Caveolin-1突变体在小鼠肝癌Hepa1-6细胞中的表达、定位及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     Caveolae(胞膜窖)是细胞质膜向内凹陷的一种结构,于1953年由G.E.Palade首次通过电子显微镜在毛细血管内皮中发现。胞膜窖能够介导胞吞、胞饮、胆固醇转运和信号转导。胞膜窖的标志性蛋白是窖蛋白家族(Caveolins),包括Caveolin-1(α,β),Caveolin-2 (α,β,γ),Caveolin-3。其中Caveolin-1广泛的存在于组织细胞中,Caveolin-2与Caveolin-1的分布基本相同,Caveolin3主要位于肌细胞中。
     研究表明Caveolin-1是细胞内许多信号分子相互作用的枢纽,它可通过影响多种信号通路进而影响细胞的增殖、转化、迁移和转移、细胞生存与死亡等细胞行为。目前发现Cav-1具有磷酸化位点,棕榈酰化位点[6],跨膜区,脚手架区(CSD)等功能域,它们在细胞生物学行为中发挥着各自不同的作用。例如:Cav-1可通过CSD区域与相关蛋白作用,进而影响相关蛋白的活性。Cav-1的表达对caveolae形成形态学上的结构起着必要的作用,且在caveolin-1存在的条件下,caveolae通过调节细胞对信号分子的摄取及信号的持续时间进一步影响其下游分子[11]。
     CD147分子是一种糖基化的(glucosylated)免疫球蛋白超家族(immunoglobulin Superfamily,IGSF)成员,是具有单次跨膜结构的糖蛋白。CD147为N-连接糖蛋白,其糖基化形式主要两种,低糖基化(LG-CD147)和高糖基化(HG-CD147,~32kDa),糖基化形式与肿瘤恶性程度及淋巴道转移潜能有关。CD147又称为基质金属蛋白酶诱导因子(extracellular matrix metalloproteinase inducer,EMMPRIN),能够诱导基质金属蛋白酶(MMPs)在间质和肿瘤细胞内表达并分泌出来。大部分MMPs几乎能够降解细胞外基质和基底膜的全部成分,在肿瘤侵袭和肿瘤转移中发挥着重要的促进作用[12,13]。目前认为HG-CD147在促进MMPs分泌和表达方面比LG-CD147具有更积极的作用。
     本课题组研究结果表明,在小鼠肝癌细胞HCa-F(高淋巴道转移)中Cav-1表达量高于HCa-P(低淋巴道转移),而在Hepa 1-6(无淋巴道转移)中无Cav-1的表达,提示Cav-1在小鼠肝癌细胞淋巴道转移中可能发挥作用。进一步通过RNA干扰下调Hca-F细胞中Cav-1的表达时,与对照相比,HG-CD147表达减少,LG-CD147表达增多;同时,MMPs-11表达下调,细胞体外迁移及侵袭能力下降。
     本文旨构建Cav-1的不同功能域突变体重组真核表达载体,研究其在Hepa1-6细胞中表达、细胞内的定位及对CD147糖基化的影响。
     方法:
     1.突变Cav-1的14位磷酸化位点(记为Y14F),133,143和156位棕榈酰化位点(记为C133A,C143A,C156A),删除133-178位氨基酸(记为△133-178),删除跨膜区102-134位氨基酸(记为△TMD),并将突变体分别与pMD18-T simple vector进行连接,记为T/Cav-1(Y14F), T/Cav-1(C133A), T/Cav-1(C143A), T/Cav-1(C156A), T/Cav-1(△133-178), T/Cav-1(△TMD)。再经转化、抗生素初步筛选、限制性核酸内切酶酶切和DNA测序获得初步重组质粒,再经过限制性核酸内切酶酶切、琼脂糖凝胶电泳、DNA纯化,将纯化的DNA产物与真核表达载体pcDNA3.1连接,获得Caveolin-1突变体重组质粒分别记为pcDNA3.1/Cav-1(Y14F), pcDNA3.1/Cav-1(C133A),pcDNA3.1/Cav-1(C143A),pcDNA3.1/Cav-1(C156A),pcDNA3.1/Cav-1(△133-178),pcDNA3.1/Cav-1(△TMD),进行DNA序列分析。
