GATA-4加强MSCs细胞对梗死后缺血心肌细胞保护作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察锌指转录因子GATA-4基因过表达的骨髓间充质干细胞(MSCs)对心肌梗死后缺血心肌细胞的影响。阐明GATA-4与微小RNA(miR-195)、B-细胞淋巴瘤基因w(Bcl-w)因子之间的关系,探讨GATA-4加强MSCs细胞对梗死后缺血心肌细胞保护作用的可能机制,探寻加强缺血心脏保护的方法,为MSCs细胞移植治疗心肌梗死探索新的途径。
     方法:
     1.分离、培养健康新生Spraque-Dawley(SD)大鼠的MSCs细胞。
     2.构建GATA-4基因重组慢病毒载体,包装产生病毒,转染MSCs细胞并筛选稳定过表达GATA-4的MSCs细胞株。
     3.免疫荧光检测,蛋白免疫印迹、实时定量PCR等方法验证GATA-4基因在MSCs细胞内过量表达。
     4.分离、培养健康新生SD大鼠(2-5日龄)的心肌细胞,建立乳鼠心肌细胞和MSCs细胞嵌套共培养体系。
     5.乳鼠心肌细胞分成五组:正常组、缺氧组、与MSCs细胞共培养组、与MSC~(Null)细胞共培养组和与MSC~(GATA-4)细胞共培养组。除正常组外样本进行细胞缺氧(4%CO_2+95%N_2)24小时,Annexin V-PE免疫染色后用荧光显微镜及流式细胞术检测心肌细胞凋亡。缺氧36小时检测心肌细胞损伤指标LDH。
     6.结扎2-3月龄的SD大鼠冠状动脉前降支(LAD),构建心肌梗死模型。实验大鼠分为对照组、MSC~(bas)组、MSC~(Null)组和MSC~(GATA-4)组,每组四只,在梗死周围心肌组织上下左右四点分别注射全培养基、106细胞/50μl IMDM培养基的MSCs细胞、MSC~(Null)细胞和MSC~(GATA-4)细胞。
     7.细胞注射1周后收获大鼠心脏,横向等分切成0.15cm的切片,TTC染色后计算心肌梗死面积(MIA)。细胞注射4周后,收获大鼠心脏,石蜡包埋切片行Masson三色染色法染色。图像采集后测量计算梗死后纤维化面积。
     8.从MSC~(GATA-4)细胞中提取包括miRNA的总RNA,用生物芯片(microarray)筛选,发现miR-195表达受到抑制。
     9. miR-195前体重组慢病毒载体转导MSCs细胞,过表达miR-195;将GATA-4-siRNA转染MSCs细胞,减少MSCs细胞内源性的GATA-4表达。
     10.蛋白免疫印迹、实时定量PCR分别测定缺氧24小时后MSC、MSC~(Null)组和MSC~(GATA-4)组、GATA-4-siRNA组、miR-195组的GATA-4、Bcl-w蛋白及mRNA的表达。并实时定量PCR法检测MSC组、MSC~(GATA-4)和miR-195组的miRNA的表达水平。
     11.克隆Bcl-w3′UTR DNA片段,构建双荧光素报告质粒,转染HEK293TN细胞,荧光素酶活性测定及分析,明确miR-195是否通过碱基互补结合Bcl-w mRNA的3′UTR而直接调控Bcl-w的表达。
     结果:
     1.本研究成功构建了GATA-4重组慢病毒载体,获得足量、高效过量表达GATA-4基因的MSCs细胞。
     2.缺氧24h后,心肌细胞凋亡率达到33.7±1.92%,远远大于正常组的8.4±1.1%。嵌套共培养的MSC组和MSC~(Null)组,心肌细胞凋亡率较大幅度下降,分别为25.40±2.1%和26.6±1.5%(p<0.05vs缺氧组),两组之间相比无统计学差异。而共培养的MSC~(GATA-4)组,心肌细胞凋亡率下降为19.7±1.4%(p<0.05vs MSC~(Null)组)。
     3.缺氧36h后,心肌细胞损伤增加,释放的LDH含量明显升高。缺氧组LDH释放是正常组的420.82±20.55%,与各种MSCs嵌套共培养的MSC组和MSC~(Null)组,这一比值减低到320.00±22.55%和330.62±26.30%(p<0.05vs正常组)。而与转染了GATA-4基因的MSCs(MSC~(GATA-4))细胞嵌套共培养组为250.87±20.39%。(p<0.05vs MSC~(Null)组)。
     4.移植后1周后,TTC染色将梗死心脏非缺血区域染为红色,缺血区域拒染而显示为苍白色,测量各个层面的缺血心肌面积,计算出MIA的比率:MSC~(bas)组16.38±2.51%和MSC~(Null)组15.45±1.81%低于对照组media组22.06±3.06%(n=4,p<0.05)。MSC~(GATA-4)进一步使MIA减少到9.52±1.98%(p<0.05vs MSC~(Bas)组和MSC~(Null)组, p<0.01vs MSC组)。
     5.心肌梗死4周后,纤维组织(主要是胶原)替代原来的死亡细胞,采用Masson三色染色法标记出蓝色的纤维组织,计算及纤维化部分的比率及左室前壁厚度与室壁厚度的比值。结果与近期试验结果类似(n=4,p<0.05)。
     6.经过Microarray筛选,我们发现miR-195在MSC~(GATA-4)中表达明显降低为MSCNul组的0.58±0.14倍(p<0.05)。RT-PCR检查, MSC~(GATA-4)组miR-195的表达量约为MSC~(Null)组的0.52±0.09倍,与Microarray结果一致。当用GATA-4-siRNA将GATA-4基因成功“沉默(silence)”而表达抑制后, miR-195的表达量与MSC组相比,升高了2.36±0.24倍(p<0.05)。
     7.过表达GATA-4的MSCs细胞Bcl-w表达增加;GATA-4基因静默后Bcl-w表达被逆转。MSC、MSC~(Null)和MSC~(GATA-4)三组细胞缺氧处理24小时后, MSC组和MSC~(Null)组Bcl-w蛋白水平相近(p>0.05)。MSC~(GATA-4)组Bcl-w蛋白表达水平明显升高(p<0.05vs MSC组和MSC~(Null)组)。GATA-4基因成功静默后,MSCs细胞GATA-4蛋白表达减少,与此同时,Bcl-w蛋白和mRNA表达水平均明显降低。
     8. MSC~(GATA-4)细胞进一步转染miR-195质粒,过表达miR-195后,细胞内高水平表达的Bcl-w蛋白随之下降(p<0.05vs MSC~(GATA-4)组)。
     9.将Bcl-W3′UTR片段作为插入子,构建双荧光素酶报告质粒。与miR-195过表达质粒共转染293T后,带有Bcl-W3′UTR报告子组的荧光活性,明显减低,而同样与miR-195过表达质粒共转染293T的阴性对照组荧光无变化。这表明:大鼠的Bcl-w3′UTR能直接被miR-195碱基配对结合。内源性的Bcl-w蛋白表达被miR-195所抑制。
     结论:
     1.本研究成功构建了GATA-4重组慢病毒载体,获得足量、高效过量表达GATA-4基因的MSCs细胞。
     2.体外实验结果显示: GATA-4加强MSCs细胞对心肌缺氧细胞的保护作用,使缺氧24h后的心肌细胞凋亡和缺氧36h后的心肌细胞损伤进一步减少。
     3.体内实验结果显示: GATA-4可加强MSCs细胞对心肌梗死后缺氧心肌细胞的保护作用,使心肌梗死面积和心肌纤维化面积进一步降低。
     4. miR-195通过与Bcl-w mRNA的3′UTR靶位点互补结合,抑制其翻译来降低Bcl-w蛋白水平。GATA-4抑制miR-195的表达,从而提高Bcl-w表达水平,由此加强MSCs对心肌梗死后缺血心肌的保护作用。
Objective:
     The purpose of this study was to observe the influence of zinc finger transcriptionfactor GATA-4over-expressed mesenchymal stem cells(MSCs) on ischemic myocardiumpost myocardial infarction and to illustrate the relationship between GATA-4, miR-195andBcl-w and apoptosis as well as the possible mechanism.
     Methods:
     1. MSCs were isolated and cultured from bone marrow of the Spraque-Dawley(SD)rat.
     2. the GATA-4gene CDS sequence was copied and insert into the pLVX-IRES-ZsGreen1vector and the recombinant plasmid of pLVX-IRES-ZsGreen1-GATA-4wastransduced into the HEK293T cells using Lenti-X Lentiviral Expression Systems.After24h, supernatant contain the virus was filtered and incubated with MSCs for12h in the presence of10μg/mL polybrene. Stable transduced clones were obtained bypuromycin selection (3μg/mL for5days).
     3. GATA-4over-expression was verified by immunostaining, RT-PCR and western blot.Negative control MSCs were transduced with pLVX-IRES-ZsGreen1(MSC~(Null)).
     4. Cardiomyocytes(CM) which was isolated and cultured from neonatal Spraque-Dawley(SD)rat(aged2-5d),was co-cultured with MSCs on a transwell collagen-coatedmembrane inserts。
     5. Neonatal CMs were divided into five groups: normoxial control, hypoxia control,co-culture with MSCs group, co-culture with MSC~(Null)group and co-culture withMSC~(GATA-4)group。 Apoptotic cells were labeled with annexin V-PE and examined under fluorescence microscope and flow cytometer followinghypoxia(4%CO2+95%N2) for24hrs. Cell injury estimated by LDH release from CMswas measured after hypoxia for36hrs.
     6. The myocardial infarction SD rats(aged2-3months) modeled by LAD permanentligation were divided into five groups:sham group, MSC~(bas)group、MSC~(Null)group andMSC~(GATA-4)group.50ul medium,106cells of MSCs, MSC~(Null)and MSC~(GATA-4)in50ulIMDM medium were injected into ischemic border of the infarction area respectively.
     7. The hearts were harvested and sliced into0.15cm sections from the short axis whenMSCs were transplanted for1week. Myocardial infarction area(MIA) was measuredafter slices were stained by TTC. The hearts were stopped at the diastole stage andfixed in4%paraformaldhyde after MSCs transplantation for4weeks. Hearts wereembedded in paraffin and sectioned (5μm thick) for Masson’s TrichromeStaining.the MIA estimated by fibrous area was measured by Image pro plus6.0software.
     8. Microarray analysis of miRNA isolated from all kinds of MSCs found expression ofmiR-195were depressed in MSC~(GATA-4)cells.
     9. over-express miR-195by transduce the miR-195pre-microRNA recombinated lentivirusvector into MSCs. GATA-4expression were silenced by transducing GATA-4-siRNAinto MSCs.
     10. GATA-4、Bcl-w protein and miRNA levers in MSCs、MSC~(Null)group,MSC~(GATA-4)group,GATA-4-siRNA group and miR-195group were measure by western blot and halfquantitative RT-PCR as well as miR-195lever in MSC group,MSC~(GATA-4)group andmiR-195group.
     11. A luciferase reporter plasmids containing Bcl-w3′UTR were constructed andco-transfected HEK293T cells with miR-195pre-microRNA recombinated lentivirusvector. The ration of fire luciferase/renilla luciferase activity was measured andanalyzed to determine whether miR-195was combined with3′UTR sites of Bcl-wmRNA and regulated the expression of Bcl-w.
     Results:
     1. The recombinated GATA-4lentivirus vector was constructed successfully, Stable MSCsclones with GATA-4over-expressed were obtained by puromycin selection.
