Properties of myofibril-bound calpain activity in longissimus muscle of callipyge and normal sheep. J Anim Sci, 79(8):2097~2107.
    Delgado, E. F., G. H. Geesink, J. A. Marchello, D. E. Goll,M. Koohmaraie. 2001. The calpain system in three muscles of normal and callipyge sheep. J Anim Sci, 79(2):398~412.
    DeMartino, G. N.,D. K. Blumenthal. 1982. Identification and partial purification of a factor that stimulates calcium-dependent proteases. Biochemistry, 21(18):4297~4303.
    Elisabeth, H., M. Tomiko, D. B. Dirk, F. C. Parrish, G. O. Dennis,M. R. Richard. 1996. Proteolsis of Specific Muscle Structural Proteins byμ-calpain at Low PH and Temperature Is Similar to Degradation in Postmortem Bovine Musele.74):993~1008.
    Elsik, C. G.R. L. TellamK. C. WorleyR. A. GibbsD. M. MuznyG. M. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 324(5926):522~528.
    Engelman, J. A., X. L. Zhang, F. Galbiati,M. P. Lisanti. 1998. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (CAV1, -2, and -3). CAV1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett, 429(3):330~336.
    Engelman, J. A., X. L. Zhang,M. P. Lisanti. 1998. Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett, 436(3):403~410.
    Fanin, M., A. C. Nascimbeni,C. Angelini. 2007. Screening of calpain-3 autolytic activity in LGMD muscle: a functional map of CAPN3 gene mutations. J Med Genet, 44(1):38~43.
    Farkas, A., G. Nardai, P. Csermely, P. Tompa,P. Friedrich. 2004. DUK114, the Drosophila orthologue of bovine brain calpain activator protein, is a molecular chaperone. Biochem J, 383(Pt 1):165~170.
    Fielding, P. E., J. S. Russel, T. A. Spencer, H. Hakamata, K. Nagao,C. J. Fielding. 2002. Sterol efflux to apolipoprotein A-I originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry, 41(15):4929~4937.
    Figarella-Branger D, Pouget J, Bernard R, Krahn M, Fernandez C, Lévy N, Pellissier JF. 2003.Limb-girdle muscular dystrophy in a 71-year-old woman with an R27Q mutation in the CAV3 gene. Neurology. 26;61(4):562~564.
    Galbiati, F., B. Razani,M. P. Lisanti. 2001. Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med, 7(10):435~441.
    Galbiati, F., D. Volonte, O. Gil, G. Zanazzi, J. L. Salzer, M. Sargiacomo, P. E. Scherer, J. A. Engelman, A. Schlegel, M. Parenti, T. Okamoto,M. P. Lisanti. 1998. Expression of caveolin-1 and -2 in differentiating PC12 cells and dorsal root ganglion neurons: caveolin-2 is up-regulated in response to cell injury. Proc Natl Acad Sci U S A, 95(17):10257~10262.
    Galbiati, F., J. A. Engelman, D. Volonte, X. L. Zhang, C. Minetti, M. Li, H. Jr Hou, B. Kneitz, W. Edelmann,M. P. Lisanti. 2001. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem, 276(24):21425~21433.
    Gill, J. L., S. C. Bishop, C. McCorquodale, J. L. Williams,P. Wiener. 2009. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genet Sel Evol, 41(36.
    Goll, D. E., G. Neti, S. W. Mares,V. F. Thompson. 2008. Myofibrillar protein turnover: the proteasome and the calpains. J Anim Sci, 86(14 Suppl):E19~E35.
    Goll, D. E., V. F. Thompson, H. Li, W. Wei,J. Cong. 2003. The calpain system. Physiol Rev,83(3):731~801.
    Goll, D. E., Y. Otsuka, P. D. Nagainis, S. K. Sathe, J. D. Shannon,M. Muguruma. 1982. Muscle proteinases and their possible roles in muscle growth and meat texture. Biochem Soc Trans, 10(4):280~282.