     2.利用脂质体转染的方法,将以上Caveolin-1突变体重组真核表达载体分别转染至小鼠肝癌细胞Hepa1-6中,记为Hepa1-6/Cav-1(Y14F), Hepa1-6/Cav-1(C133A) Hepa1-6/Cav-1(C143A), Hepa1-6/Cav-1(C156A), Hepa1-6/Cav-1(△TMD) , Hepa1-6/Cav-1(△133-178),以转染空载体pcDNA3.1的Hepa1-6细胞(记为Hepa1-6/mock)与Hepa1-6细胞作对照。
     3.Western blotting检测瞬时转染Caveolin-1及其突变体后, Hepa1-6细胞内CD147糖基化的改变。
     结果:
     1.经XhoLI/EcoRI双酶切和测序鉴定证实,成功构建并获得6种Caveolin-1突变体重组真核表达载体分别记为pcDNA3.1/Cav-1(Y14F), pcDNA3.1/Cav-1(C133A),pcDNA3.1/Cav-1(C143A),pcDNA3.1/Cav-1(C156A),pcDNA3.1/Cav-1(△133-178),pcDNA3.1/Cav-1(△TMD)。
     2.经免疫细胞化学和Western blotting的方法证明,以上Caveolin-1突变体重组真核表达载体均能在Hepa1-6细胞内瞬时表达,并富集于胞浆内,但Cav-1(Y14F)表达水平较低。
     3.与Hepa1-6/mock相比, Hepa1-6/Cav-1(wt)及Hepa1-6/Cav-1(Y14F)细胞中, LG-CD147基本消失;而转染其余突变体的细胞,LG-CD147和HG-CD147表达均未见显著变化。
     4. Cav-1(△TMD)蛋白表达在Hepa1-6细胞内36小时左右达高峰,但随后蛋白表达量逐渐减少,至96小时完全消失;但是蛋白酶体抑制剂MG132处理使Cav-1(△TMD)蛋白表达增加。
     结论:
     1.构建的6种小鼠Caveolin-1突变体重组真核表达载体pcDNA3.1/Cav-1(Y14F),pcDNA3.1/Cav-1(C133A),pcDNA3.1/Cav-1(C143A),pcDNA3.1/Cav-1(C156A),pcDNA3.1/Cav-1(△133-178),pcDNA3.1/Cav-1(△TMD),在小鼠肝癌细胞Hepa1-6中实现瞬时表达,其Caveolin-1突变体蛋白主要定位于细胞浆中。
     2.Caveolin-1第14位酪氨酸磷酸化修饰没有影响CD147的糖基化,但133,143,156位半胱氨酸的棕榈酰化修饰、跨膜区以及133-178位胞内羧基端可能促进胞内LG-CD147向HG-CD147的转变,而133-178位胞内羧基端对CD147糖基化的影响可能是通过三个棕榈酰化修饰位点来实现的。
     3.首次发现Caveolin-1跨膜区可以保护Caveolin-1不被泛素—蛋白酶体途径降解,可能对Caveolin-1在胞内的稳定性有一定贡献。
Objective:
     Caveolaes are invaginations of the plasma membrane that were firstly described in 1953 in the Capillary Endothelium by G.E. Palade. Caveolae mediates endocytosis, pinocytosis, cholesterol homeostasis and signal transduction. There are three identified caveolin proteins, Caveolin-1(α,β), Caveolin-2(α,β,γ) and Caveolin-3, which serve as markers for identification of caveolae and are critically involved in caveolae function. Caveolin-1 expresses in most cell types. Caveolin-2 co-localizes with Caveolin-1 and is found in the same cells as Caveolin-1. Caveolin-3 is a muscle specific caveolin and is found in muscle cells.