     2. Treating hypoxia for24hrs,the percentage of CMs apoptosis reached33.7±1.92%,ismuch higher than that of normoxia(8.4±1.1%)。The percentage of apoptosis wasdecreased when co-culture with MSCs (25.40±2.1%)and MSC~(Null)(26.6±1.5%)(p<0.05vs hypoxia group), Whereas there was no significant difference between thetwo groups。When co-culture with MSC~(GATA-4)cells,the apoptosis percentage wasdramatically decreased to19.7±1.4%(p<0.05vs MSC~(Null)group)。
     3. After hypoxia for36hrs,Cell injury estimated by LDH release from CMs wassignificantly increased. In hypoxia group, it was420.82±20.55%folds of that innormoxia. The ratio changed to320.00±22.55%and330.62±26.30%(p<0.05vsnormoxial group) when co-culture with MSCs or MSC~(Null), and250.87±20.39%whenco-cultured with MSC~(GATA-4)(p<0.05vs MSC~(Null)group).
     4. when MSCs transplanted for1week, the none-ischemic areas of all sections of themyocardial infarction hearts were stained into red with TTC staining while theischemic area into pale. The MIA was calculated according to the measurement of allthe ischemic area. As a result, the MIA of MSC~(bas)group(16.38±2.51%) and MSC~(Null)group(15.45±1.81%) were reduced(n=4, p<0.05vs Medium group22.06±3.06%). TheMIA of MSC~(GATA-4)group was reduced to9.52±1.98%进一步的(p<0.05vsMSC~(Bas)and MSC~(Null)).
     5. when MSCs transplanted for4week, the infarction area has been replaced by fibrousscar tissue. The collagen fibers was stained blue by Masson’s Trichrome staining. Thefibrous area of MSC~(bas)group and MSC~(Null)group were reduced(n=4, p<0.05vsMedium group). The fibrous area of MSC~(GATA-4)group was significantlyreduced(p<0.05vs MSC~(Bas)and MSC~(Null)).
     6. miR-195expression in MSC~(GATA-4)was0.58±0.14times of that in MSC~(Null)(p<0.05)inmicroarray scanning, and0.52±0.09times in RT-PCR (p<0.05vs MSC~(Null)).whenGATA-4expression was silenced by GATA-4-siRNA, the expression of miR-195 increased to2.36±0.24times of that in MSC~(Null)(p<0.05).
     7. Bcl-w expression in GATA-4over-expressioned MSCs(MSC~(GATA-4)) increased, and wasreversed when GATA-4gene was silenced by GATA-4-siRNA. When hypoxia for24hrs, Bcl-w protein lever was equal in MSC and MSC~(Null)group(p>0.05), butincreased dramatically in MSC~(GATA-4)group(p<0.05vs MSC and MSC~(Null)group).When GATA-4gene was silenced, both expression of Bcl-w protein and mRNA weresignificantly decreased(p<0.05vs MSC~(GATA-4)).
     8. when MSC~(GATA-4)was transduced with miR-195pre-microRNA recombinated lentivirusvector, miR-195was over-expressed in MSC~(GATA-4)cells, followed by Bcl-w proteinlever decreasing(p<0.05vs MSC~(GATA-4)).
     9. A luciferase reporter plasmids containing Bcl-w3′UTR were constructed successfully.When co-transfected HEK293T cells with miR-195pre-microRNA recombinatedlentivirus vector, the luciferase activity of Bcl-w3′UTR reporter was depressed, whilethe empty vector as control failed. It was proofed that miR-195was combined with3′UTR sites of Bcl-w mRNA and regulated the expression of Bcl-w.
     Conclusions:
     1. The recombinated GATA-4lentivirus vector was constructed successfully, Stable MSCsclones with GATA-4over-expressed were obtained by puromycin selection.
     2. GATA-4enhanced MSCs mediated cardioprotection in hypoxia condition in vitro,decreased cardiomyocytes apoptosis after hypoxia for24hrs and ischemic injury afterhypoxia for36hrs.
     3. GATA-4enhanced MSCs mediated cardioprotection in Acute Myocardial Infarctionheart in vivo, decreased ischemic area and fibrous area.
     4. miR-195combines with3′UTR sites of Bcl-w mRNA and depresses the expression ofBcl-w. GATA-4elevates Bcl-w expression and enhances anti-apoptosis function ofMSCs in ischemic heart post MI by decreasing miR-195expression
引文
1. Antman, E.M. and F. Van de Werf, Pharmacoinvasive therapy: the future of treatment forST-elevation myocardial infarction. Circulation,2004.109(21): p.2480-6.
    2. Pfeffer, M.A. and E. Braunwald, Ventricular remodeling after myocardial infarction.Experimental observations and clinical implications. Circulation,1990.81(4): p.1161-72.
    3. Zeng, L., et al., Bioenergetic and functional consequences of bone marrow-derivedmultipotent progenitor cell transplantation in hearts with postinfarction left ventricularremodeling. Circulation,2007.115(14): p.1866-75.
    4. Quevedo, H.C., et al., Allogeneic mesenchymal stem cells restore cardiac function inchronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc NatlAcad Sci U S A,2009.106(33): p.14022-7.
    5. Kajstura, J., et al., Bone marrow cells differentiate in cardiac cell lineages afterinfarction independently of cell fusion. Circ Res,2005.96(1): p.127-37.
    6. Fernandez-Aviles, F., et al., Experimental and clinical regenerative capability of humanbone marrow cells after myocardial infarction. Circ Res,2004.95(7): p.742-8.
    7. Tomita, S., et al., Autologous transplantation of bone marrow cells improves damagedheart function. Circulation,1999.100(19Suppl): p. II247-56.
    8. Kinnaird, T., et al., Local delivery of marrow-derived stromal cells augments collateralperfusion through paracrine mechanisms. Circulation,2004.109(12): p.1543-9.
    9. Orlic, D., et al., Bone marrow cells regenerate infarcted myocardium. Nature,2001.410(6829): p.701-5.
    10. Tang, Y.L., et al., Paracrine action enhances the effects of autologous mesenchymalstem cell transplantation on vascular regeneration in rat model of myocardialinfarction. Ann Thorac Surg,2005.80(1): p.229-36; discussion236-7.
    11. Pons, J., et al., Combining angiogenic gene and stem cell therapies for myocardialinfarction. J Gene Med,2009.11(9): p.743-53.