    Goll, D. E., Y. Otsuka,P. A. Nagainis. 1983. Role of muscle proteinases in maintenance of muscle integrity and mass.7):137~138.
    Gilter, D.,M. E. Spira. 1998. Real time imaging of calcium-induced localized Proteolytic Activity after axotomy and its relation to growth cone formation.20):1123~1135.
    Gutierrez-Gil, B., J. L. Williams, D. Homer, D. Burton, C. S. Haley,P. Wiener. 2009. Search for quantitative trait loci affecting growth and carcass traits in a cross population of beef and dairy cattle. J Anim Sci, 87(1):24~36.
    Heimerl, S., G. Liebisch, L. S. Le, A. Bottcher, P. Wiesner, S. Lindtner, T. V. Kurzchalia, K. Simons,G. Schmitz. 2008. Caveolin-1 deficiency alters plasma lipid and lipoprotein profiles in mice. Biochem Biophys Res Commun, 367(4):826~833.
    Hezel, M., W. C. de Groat,F. Galbiati. 2010. Caveolin-3 promotes nicotinic acetylcholine receptor clustering and regulates neuromuscular junction activity. Mol Biol Cell, 21(2):302~310.
    Huang, J.,N. E. Forsberg. 1998. Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci U S A, 95(21):12100~12105.
    Ilian, M. A., J. D. Morton, A. E. Bekhit, N. Roberts, B. Palmer, H. Sorimachi,R. Bickerstaffe. 2001. Effect of preslaughter feed withdrawal period on longissimus tenderness and the expression of calpains in the ovine. J Agric Food Chem, 49(4):1990~1998.
    lian, M. A., A. E. Bekhit, B. Stevenson, J. D. Morton, P. Isherwood,R. Bickerstaffe. 2004. Up-and down-regulation of longissimus Tenderness parallels changes in the myofibril-bound calpain3 protein.67):433~445.
    Ilian, M. A., A. E. Bekhit,R. Bickerstaffe. 2004. The relationship between meat tenderization,Myofibril fragmentation and autolysis of CAPN3 during post-mortem aging.66):387~397.
    Ilian, M. A., R. Bickerstaffe,M. L. Greaser. 2004. Postmortem changes in myofibrillar-bound CAPN3 revealed by immunofluorescence microseopy.66):231~240.
    Isshiki, M., J. Ando, K. Yamamoto, T. Fujita, Y. Ying,R. G. Anderson. 2002. Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. J Cell Sci, 115(Pt 3):475~484.
    Jr Glenney, J. R.,D. Soppet. 1992. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci U S A, 89(21):10517~10521.
    Juszczuk-Kubiak, E., T. Sakowski, K. Flisikowski, K. Wicinska, J. Oprzadek,S. J. Rosochacki. 2004. Bovine mu-calpain (CAPN1) gene: new SNP within intron 14. J Appl Genet, 45(4):457~460.
    Keele, J. W., S. D. Shackelford, S. M. Kappes, M. Koohmaraie,R. T. Stone. 1999. A region on bovine chromosome 15 influences beef longissimus tenderness in steers. J Anim Sci, 77(6):1364~1371.
    Kim, H. S., H. J. Kim, Y. S. Kim, S. C. Park, R. Harris,C. K. Kim. 2009. Caveolin, GLUT4 and insulin receptor protein content in human arm and leg muscles. Eur J Appl Physiol, 106(2):173~179.
    Kinbara, K., H. Sorimachi, S. Ishiura,K. Suzuki. 1997. Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs. ArchBiochem Biophys, 342(1):99~107.
    Kitagaki, H., S. Tomioka, T. Yoshizawa, H. Sorimachi, T. C. Saido, S. Ishiura,K. Suzuki. 2000. Autolysis of calpain large subunit inducing irreversible dissociation of stoichiometric heterodimer of calpain. Biosci Biotechnol Biochem, 64(4):689~695.