     Many results show that Caveolin-1 is a nodal point of many signal molecules. Caveolin-1 plays important roles in cell proliferation,transfor- mation,apoptosis and metastasis. There are some modified sites on Cave- olin-1, for instance, phosphorylation of Tyr14, palmitoylation of Cys133, Cys143 and Cys156. There are some other domains such as transmembrane domain and Caveolin scaffolding domain(CSD) which play different actions in cell biological behaviours. For example, Caveolin-1, through its CSD, is able to bind to upstream and downstream components of cell signaling pathways and then change activities of some proteins. It is now known that Caveolin-1 expression is sufficient and necessary to drive the formation of morphologically identifiable caveolae. Caveolae affects downstream molecules through modulating the internalization of signal molecules and the duration of signal.
     CD147 belongs to the highly glycosylated immunoglobulin super- family transmembrane protein, enriched on the surface of many malignant tumor cells. As a result of heterogeneous N-glycosylation, CD147 exists in both a highly glycosylated form, HG-CD147 and lowly glycosylated form, LG-CD147. CD147 mediates the interaction of tumor cells and matrix, and is responsible for inducing the expression of fibroblasts and tumor cells themselves MMPs, accelerating angiogenesis which promote tumor metastasis.
     Our previous study showedCaveolin-1 expression levels were higher in Hca-F cells than that in Hca-P and Hepa1-6 cells which have character of high lymphatic metastatic potential, low lymphatic metastatic potential and no lymphatic metastasis potential respectively. And the expression of caveolin-1 was undetectable in Hepa1-6 cells. These results indicate that caveolin-1 may play a role in Hepatocacinoma cell lines lymphatic metastasis. When caveolin-1 expression was down-regulated specifically in Hca-F cells using RNAi technology, Western blot analysis showed that the Caveolin-1 levels were significantly reduced in Hca-F/RNAi cells. HG- CD147 expression was obviously decreased while LG-CD147 expression showed a marked increase.
     The main aim of this study was to construct Cav-1 mutants expression vectors, to express Cav-1(wt) and mutants in Hepa1-6 cells and observe their location and their effect on CD147 glycosylation.
     Methods:
     Cav-1 mutants of phosphorylation site mutant (Y14F), palmitoylation site mutant (C133A, C143A, C156A), 133-178 residues at C-terminal cyto- solic domain deletion (△133-178) and 102-134 residues of transmembrane domain deletion(△TMD) were constructed. The above mutants were subcloned into pMD18-T simple vector, and then transformed into E.coli. DH5a. The positive clones were selected by PCR, restriction enzyme ana- lysis and DNA sequencing. The positive plasmid DNA was subcloned into expression vector pcDNA3.1/Myc-His(-)B and the recombinant plasmids were identified by restriction enzymes, PCR and DNA sequencing.
     Recombinant plasmids,pcDNA3.1/Cav-1(Y14F), pcDNA3.1/Cav-1 (C 133A),pcDNA3.1/Cav-1(C143A),pcDNA3.1/Cav-1(C156A),pcDNA3.1/Cav-1(△133-178), pcDNA3.1/Cav-1(△TMD) were transfected into Hepa1-6 cells by liposome, respectively. Untransfected cells and trasfected pc DNA3.1/Cav-1(wt) or empty vectors cells were used as controls.
     The Cav-1 expression and CD147 glycosylation in Cav-1 mutants were revealed by immunocytochemistry and Western blot analysis.
     Results:
     1. The recombinant plasmids of pcDNA3.1/Cav-1(Y14F), pcDNA3. 1/Cav-1(C133A),pcDNA3.1/Cav-1(C143A),pcDNA3.1/Cav-1(C156A),pcDNA3.1/Cav-1(△133-178), pcDNA3.1/Cav-1(△TMD) were constructed successfully. The temporarily expressed Cav-1 mutants proteins were found in the cytosol of Hepa1-6 cells, but the expression level of Cav-1(Y14F) was lower.