    12. Li, H., et al., Paracrine factors released by GATA-4overexpressed mesenchymal stemcells increase angiogenesis and cell survival. Am J Physiol Heart Circ Physiol,2010.299(6): p. H1772-81.
    13. Wang, H.H., et al., Peritoneal dialysate effluent during peritonitis induces humancardiomyocyte apoptosis by regulating the expression of GATA-4and Bcl-2families.J Cell Physiol,2011.226(1): p.94-102.
    14. Suzuki, Y.J., Cell signaling pathways for the regulation of GATA4transcription factor:Implications for cell growth and apoptosis. Cell Signal,2011.23(7): p.1094-9.
    15. Kobayashi, S., et al., Transcription factor gata4regulates cardiac BCL2geneexpression in vitro and in vivo. FASEB J,2006.20(6): p.800-2.
    16. Kim, Y., et al., Anthracycline-induced suppression of GATA-4transcription factor:implication in the regulation of cardiac myocyte apoptosis. Mol Pharmacol,2003.63(2): p.368-77.
    1. Montini E, Cesana D, Schmidt M, et al. Hematopoietic stem cell gene transfer in atumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration.Nat Biotechnol. Jun2006;24(6):687-696.
    2. Cattoglio C, Facchini G, Sartori D, et al. Hot spots of retroviral integration in humanCD34+hematopoietic cells. Blood. Sep152007;110(6):1770-1778.
    3. Dai Y, Ashraf M, Zuo S, et al. Mobilized bone marrow progenitor cells serve asdonors of cytoprotective genes for cardiac repair. J Mol Cell Cardiol. Mar2008;44(3):607-617.
    4. Crispino JD, Lodish MB, Thurberg BL, et al. Proper coronary vascular developmentand heart morphogenesis depend on interaction of GATA-4with FOG cofactors.Genes Dev. Apr12001;15(7):839-844.
    5. Mano T, Luo Z, Malendowicz SL, et al. Reversal of GATA-6downregulationpromotes smooth muscle differentiation and inhibits intimal hyperplasia inballoon-injured rat carotid artery. Circ Res. Apr21999;84(6):647-654.
    6. Yanazume T, Hasegawa K, Wada H, et al. Rho/ROCK pathway contributes to theactivation of extracellular signal-regulated kinase/GATA-4during myocardial cellhypertrophy. J Biol Chem. Mar82002;277(10):8618-8625.
    7. Kerkela R, Pikkarainen S, Majalahti-Palviainen T, et al. Distinct roles ofmitogen-activated protein kinase pathways in GATA-4transcription factor-mediatedregulation of B-type natriuretic peptide gene. J Biol Chem. Apr192002;277(16):13752-13760.
    8. Morimoto T, Hasegawa K, Kaburagi S, et al. Phosphorylation of GATA-4is involvedin alpha1-adrenergic agonist-responsive transcription of the endothelin-1gene incardiac myocytes. J Biol Chem. May52000;275(18):13721-13726.
    9. Kitta K, Clement SA, Remeika J, et al. Endothelin-1induces phosphorylation ofGATA-4transcription factor in the HL-1atrial-muscle cell line. Biochem J. Oct152001;359(Pt2):375-380.
    10. Li H, Zuo S, He Z, et al. Paracrine factors released by GATA-4overexpressedmesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol HeartCirc Physiol. Dec2010;299(6):H1772-1781.
    11. Wang HH, Li PC, Huang HJ, et al. Peritoneal dialysate effluent during peritonitisinduces human cardiomyocyte apoptosis by regulating the expression of GATA-4andBcl-2families. J Cell Physiol. Jan2011;226(1):94-102.
    12. Suzuki YJ. Cell signaling pathways for the regulation of GATA4transcription factor:Implications for cell growth and apoptosis. Cell Signal. Jul2011;23(7):1094-1099.
    13. Heikinheimo M, Ermolaeva M, Bielinska M, et al. Expression and hormonalregulation of transcription factors GATA-4and GATA-6in the mouse ovary.Endocrinology. Aug1997;138(8):3505-3514.
    14. Kobayashi S, Lackey T, Huang Y, et al. Transcription factor gata4regulates cardiacBCL2gene expression in vitro and in vivo. FASEB J. Apr2006;20(6):800-802.
    15. Kim Y, Ma AG, Kitta K, et al. Anthracycline-induced suppression of GATA-4transcription factor: implication in the regulation of cardiac myocyte apoptosis. MolPharmacol. Feb2003;63(2):368-377.
    16. Ono K, Matsumori A, Shioi T, et al. Enhanced expression of hepatocyte growthfactor/c-Met by myocardial ischemia and reperfusion in a rat model. Circulation. Jun31997;95(11):2552-2558.
    17. Matsumori A, Furukawa Y, Hashimoto T, et al. Increased circulating hepatocytegrowth factor in the early stage of acute myocardial infarction. Biochem Biophys ResCommun. Apr161996;221(2):391-395.
    18. Kitta K, Day RM, Kim Y, et al. Hepatocyte growth factor induces GATA-4phosphorylation and cell survival in cardiac muscle cells. J Biol Chem. Feb142003;278(7):4705-4712.
    19. Heineke J, Auger-Messier M, Xu J, et al. Cardiomyocyte GATA4functions as astress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. Nov2007;117(11):3198-3210.
    20. He Z, Li H, Zuo S, et al. Transduction of Wnt11promotes mesenchymal stem celltransdifferentiation into cardiac phenotypes. Stem Cells Dev. Oct2011;20(10):1771-1778.
    21. Dropulic B. Lentiviral vectors: their molecular design, safety, and use in laboratoryand preclinical research. Hum Gene Ther. Jun2011;22(6):649-657.
    1. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction.Experimental observations and clinical implications. Circulation. Apr1990;81(4):1161-1172.
    2. Antman EM, Van de Werf F. Pharmacoinvasive therapy: the future of treatment forST-elevation myocardial infarction. Circulation. Jun12004;109(21):2480-2486.
    3. Zeng L, Hu Q, Wang X, et al. Bioenergetic and functional consequences of bonemarrow-derived multipotent progenitor cell transplantation in hearts withpostinfarction left ventricular remodeling. Circulation. Apr102007;115(14):1866-1875.