    Kogo, H.,T. Fujimoto. 2000. Caveolin-1 isoforms are encoded by distinct mRNAs. Identification Of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett, 465(2-3):119~123.
    Koleske, A. J., D. Baltimore,M. P. Lisanti. 1995. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci U S A, 92(5):1381~1385.
    Krajewska, W. M.,I. Maslowska. 2004. Caveolins: structure and function in signal transduction. Cell Mol Biol Lett, 9(2):195~220.
    Kubisch C, Schoser BG, von Düring M, Betz RC, Goebel HH, Zahn S, Ehrbrecht A, Aasly J, Schroers A, Popovic N, Lochmüller H, Schr?der JM, Brüning T, Malin JP, Fricke B, Meinck HM, Torbergsen T, Engels H, Voss B, Vorgerd M. 2003.Homozygous mutations in caveolin-3 cause a severe form of rippling muscle disease. Ann Neurol. 53(4):512~520.
    Kwak, K. B., S. S. Chung, O. -. Kim, M. Kang, D. B. Ha,C. H. Chung. 1993. Increase in the level of m -calpain correlates with the elevated cleavage of filamin during myogenic differentiation of embryonic muscle cells.1175.
    Kwak, K. B., S. S. Chung, O. M. Kim, M. S. Kang, D. B. Ha,C. H. Chung. 1993. Increase in the level of m-calpain correlates with the elevated cleavage of filamin during myogenic differentiation of embryonic muscle cells. Biochim Biophys Acta, 1175(3):243~249.
    Li, J. H., X. H. Chu, X. L. Guo,N. Y. Xu. 2005. Radiation hybrid mapping of skeletal muscle calcium channel genes CACNB1 and CACNG1 to porcine chromosome 12 and CACNA2D1 to porcine chromosome 9. Anim Genet, 36(4):358~359.
    Martin, S.,R. G. Parton. 2005. Caveolin, cholesterol, and lipid bodies. Semin Cell Dev Biol, 16(2):163~174.
    Melloni, E., M. Averna, F. Salamino, B. Sparatore, R. Minafra,S. Pontremoli. 2000. Acyl-CoA-binding protein is a potent m-calpain activator. J Biol Chem, 275(1):82~86.
    Melloni, E., M. Averna, R. Stifanese, R. De Tullio, E. Defranchi, F. Salamino,S. Pontremoli. 2006. Association of calpastatin with inactive calpain: a novel mechanism to control the activation of the protease?. J Biol Chem, 281(34):24945~24954.
    Melloni, E., M. Michetti, F. Salamino, B. Sparatore,S. Pontremoli. 1998. Mechanism of action of a new component of the Ca(2+)-dependent proteolytic system in rat brain: the calpain activator. Biochem Biophys Res Commun, 249(3):583~588.
    Michetti, M., P. L. Viotti, E. Melloni,S. Pontremoli. 1991. Mechanism of action of the calpain activator protein in rat skeletal muscle. Eur J Biochem, 202(3):1177~1180.
    Miyakawa, T., K. I. Hatano, W. C. Lee, Y. Kato, Y. Sawano, F. Yumoto, K. Nagata,M. Tanokura. 2005. Crystallization and preliminary X-ray analysis of the YjgF/YER057c/UK114-family protein ST0811 from Sulfolobus tokodaii strain 7. Acta Crystallogr Sect F Struct Biol Cryst Commun, 61(Pt 9):828~830.
    Mizoshita, K., T. Watanabe, H. Hayashi, C. Kubota, H. Yamakuchi, J. Todoroki,Y. Sugimoto. 2004. Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black(Wagyu) cattle. J Anim Sci, 82(12):3415~3420.
    Mohammad, K. 1996. Biochmical factrs regulating the toughening and tenderization process of meet.43):193~201.