     2. The expression of LG-CD147 protein was undetectable. But this changes of CD147 glycosylation in Hepa1-6/Cav-1(wt) cells were not also found among Hepa1-6 cells transfected pcDNA3.1/Cav-1(C133A), pc DNA3.1/Cav-1(C143A),pcDNA3.1/Cav-1(C156A),pcDNA3.1/Cav-1(△133-178).
     3. The expression of Cav-1(△TMD) protein reached top level at 36h after transfection and then the protein level of Cav-1(△TMD) decreased and disappeared at 96h. The reduction of Cav-1(△TMD) protein was inhibited by treatment Heap1-6/ Cav-1(△TMD) with 0.2μM of proteosome inhibitor MG132.
     Conclusions:
     1. 6 recombinant Cav-1 mutant plasmids of pcDNA3.1/Cav-1(Y14F), pcDNA3.1/Cav-1(C133A),pcDNA3.1/Cav-1(C143A),pcDNA3.1/Cav-1(C156A),pcDNA3.1/Cav-1(△133-178), pcDNA3.1/Cav-1(△TMD) expressed in Hepa1-6 cells and the proteins of those Cav-1 mutants mainly localized in the cytosol of Hepa1-6 cells.
     2. The palmitoylation rather than phosphorylation of Cav-1 may contri- bute to CD147 glycosylation in Hepa1-6 cells.
     3. Transmembrane domain of Cav-1 protects Cav-1 protein from prote- olysis by ubiquitin-proteosome pathway.
引文
1. G.E. Palade, Fine structure of blood capillaries, J. Appl. Phys. 24 (1953)1424
    2. Yamada E. The fine structure of the gall bladder epithelium of the mouse. J.Biophys Biochem Cytol. 1955;1:445–458
    3. Fang K, Fu W, Beardsley AR, Sun X, Lisanti MP, Liu J.Overexpression of caveolin-1 inhibits endothelial cell proliferation by arresting the cell cycle at G0/G1 phase.Cell Cycle. 2007 Jan 15;6(2):199-204
    4. Liu J, Wang XB, Park DS, Lisanti MP. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem. 2002 Mar 22;277(12): 10661-8
    5. Hommelgaard AM, Roepstorff K, Vilhardt F, Torgersen ML, Sandvig K, van Deurs B.Caveolae: stable membrane domains with a potential for internalization. Traffic.2005; 6: 720-4
    6. Massimino ML, Griffoni C, Spisni E, Toni M, Tomasi V.Involvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesis.Cell Signal.2002 Feb;14(2):93-8. Review
    7. Wlliams TM, Lisanti MP. The caveolin proteins. Genome Biol. 2004; 5: 214.12. Silva WI, Maldonado HM, Velazquez G, Rubio-Davila M, Miranda JD, Aquino E,Mayol N, CruzTorres A, Jardon J,Salgado-Villanueva IK. Caveolin isoform expressions during differentiation of C6 glioma cells. Int J Dev Neurosci. 2005; 23: 599–612
    8. H. Kogo, K. Ishiguro, S. Kuwaki, T. Fujimoto, Identification of a splice variant of mouse caveolin-2 mRNA encoding an isoform lacking the C-terminal domain, Arch.Biochem. Biophys. 401 (2002) 108–114
    9. Scherer, P.E. et al. Cell-type and tissue-specific expression of caveolin-2. Caveolin1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo.J Biol Chem 1997, 272: 29337-29346
    10. Scherer PE, Tang Z, Chun M, Sargiacomo M, Lodish HF, Lisanti MP. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibodyprobe. J Biol Chem. 1995; 270: 16395-401
    11. Glenney JR. The sequence of human caveolin reveals identity with VIP 21, acomponent of transport vesicles. FEBS Lett 314: 45–48, 1992
    12. Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van.Donselaar E, Peters P, Lisanti MP. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem. 1997; 272: 29337- 46
    13. Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family.Proc Natl Acad Sci U S A. 1996; 93: 131-5
    14. Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H, Jr., Christ GJ, Edelmann W, Lisanti MP. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol. 2002; 22: 2329-44
    15. Das K, Lewis RY, Scherer PE, Lisanti MP. The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J Biol Chem. 1999; 274: 18721-8
    16. Li S, Galbiati F, Volonte D, Sargiacomo M, Engelman JA, Das K, Scherer PE,Lisanti MP. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett. 1998; 434:127-34
    17. Scheiffele P, Verkade P, Fra AM, Virta H, Simons K, Ikonen E. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J Cell Biol. 1998; 140: 795-806
    18. Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van,Donselaar E, Peters P, Lisanti MP. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem. 1997; 272: 29337- 46
    19. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS,Lisanti MP. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem. 1996; 271: 15160-65
    20. Parat, M.O., B. Anand-Apte, and P.L. Fox. 2003.Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol.Cell. 14:3156-3168
    21. Lu Z, Ghosh S, Wang Z, Hunter T.Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, andenhanced tumor cell invasion. Cancer Cell. 2003 Dec;4(6):499-515.