    4. Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stemcells restore cardiac function in chronic ischemic cardiomyopathy via trilineagedifferentiating capacity. Proc Natl Acad Sci U S A. Aug182009;106(33):14022-14027.
    5. Kajstura J, Rota M, Whang B, et al. Bone marrow cells differentiate in cardiac celllineages after infarction independently of cell fusion. Circ Res. Jan72005;96(1):127-137.
    6. Fernandez-Aviles F, San Roman JA, Garcia-Frade J, et al. Experimental and clinicalregenerative capability of human bone marrow cells after myocardial infarction. CircRes. Oct12004;95(7):742-748.
    7. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cellsimproves damaged heart function. Circulation. Nov91999;100(19Suppl):II247-256.
    8. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromalcells augments collateral perfusion through paracrine mechanisms. Circulation. Mar302004;109(12):1543-1549.
    9. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarctedmyocardium. Nature. Apr52001;410(6829):701-705.
    10. Tang YL, Zhao Q, Qin X, et al. Paracrine action enhances the effects of autologousmesenchymal stem cell transplantation on vascular regeneration in rat model ofmyocardial infarction. Ann Thorac Surg. Jul2005;80(1):229-236; discussion236-227.
    11. Pons J, Huang Y, Takagawa J, et al. Combining angiogenic gene and stem celltherapies for myocardial infarction. J Gene Med. Sep2009;11(9):743-753.
    12. Melo LG, Agrawal R, Zhang L, et al. Gene therapy strategy for long-term myocardialprotection using adeno-associated virus-mediated delivery of heme oxygenase gene.Circulation. Feb52002;105(5):602-607.
    13. He Z, Li H, Zuo S, et al. Transduction of Wnt11promotes mesenchymal stem celltransdifferentiation into cardiac phenotypes. Stem Cells Dev. Oct2011;20(10):1771-1778.
    14. Bauer S, Maier SK, Neyses L, et al. Optimization of gene transfer into neonatal ratcardiomyocytes and unmasking of cytomegalovirus promoter silencing. DNA CellBiol. Jun2005;24(6):381-387.
    15. Li ZJ, Liu N, Han QD, et al. Proteome reference map and regulation network ofneonatal rat cardiomyocyte. Acta Pharmacol Sin. Sep2011;32(9):1116-1127.
    16. Takagawa J, Zhang Y, Wong ML, et al. Myocardial infarct size measurement in themouse chronic infarction model: comparison of area-and length-based approaches. JAppl Physiol. Jun2007;102(6):2104-2111.
    17. Fraccarollo D, Galuppo P, Bauersachs J, et al. Collagen accumulation aftermyocardial infarction: effects of ETA receptor blockade and implications for earlyremodeling. Cardiovasc Res. Jun2002;54(3):559-567.
    18. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologousintracoronary mononuclear bone marrow cell transplantation in humans. Circulation.Oct82002;106(15):1913-1918.
    19. Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium byintramyocardial autologous bone marrow mononuclear cell implantation. Lancet. Jan42003;361(9351):47-49.
    20. Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts indifferent populations of hematopoietic cells as detected by the in vitro colony assaymethod. Exp Hematol.1974;2(2):83-92.
    21. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cellsderived from adult marrow. Nature. Jul42002;418(6893):41-49.
    22. Okada H, Takemura G, Kosai K, et al. Postinfarction gene therapy againsttransforming growth factor-beta signal modulates infarct tissue dynamics andattenuates left ventricular remodeling and heart failure. Circulation. May172005;111(19):2430-2437.
    23. Li Q, Guo Y, Xuan YT, et al. Gene therapy with inducible nitric oxide synthaseprotects against myocardial infarction via a cyclooxygenase-2-dependent mechanism.Circ Res. Apr182003;92(7):741-748.
    24. Plotnikov EY, Khryapenkova TG, Vasileva AK, et al. Cell-to-cell cross-talk betweenmesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med. Sep-Oct2008;12(5A):1622-1631.
    25. Kitta K, Day RM, Kim Y, et al. Hepatocyte growth factor induces GATA-4phosphorylation and cell survival in cardiac muscle cells. J Biol Chem. Feb142003;278(7):4705-4712.
    26. Wang L, Gao C.[Autologous skeletal myoblast cardiomyoplasty, an experimentalstudy]. Zhonghua Yi Xue Za Zhi. Jan252002;82(2):100-103.
    27. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis andangiogenesis after autologous porcine bone marrow stromal cell transplantation. JThorac Cardiovasc Surg. Jun2002;123(6):1132-1140.
    28. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheralblood stem-cells mobilised with granulocyte-colony stimulating factor on leftventricular systolic function and restenosis after coronary stenting in myocardialinfarction: the MAGIC cell randomised clinical trial. Lancet. Mar62004;363(9411):751-756.
    29. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemicmyocardium by human bone-marrow-derived angioblasts prevents cardiomyocyteapoptosis, reduces remodeling and improves cardiac function. Nat Med. Apr2001;7(4):430-436.
    1. Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium byintramyocardial autologous bone marrow mononuclear cell implantation. Lancet. Jan42003;361(9351):47-49.
    2. Plotnikov EY, Khryapenkova TG, Vasileva AK, et al. Cell-to-cell cross-talk betweenmesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med. Sep-Oct2008;12(5A):1622-1631.
    3. Zeng L, Hu Q, Wang X, et al. Bioenergetic and functional consequences of bonemarrow-derived multipotent progenitor cell transplantation in hearts withpostinfarction left ventricular remodeling. Circulation. Apr102007;115(14):1866-1875.
    4. Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stemcells restore cardiac function in chronic ischemic cardiomyopathy via trilineagedifferentiating capacity. Proc Natl Acad Sci U S A. Aug182009;106(33):14022-14027.
    5. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction.Experimental observations and clinical implications. Circulation. Apr1990;81(4):1161-1172.
    6. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon withwide-ranging implications in tissue kinetics. Br J Cancer. Aug1972;26(4):239-257.