    Morris, C. A., N. G. Cullen, S. M. Hickey, P. M. Dobbie, B. A. Veenvliet, T. R. Manley, W. S. Pitchford, Z. A. Kruk, C. D. Bottema,T. Wilson. 2006. Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey x Limousin, Angus and Hereford-cross cattle. Anim Genet, 37(4):411~414.
    Munoz, P., S. Mora, L. Sevilla, P. Kaliman, E. Tomas, A. Guma, X. Testar, M. Palacin,A. Zorzano. 1996. Expression and insulin-regulated distribution of caveolin in skeletal muscle. Caveolin does not colocalize with GLUT4 in intracellular membranes. J Biol Chem, 271(14):8133~8139.
    Munoz, P., S. Mora, L. Sevilla, P. Kaliman, E. Tomas, A. Guma, X. Testar, M. Palacin,A. Zorzano. 1996. Expression and insulin-regulated distribution of caveolin in skeletal muscle. Caveolin does not colocalize with GLUT4 in intracellular membranes. J Biol Chem, 271(14):8133~8139.
    Murakami, T., M. Hatanaka,T. Murachi. 1981. The cytosol of human erythrocytes contains a highly Ca2+-sensitive thiol protease (calpain I) and its specific inhibitor protein (calpastatin). J Biochem, 90(6):1809~1816.
    Murachi, T. M., Y. Hatanaka,Yasumoto. 1981. A quantitative disuibution study on calpain and calpastatin in rat tissue and cells.2):651~653.
    Murata, M., J. Peranen, R. Schreiner, F. Wieland, T. V. Kurzchalia,K. Simons. 1995. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A, 92(22):10339~10343.
    Nabhani, T., T. Shah,J. Garcia. 2005. Skeletal muscle cells express different isoforms of the calcium channel alpha2/delta subunit. Cell Biochem Biophys, 42(1):13~20.
    Okamoto, T., A. Schlegel, P. E. Scherer,M. P. Lisanti. 1998. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem, 273(10):5419~5422.
    Oshikawa, J., K. Otsu, Y. Toya, T. Tsunematsu, R. Hankins, J. Kawabe, S. Minamisawa, S. Umemura, Y. Hagiwara,Y. Ishikawa. 2004. Insulin resistance in skeletal muscles of caveolin-3-null mice. Proc Natl Acad Sci U S A, 101(34):12670~12675.
    Page, B. T., E. Casas, M. P. Heaton, N. G. Cullen, D. L. Hyndman, C. A. Morris, A. M. Crawford, T. L. Wheeler, M. Koohmaraie, J. W. Keele,T. P. Smith. 2002. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci, 80(12):3077~3085.
    Page, B. T., E. Casas, R. L. Quaas, R. M. Thallman, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, S. N. White, G. L. Bennett, J. W. Keele, M. E. Dikeman,T. P. Smith. 2004. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J Anim Sci, 82(12):3474~3481.
    Park, D. S., S. E. Woodman, W. Schubert, A. W. Cohen, P. G. Frank, M. Chandra, J. Shirani, B. Razani, B. Tang, L. A. Jelicks, S. M. Factor, L. M. Weiss, H. B. Tanowitz,M. P. Lisanti. 2002. Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol, 160(6):2207~2217.
    Parsons, L., N. Bonander, E. Eisenstein, M. Gilson, V. Kairys,J. Orban. 2003. Solution structure and functional ligand screening of HI0719, a highly conserved protein from bacteria to humans in theYjgF/YER057c/UK114 family. Biochemistry, 42(1):80~89.
    Piluso, G., L. Politano, S. Aurino, M. Fanin, E. Ricci, V. M. Ventriglia, A. Belsito, A. Totaro, V. Saccone, H. Topaloglu, A. C. Nascimbeni, L. Fulizio, A. Broccolini, N. Canki-Klain, L. I. Comi, G. Nigro, C. Angelini,V. Nigro. 2005. Extensive scanning of the calpain-3 gene broadens the spectrum of LGMD2A phenotypes. J Med Genet, 42(9):686~693.