    22. Li S, Seitz R, and Lisanti MP. Phosphorylation of caveolin by Src tyrosine kinases:the a-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271: 3863–3868, 1996
    23. Parat MO, Fox PL. Palmitoylation of Caveolin-1 in Endothelial Cells Is Post-translational but Irreversible. J Biol Chem. 2001 May 11;276(19):15776-82
    24. Arbuzova A, Wang L, Wang J, Hangyas-Mihalyne G, Murray D, Honig B, and McLaughlin S. Membrane binding of peptides containing both basic and aromatic residues.Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry 39: 10330–10339, 2000
    25. Luetterforst R, Stang E, Zorzi N, Carozzi A, Way M, and Parton RG. Molecular characterization of caveolin association with the Golgi complex: identification of a cis-Golgi targeting domain in the caveolin molecule. J Cell Biol 145: 1443–1459,1999
    26. Schlegel A and Lisanti MP. A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem 275: 21605–21617, 2000
    27. Schlegel A, Schwab R, Scherer PE, and Lisanti MP. A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J Biol Chem 274: 22660–22667, 1999
    28. Fujimoto T, Kogo H, Nomura R, and Une T. Isoforms of caveolin-1 and caveolar structure. J Cell Sci 113: 3509–3517, 2000
    29. Scherer PE, Tang ZL, Chun MC, Sargiacomo M, Lodish HF, and Lisanti MP. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution: identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem 270: 16395–16401, 1995
    30. Moti Liscovitch.Caveolin-1: A multifunctional regulator of cancer cell proliferation and survival.Life Science.2006
    31. Tang ZL, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I,Lodish HF, and Lisanti MP. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271: 2255–2261, 1996
    32. Way M and Parton R. M-caveolin, a muscle-specific caveolinrelated protein. FEBS Lett 376: 108–112, 1995
    33. Couet J, Li S, Okamoto T, Ikezu T, and Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolaeassociated proteins. J Biol Chem 272: 6525–6533, 1997
    34. Li S, Couet J, and Lisanti MP. Src tyrosine kinases, G alpha subunits and H-Ras share a common membrane-anchored scaffolding protein, Caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190, 1996
    35. Wang S, Jia L, Zhou H, Wang X, Zhang J.Caveolin-1 promotes the transformation and anti-apoptotic ability of Mouse Hepatoma Cells.IUBMB Life. 2008 Oct;60(10):693-9
    36. Song KS, Tang ZL, Li S, and Lisanti MP. Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homotypic caveolin-caveolin interactions. J Biol Chem 272: 4398–4403, 1997
    37. Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 2005, 288:494-506
    38. Parton, R.G., Hanzal-Bayer, M., Hancock, J.F., 2006. Biogenesis of caveolae: a structural model for caveolininduced domain formation. J. Cell Sci. 119, 787–796.