    7. Tanaka M, Ito H, Adachi S, et al. Hypoxia induces apoptosis with enhancedexpression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes.Circ Res. Sep1994;75(3):426-433.
    8. Mattson MP, Chan SL. Calcium orchestrates apoptosis. Nat Cell Biol. Dec2003;5(12):1041-1043.
    9. Sasi N, Hwang M, Jaboin J, et al. Regulated cell death pathways: new twists inmodulation of BCL2family function. Mol Cancer Ther. Jun2009;8(6):1421-1429.
    10. Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2family proteins in anon-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol.Dec2004;6(12):1221-1228.
    11. Gonzalez-Polo RA, Boya P, Pauleau AL, et al. The apoptosis/autophagy paradox:autophagic vacuolization before apoptotic death. J Cell Sci. Jul152005;118(Pt14):3091-3102.
    12. Gutierrez MG, Master SS, Singh SB, et al.Deretic V. Autophagy is a defensemechanism inhibiting BCG and Mycobacterium tuberculosis survival in infectedmacrophages. Cell. Dec172004;119(6):753-766.
    13. O'Reilly LA, Print C, Hausmann G, et al. Tissue expression and subcellularlocalization of the pro-survival molecule Bcl-w. Cell Death Differ. May2001;8(5):486-494.
    14. Yan W, Samson M, Jegou B, et al. Bcl-w forms complexes with Bax and Bak, andelevated ratios of Bax/Bcl-w and Bak/Bcl-w correspond to spermatogonial andspermatocyte apoptosis in the testis. Mol Endocrinol. May2000;14(5):682-699.
    15. Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalkbetween autophagy and apoptosis. Nat Rev Mol Cell Biol. Sep2007;8(9):741-752.
    16. Cui Q, Tashiro S, Onodera S, Minami M, et al. Autophagy preceded apoptosis inoridonin-treated human breast cancer MCF-7cells. Biol Pharm Bull. May2007;30(5):859-864.
    17. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell.Feb202009;136(4):642-655.
    18. Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition andmode of action. Nat Rev Mol Cell Biol. Feb2009;10(2):141-148.
    19. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol CellBiol. Feb2009;10(2):126-139.
    20. Wang XJ, Reyes JL, Chua NH, et al. Prediction and identification of Arabidopsisthaliana microRNAs and their mRNA targets. Genome Biol.2004;5(9):R65.
    21. Williams AE. Functional aspects of animal microRNAs. Cell Mol Life Sci. Feb2008;65(4):545-562.
    22. Eulalio A, Huntzinger E, Nishihara T, et al.Deadenylation is a widespread effect ofmiRNA regulation. RNA. Jan2009;15(1):21-32.
    23. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNAtargets. Cell. Dec262003;115(7):787-798.
    1. Kusenda B, Mraz M, Mayer J, et al. MicroRNA biogenesis, functionality and cancerrelevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. Nov2006;150(2):205-215.
    2. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. Jan232009;136(2):215-233.
    3. Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved andnonconserved human microRNAs. Nat Genet. Jul2005;37(7):766-770.
    4. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines,indicates that thousands of human genes are microRNA targets. Cell. Jan142005;120(1):15-20.
    5. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conservedtargets of microRNAs. Genome Res. Jan2009;19(1):92-105.
    6. Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans.Genes Dev. Apr152003;17(8):991-1008.
    7. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespreadtranslational inhibition by plant miRNAs and siRNAs. Science. May302008;320(5880):1185-1190.
    8. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNAtargets. Cell. Dec262003;115(7):787-798.
    9. Zhang R, Su B. Small but influential: the role of microRNAs on gene regulatorynetwork and3'UTR evolution. J Genet Genomics. Jan2009;36(1):1-6.
    10. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. NatRev Genet. Jul2004;5(7):522-531.
    11. Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. May282004;339(2):327-335.
    12. Molnar A, Schwach F, Studholme DJ, et al. miRNAs control gene expression in thesingle-cell alga Chlamydomonas reinhardtii. Nature. Jun282007;447(7148):1126-1129.
    13. Kren BT, Wong PY, Sarver A, et al. MicroRNAs identified in highly purifiedliver-derived mitochondria may play a role in apoptosis. RNA Biol. Jan-Mar2009;6(1):65-72.
    14. Lee CT, Risom T, Strauss WM. Evolutionary conservation of microRNA regulatorycircuits: an examination of microRNA gene complexity and conserved microRNA-targetinteractions through metazoan phylogeny. DNA Cell Biol. Apr2007;26(4):209-218.
    15. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that somemicroRNAs downregulate large numbers of target mRNAs. Nature. Feb172005;433(7027):769-773.
    16. Brennecke J, Hipfner DR, Stark A, et al. bantam encodes a developmentally regulatedmicroRNA that controls cell proliferation and regulates the proapoptotic gene hid inDrosophila. Cell. Apr42003;113(1):25-36.
    17. Cuellar TL, McManus MT. MicroRNAs and endocrine biology. J Endocrinol. Dec2005;187(3):327-332.
    18. Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNAregulates insulin secretion. Nature. Nov112004;432(7014):226-230.
    19. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineagedifferentiation. Science. Jan22004;303(5654):83-86.
    20. Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the roleof miRNAs in lipid metabolism, with a prediction that miR-103/107regulates humanmetabolic pathways. Mol Genet Metab. Jul2007;91(3):209-217.
    21. Norris JW, Hachinski VC, Cooper PW. Changes in cerebral blood flow during amigraine attack. Br Med J. Sep201975;3(5985):676-677.
    22. Lagos-Quintana M, Rauhut R, Yalcin A, et al.Identification of tissue-specificmicroRNAs from mouse. Curr Biol. Apr302002;12(9):735-739.
    23. Trang P, Weidhaas JB, Slack FJ. MicroRNAs as potential cancer therapeutics.Oncogene. Dec2008;27Suppl2:S52-57.
    24. Li C, Feng Y, Coukos G, Zhang L. Therapeutic microRNA strategies in human cancer.AAPS J. Dec2009;11(4):747-757.
    25. Fasanaro P, Greco S, Ivan M, et al. microRNA: emerging therapeutic targets in acuteischemic diseases. Pharmacol Ther. Jan2010;125(1):92-104.