    Pol, A., S. Martin, M. A. Fernandez, C. Ferguson, A. Carozzi, R. Luetterforst, C. Enrich,R. G. Parton. 2004. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell, 15(1):99~110.
    Robyn, M. M., V. Esther,D. L. Graham. 2006. Ca2+activation of diffusible and bound pools of mu-calpain in rat skeletal muscle.576(2):595~612.
    Pringle, T. D., J. M. Harrelson, R. L. West, S. E. Williams,D. D. Johnson. 1999. Calcium-activated tenderization of strip loin, top sirloin, and top round steaks in diverse genotypes of cattle. J Anim Sci, 77(12):3230~3237.
    Robinson, R. L., J. L. Curran, F. R. Ellis, P. J. Halsall, W. J. Hall, P. M. Hopkins, D. E. Iles, S. P. West,M. A. Shaw. 2000. Multiple interacting gene products may influence susceptibility to malignant hyperthermia. Ann Hum Genet, 64(Pt 4):307~320.
    Rothberg, K. G., J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney,R. G. Anderson. 1992. Caveolin, a protein component of caveolae membrane coats. Cell, 68(4):673~682.
    Saido, T. C., H. Sorimachi,K. Suzuki. 1994. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J, 8(11):814~822.
    Schenkel, F. S., S. P. Miller, Z. Jiang, I. B. Mandell, X. Ye, H. Li,J. W. Wilton. 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J Anim Sci, 84(2):291~299.
    Shin, J. H., H. S. Kim, C. H. Lee, C. M. Kim, K. H. Park,D. S. Kim. 2007. Mutations of CAPN3 in Korean patients with limb-girdle muscular dystrophy. J Korean Med Sci, 22(3):463~469.
    Sorimachi, H., S. Imajoh-Ohmi,Y. Emori. 1989. Molecular cloning of a novel mammalian Calcium-dependent protease distinct from both m-andμ-types.Specific expression of the mRNA in skeletal musele.264):20106~20111.
    Smart, E. J., Y. S. Ying, P. A. Conrad,R. G. Anderson. 1994. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol, 127(5):1185~1197.
    Smith, T. P., E. Casas, C. R. Rexroad, S. M. Kappes,J. W. Keele. 2000. Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. J Anim Sci, 78(10):2589~2594.
    Song, K. S., S. Li, T. Okamoto, L. A. Quilliam, M. Sargiacomo,M. P. Lisanti. 1996. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem, 271(16):9690~9697.
    Sonnino, S.,A. Prinetti. 2009. Sphingolipids and membrane environments for caveolin. FEBS Lett, 583(4):597~606.
    Suzuki, K., H. Sorimachi, T. Yoshizawa, K. Kinbara,S. Ishiura. 1995. Calpain: novel family members, activation, and physiologic function. Biol Chem Hoppe Seyler, 376(9):523~529. Sorimachi, H. 2000. [Structure and function of calpain and its homologues]. Seikagaku, 72(11):1297~1315.
    Sorimachi, H.,Y. Kawabata. 2003. [Calpain and pathology in view of structure-function relationships]. Nippon Yakurigaku Zasshi, 122(1):21~29.
    Takasuga, A., T. Watanabe, Y. Mizoguchi, T. Hirano, N. Ihara, A. Takano, K. Yokouchi, A. Fujikawa, K. Chiba, N. Kobayashi, K. Tatsuda, T. Oe, M. Furukawa-Kuroiwa, A. Nishimura-Abe, T. Fujita, K. Inoue, K. Mizoshita, A. Ogino,Y. Sugimoto. 2007. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm Genome, 18(2):125~136.