    39. Isshiki, M., Ando, J., Yamamoto, K., Fujita, T., Ying, Y.,Anderson, R.G., 2002. Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. J. Cell Sci. 115, 475–484
    40. T.M. Williams, M.P. Lisanti, Caveolin-1 in oncogenic transformation, cancer, and metastasis, Am. J. Physiol. Cell Physiol. 288 (2005) C494–C506
    41. H.H. Patel, F. Murray, P.A. Insel, Caveolae as organizers of pharmacologically relevant signal transduction molecules, Annu. Rev. Pharmacol. Toxicol. (2007)
    42. L. Jia, S. Wang, H. Zhou, J. Cao, Y. Hu, J. Zhang, Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines, Int. J. Biochem. Cell Biol. 38 (2006) 1584–1593
    43. Uittenbogaard A, Smart EJ. Palmitoylation of Caveolin-1 Is Required for Cholesterol Binding,Chaperone Complex Formation, and Rapid Transport of Cholesterol to Caveolae. J Biol Chem. 2000 Aug 18;275(33):25595-9
    44. del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-García A, Anderson RG, Schwartz MA. Grande-Garcia, R.G. Anderson, and M.A. Schwartz. 2005. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat. Cell Biol. 7:901–908
    45. Lee H, Woodman SE, Engelman JA, VolontéD, Galbiati F, Kaufman HL, Lublin DM, Lisanti MP.J Biol Chem. 2001 Sep 14;276(37):35150-8
    46. Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, and Lisanti MP. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities.J Biol Chem 277: 8635–8647, 2002
    47. Burgermeister E, Liscovitch M, R?cken C, Schmid RM, Ebert MP. Caveats of caveolin-1 in cancer progression.Cancer Lett. 2008 Sep 18;268(2):187-201
    48. Rybin VO, Grabham PW, Elouardighi H, Steinberg SF. Caveolae-associated proteins in cardiomyocytes: caveolin-2 expression and interactions with caveolin-3. Am J Physiol Heart Circ Physiol. 2003 Jul;285(1):H325-32
    49. Sowa G, Xie L, Xu L, Sessa WC. Serine 23 and 36 phosphorylation of caveolin-2 is differentially regulated by targeting to lipid raft/caveolae and in mitotic endothelial cells. Biochemistry. 2008 Jan 8;47(1):101-11. Epub 2007 Dec 15
    50. Zhou H, Jia L, Wang S, Wang H, Chu H, Hu Y, Cao J, Zhang J. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability Biochem Biophys Res Commun. 2006 Jun 23; 345(1): 486-94
    51. Sowa G, Pypaert M, Fulton D, Sessa WC. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation .Proc Natl Acad Sci U S A. 2003 May 27;100(11):6511-6
    52. Hanahan D, Weinberg RA. The hallmarks of cancer.Cell. 2000 Jan 7;100(1): 57-70
    53. Engelman, J. A., Zhang, X. L., Galbiati, F., & Lisanti, M. P. (1998). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Letters, 429(3),330–336
    54. Cokakli M, Erdal E, Nart D, Yilmaz F, Sagol O, Kilic M, Karademir S, Atabey N.Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion. BMC Cancer. 2009 Feb 24;9:65
    55. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth.Lin MI, Yu J, Murata T, Sessa WC.Cancer Res. 2007 Mar 15;67(6):2849-56
    56. Bailey KM, Liu J.Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase.J Biol Chem. 2008 May 16;283 (20):13714-24
    57. Veldman RJ, Maestre N, Aduib OM, Medin JA, Salvayre R, Levade T. A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: Potential implications in tumour necrosis factor signaling. Biochem J. 2001 May 1;355(Pt 3):859-68
    58. Goetz JG, Lajoie P, Wiseman SM, Nabi IR. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev. 2008 Dec;27(4):715-35
    59. Zundel W, Swiersz LM, Giaccia A. Caveolin-1 mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol Cell Biol. 2000 Mar;20(5):1507-14
    60. Lin MI, Yu J, Murata T, Sessa WC. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res. 2007 Mar 15;67(6):2849-56
    61. Shajahan AN, Wang A, Decker M, Minshall RD, Liu MC, Clarke R.Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J Biol Chem. 2007 Feb 23;282(8):5934-43
    62. Podar K, Tai YT, Cole CE, Hideshima T, Sattler M, Hamblin A, Mitsiades N, Schlossman RL, Davies FE, Morgan GJ, Munshi NC, Chauhan D, Anderson KC.Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2003 Feb 21;278(8):5794-801
    63. Timme TL, Goltsov A, Tahir S, Li L, Wang J, Ren C, Johnston RN, Thompson TC. Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene. 2000 Jul 6;19(29):3256-65
    64. Ravid D, Maor S, Werner H, Liscovitch M. Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene. 2005 Feb 17;24(8):1338-47
    65. Caveolin-1 up-regulates IGF-I receptor gene transcription in breast cancer cells via Sp1- and p53-dependent pathways.