    26. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodessmall RNAs with antisense complementarity to lin-14. Cell. Dec31993;75(5):843-854.
    27. Reinhart BJ, Slack FJ, Basson M, et al. The21-nucleotide let-7RNA regulatesdevelopmental timing in Caenorhabditis elegans. Nature. Feb242000;403(6772):901-906.
    28. Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporalexpression of let-7heterochronic regulatory RNA. Nature. Nov22000;408(6808):86-89.
    29. Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation.RNA. Mar2003;9(3):277-279.
    30. Griffiths-Jones S, Grocock RJ, van Dongen S, et al.miRBase: microRNA sequences,targets and gene nomenclature. Nucleic Acids Res. Jan12006;34(Databaseissue):D140-144.
    31. Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probableregulatory roles in Caenorhabditis elegans. Science. Oct262001;294(5543):858-862.
    32. Zhou X, Ruan J, Wang G, et al.Characterization and identification of microRNA corepromoters in four model species. PLoS Comput Biol. Mar92007;3(3):e37.
    33. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs. RNA. Dec2004;10(12):1957-1966.
    34. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II.EMBO J. Oct132004;23(20):4051-4060.
    35. Faller M, Guo F. MicroRNA biogenesis: there's more than one way to skin a cat.Biochim Biophys Acta. Nov2008;1779(11):663-667.
    36. Gregory RI, Chendrimada TP, Shiekhattar R. MicroRNA biogenesis: isolation andcharacterization of the microprocessor complex. Methods Mol Biol.2006;342:33-47.
    37. Harrison GH, Balcer-Kubiczek EK. Continuous-wave ultrasound and neoplastictransformation in vitro. Ultrasound Med Biol.1989;15(4):335-340.
    38. Kawahara Y, Megraw M, Kreider E, et al. Frequency and fate of microRNA editing inhuman brain. Nucleic Acids Res. Sep2008;36(16):5270-5280.
    39. Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesispathways and their regulation. Nat Cell Biol. Mar2009;11(3):228-234.
    40. Ohman M. A-to-I editing challenger or ally to the microRNA process. Biochimie. Oct2007;89(10):1171-1176.
    41. Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAimachinery. Curr Opin Cell Biol. Jun2004;16(3):223-229.
    42. Lund E, Dahlberg JE. Substrate selectivity of exportin5and Dicer in the biogenesis ofmicroRNAs. Cold Spring Harb Symp Quant Biol.2006;71:59-66.
    43. Ji X. The mechanism of RNase III action: how dicer dices. Curr Top MicrobiolImmunol.2008;320:99-116.
    44. Rana TM. Illuminating the silence: understanding the structure and function of smallRNAs. Nat Rev Mol Cell Biol. Jan2007;8(1):23-36.
    45. Schwarz DS, Zamore PD. Why do miRNAs live in the miRNP? Genes Dev. May12002;16(9):1025-1031.
    46. Krol J, Sobczak K, Wilczynska U, et al. Structural features of microRNA (miRNA)precursors and their relevance to miRNA biogenesis and small interfering RNA/shorthairpin RNA design. J Biol Chem. Oct12004;279(40):42230-42239.
    47. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibitstrand bias. Cell. Oct172003;115(2):209-216.
    48. Schwarz DS, Hutvagner G, Du T, et al. Aronin N, Zamore PD. Asymmetry in theassembly of the RNAi enzyme complex. Cell. Oct172003;115(2):199-208.
    49. Lin SL, Chang D, Ying SY. Asymmetry of intronic pre-miRNA structures in functionalRISC assembly. Gene. Aug152005;356:32-38.
    50. Okamura K, Chung WJ, Lai EC. The long and short of inverted repeat genes inanimals: microRNAs, mirtrons and hairpin RNAs. Cell Cycle. Sep152008;7(18):2840-2845.
    51. Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencingmachine. J Biol Chem. Jul32009;284(27):17897-17901.
    52. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA. In vitro reconstitution of thehuman RISC-loading complex. Proc Natl Acad Sci U S A. Jan152008;105(2):512-517.
    53. Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs: a novel class of ribonucleoproteinscontaining numerous microRNAs. Genes Dev. Mar152002;16(6):720-728.
    54. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated genesilencing. Cell. Jan112008;132(1):9-14.
    55. Chendrimada TP, Finn KJ, Ji X, et al. MicroRNA silencing through RISC recruitmentof eIF6. Nature. Jun142007;447(7146):823-828.
    56. Kiriakidou M, Tan GS, Lamprinaki S, et al. An mRNA m7G cap binding-like motifwithin human Ago2represses translation. Cell. Jun152007;129(6):1141-1151.
    57. Fukaya T, Tomari Y. PABP is not essential for microRNA-mediated translationalrepression and deadenylation in vitro. EMBO J. Dec142011;30(24):4998-5009.
    58. Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production onactively translating polyribosomes. Nat Struct Mol Biol. Dec2006;13(12):1108-1114.
    59. Petersen CP, Bordeleau ME, Pelletier J, et al. Short RNAs repress translation afterinitiation in mammalian cells. Mol Cell. Feb172006;21(4):533-542.
    60. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAscan up-regulate translation. Science. Dec212007;318(5858):1931-1934.
    61. Humphreys DT, Westman BJ, Martin DI, et al. MicroRNAs control translationinitiation by inhibiting eukaryotic initiation factor4E/cap and poly(A) tail function. ProcNatl Acad Sci U S A. Nov222005;102(47):16961-16966.
    62. Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs andGW182requires both CCR4:NOT deadenylase and DCP1:DCP2decapping complexes.Genes Dev. Jul152006;20(14):1885-1898.
    63. Tomari Y, Du T, Zamore PD. Sorting of Drosophila small silencing RNAs. Cell. Jul272007;130(2):299-308.
    64. Eulalio A, Rehwinkel J, Stricker M, et al. Target-specific requirements for enhancersof decapping in miRNA-mediated gene silencing. Genes Dev. Oct152007;21(20):2558-2570.