    Tanase, C. P., S. Dima, M. Mihai, E. Raducan, M. I. Nicolescu, L. Albulescu, B. Voiculescu, T. Dumitrascu, L. M. Cruceru, M. Leabu, I. Popescu,M. E. Hinescu. 2009. Caveolin-1 overexpression correlates with tumour progression markers in pancreatic ductal adenocarcinoma. J Mol Histol, 40(1):23~29.
    Tang, Z., P. E. Scherer, T. Okamoto, K. Song, C. Chu, D. S. Kohtz, I. Nishimoto, H. F. Lodish,M. P. Lisanti. 1996. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem, 271(4):2255~2261.
    Tang, Z., P. E. Scherer, T. Okamoto, K. Song, C. Chu, D. S. Kohtz, I. Nishimoto, H. F. Lodish,M. P. Lisanti. 1996. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem, 271(4):2255~2261.
    Taveau, M., N. Bourg, G. Sillon, C. Roudaut, M. Bartoli,I. Richard. 2003. Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol, 23(24):9127~9135.
    Te, P. M., A. A. De Wit, J. Priem, M. Cagnazzo, R. Davoli, V. Russo,M. H. Pool. 2005. Transcriptome expression profiles in prenatal pigs in relation to myogenesis. J Muscle Res Cell Motil, 26(2-3):157~165.
    Uittenbogaard, A., Y. Ying,E. J. Smart. 1998. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem, 273(11):6525~6532.
    Volonte, D., C. F. McTiernan, M. Drab, M. Kasper,F. Galbiati. 2008. Caveolin-1 and caveolin-3 form heterooligomeric complexes in atrial cardiac myocytes that are required for doxorubicin-induced apoptosis. Am J Physiol Heart Circ Physiol, 294(1):H392~H401.
    White, S. N., E. Casas, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Jr Chase, D. D. Johnson, J. W. Keele,T. P. Smith. 2005. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J Anim Sci, 83(9):2001~2008.
    Wigmore, P. M.,N. C. Stickland. 1983. Muscle development in large and small pig fetuses. J Anat, 137 (Pt 2)(235~245.
    Yokouchi, K., Y. Mizoguchi, T. Watanabe, E. Iwamoto, Y. Sugimoto,A. Takasuga. 2009. Identification of a 3.7-Mb region for a marbling QTL on bovine chromosome 4 by identical-by-descent and association analysis. Anim Genet,
    Yoshizawa, T., H. Sorimachi, S. Tomioka, S. Ishiura,K. Suzuki. 1995. Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun, 208(1):376~383.
    Yoshizawa, T., H. Sorimachi, S. Tomioka, S. Ishiura,K. Suzuki. 1995. Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun, 208(1):376~383.
    Yuan, H. Y., S. Y. Kuang, X. Zheng, H. Y. Ling, Y. B. Yang, P. K. Yan, K. Li,D. F. Liao. 2008. Curcumin inhibits cellular cholesterol accumulation by regulating SREBP-1/caveolin-1 signaling pathway in vascular smooth muscle cells. Acta Pharmacol Sin, 29(5):555~563.
    Zhang, Z. R., Y. P. Liu, Y. G. Yao, X. S. Jiang, Du HR,Q. Zhu. 2009. Identification and association of the single nucleotide polymorphisms in calpain3 (CAPN3) gene with carcass traits in chickens. BMC Genet, 10(10.
    Zamora, F., E. Debiton, J. Lepetit, A. Lebert, E. Dransfield,A. Ouali. 1996. Predicting variability of ageing and toughness in beef M. Longissimus lumborum et thoracis.43(3):321~333. Zimmerman, U. J.,W. W. Schlaepfer. 1991. Two-stage autolysis of the catalytic subunit initiates activation of calpain I. Biochim Biophys Acta, 1078(2):192~198.
    Zulli, A., B. F. Buxton, M. J. Black, Z. Ming, A. Cameron,D. L. Hare. 2006. The immunoquantification of caveolin-1 and eNOS in human and rabbit diseased blood vessels. J Histochem Cytochem, 54(2):151~159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700