    1. Jia L, Cao J, Wei W, Wang S, Zuo Y, Zhang J. CD147 depletion down-regulates matrix metalloproteinase-11, vascular endothelial growth factor-A expression and the lymphatic metastasis potential of murine hepatocarcinoma Hca-F cells. Int J Biochem Cell Biol. 2007;39(11):2135-42
    2. Jia L, Zhou H, Wang S, Cao J, Wei W, Zhang J. Deglycosylation of CD147 down-regulates Matrix Metalloproteinase-11 expression and the adhesive capability of murine hepatocarcinoma cell HcaF in vitro. IUBMB Life. 2006 Apr;58(4):209-16
    3. Jia L, Wang S, Zhou H, Cao J, Hu Y, Zhang J. Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int J Biochem Cell Biol. 2006;38(9):1584-93
    4. Wang S, Jia L, Zhou H, Shi W, Zhang J. Knockdown of Caveolin-1 by siRNA Inhibits the Transformation of Mouse Hepatoma H22 Cells In Vitro and In Vivo. Oligonucleotides. 2009 Jan 13
    5. Wang S, Jia L, Zhou H, Wang X, Zhang J. Caveolin-1 promotes the transformation and anti-apoptotic ability of mouse hepatoma cells. IUBMB Life. 2008 Oct;60(10):693-9
    6. Parat MO, Fox PL.Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible.J Biol Chem. 2001 May 11;276(19):15776-82
    7. Stan RV. Structure of caveolae. Biochim Biophys Acta. 2005 Dec 30; 1746(3): 334-48
    8. Parton RG, Simons K.The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007 Mar;8(3):185-94
    9. Zhang Q, Furukawa K, Chen HH, Fujinawa R, Kozutsumi Y, Suzuki A, Urano T, Furukawa K. Down-regulation of caveolin-1 in mouse Lewis lung cancer P29 is a causal factor for the malignant properties in a high-metastatic subline. Oncol Rep. 2006 Aug;16(2):289-94
    10. Quest AF, Gutierrez-Pajares JL, Torres VA. Caveolin-1: an ambiguous partner in cell signalling and cancer. J Cell Mol Med. 2008 Aug;12(4):1130-50
    11. Schlegel A, Schwab RB, Scherer PE, Lisanti MP. A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membranebinding in vitro. J Biol Chem. 1999 Aug 6;274(32):22660-7
    12. Iacono KT, Brown AL, Greene MI, Saouaf SJ.CD147 immunoglobulin Superfa- mily receptor function and role in pathology.Exp Mol Pathol. 2007Dec; 83(3):283-95
    13. Nabeshima K, Iwasaki H, Koga K, Hojo H, Suzumiya J, Kikuchi M. Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathol Int. 2006 Jul;56(7):359-67. Review
    14. Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol. 2005 Mar;288(3):C494-506. Review
    15. Tang W, Chang SB, Hemler ME.Links between CD147 Function, Glycosylation, and Caveolin-1. Mol Biol Cell. 2004 Sep;15(9):4043-50
    16.黄宝成,商澎,骞爱荣等. HAb18GCD一147拮抗肽的筛选及对肝癌细胞侵袭力的抑制.中华肿瘤杂志. 2003, 25:111一l14
    17.白洁,吴毓,李庆伟.蛋白质泛素化降解途径.国际遗传学杂志. 2007, 4; 30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700