    65. Beitzinger M, Peters L, Zhu JY, et al. Identification of human microRNA targets fromisolated argonaute protein complexes. RNA Biol. Jun2007;4(2):76-84.
    66. Fujimura K, Kano F, Murata M. Identification of PCBP2, a facilitator ofIRES-mediated translation, as a novel constituent of stress granules and processing bodies.RNA. Mar2008;14(3):425-431.
    67. Ding L, Han M. GW182family proteins are crucial for microRNA-mediated genesilencing. Trends Cell Biol. Aug2007;17(8):411-416.
    68. Martinez NJ, Walhout AJ. The interplay between transcription factors and microRNAsin genome-scale regulatory networks. Bioessays. Apr2009;31(4):435-445.
    69. Lee J, Li Z, Brower-Sinning R, et al. Regulatory circuit of human microRNAbiogenesis. PLoS Comput Biol. Apr202007;3(4):e67.
    70. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specificmicroRNA that targets Hand2during cardiogenesis. Nature. Jul142005;436(7048):214-220.
    71. Cimmino A, Calin GA, Fabbri M, et al. miR-15and miR-16induce apoptosis bytargeting BCL2. Proc Natl Acad Sci U S A. Sep272005;102(39):13944-13949.
    72. Calin GA, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1cluster functions inhuman leukemia. Proc Natl Acad Sci U S A. Apr12008;105(13):5166-5171.
    73. Cheng Y, Liu X, Zhang S, et al. MicroRNA-21protects against the H(2)O(2)-inducedinjury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. Jul2009;47(1):5-14.
    74. O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulateE2F1expression. Nature. Jun92005;435(7043):839-843.
    75. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers.Nature. Jun92005;435(7043):834-838.
    76. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequentlylocated at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A.Mar22004;101(9):2999-3004.
    77. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumorsuppressor by inducing apoptosis in neuroblastoma cells. Oncogene. Jul262007;26(34):5017-5022.
    78. Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressedmicroRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. JCell Physiol. Feb2007;210(2):370-377.
    79. He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroidcarcinoma. Proc Natl Acad Sci U S A. Dec272005;102(52):19075-19080.
    80. Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation inhuman breast cancer. Cancer Res. Aug152005;65(16):7065-7070.
    81. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29family reverts aberrantmethylation in lung cancer by targeting DNA methyltransferases3A and3B. Proc NatlAcad Sci U S A. Oct22007;104(40):15805-15810.
    82. Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA deliverysuppresses tumorigenesis in a murine liver cancer model. Cell. Jun122009;137(6):1005-1017.
    83. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated withprognosis and progression in chronic lymphocytic leukemia. N Engl J Med. Oct272005;353(17):1793-1801.
    84. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles inlung cancer diagnosis and prognosis. Cancer Cell. Mar2006;9(3):189-198.
    85. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stableblood-based markers for cancer detection. Proc Natl Acad Sci U S A. Jul292008;105(30):10513-10518.
    86. van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsivemicroRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U SA. Nov282006;103(48):18255-18260.
    87. Girmatsion Z, Biliczki P, Bonauer A, et al. Changes in microRNA-1expression andIK1up-regulation in human atrial fibrillation. Heart Rhythm. Dec2009;6(12):1802-1809.
    88. Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1regulates cardiacarrhythmogenic potential by targeting GJA1and KCNJ2. Nat Med. Apr2007;13(4):486-491.
    1. Feng Y, Yang J.-H, Huang H, et al. Transcriptional Profile of Mechanically InducedGenes in Human Vascular Smooth Muscle Cells. Circ. Res,1999,85:1118-1123.
    2. Aitman T. J. Science, medicine, and the future: DNA microarrays in medical practice.BMJ,2001,323:611-615.
    3. Ye SQ, Lavoie T, Usher DC, et al. Microarray, SAGE and their applications tocardiovascular diseases. Cell Res,2002,12:105-15.
    4. Kaab S, Barth AS, Margerie D, et al. Global gene expression in humanmyocardium-oligonucleotide microarray analysis of regional diversity andtranscriptional regulation in heart failure. J Mol Med,2004,82:308-16.
    5. Tan F.-L, Moravec C. S, Li J, et al. The gene expression fingerprint of human heartfailure. PNAS,2002,99:11387-11392.
    6. Steenbergen C, Afshari C. A, Petranka J. G, et al. Alterations in apoptotic signaling inhuman idiopathic cardiomyopathic hearts in failure. Am J Physiol Heart Circ Physiol,2003,284:H268-276.
    7. Tang Z, McGowan BS, Huber SA, et al. Gene expression profiling during the transitionto failure in TNF-alpha over-expressing mice demonstrates the development ofautoimmune myocarditis. J Mol Cell Cardiol,2004,36:515-30.
    8. Yang J, Moravec C. S, Sussman M. A, et al. Decreased SLIM1Expression andIncreased Gelsolin Expression in Failing Human Hearts Measured by High-DensityOligonucleotide Arrays. Circulation,2000,102:3046-3052.
    9. Wagner RA, Tabibiazar R, Powers J, et al. Genome-wide expression profiling of acardiac pressure overload model identifies major metabolic and signaling pathwayresponses. J Mol Cell Cardiol,2004,37:1159-70.
    10. Zhao M, Chow A, Powers J, et al. Microarray analysis of gene expression aftertransverse aortic constriction in mice. Physiol Genomics,2004,19:93-105.
    11. Ohki R, Yamamoto K, Ueno S, et al. Transcriptional profile of genes induced in humanatrial myocardium with pressure overload. Int J Cardiol,2004,96:381-7.
    12. Friddle C. J, Koga T, Rubin E. M, et al. Expression profiling reveals distinct sets ofgenes altered during induction and regression of cardiac hypertrophy. PNAS,2000,97:6745-6750.
    13. Asakura M, Takashima S, Asano Y, et al. Canine DNA array as a potential tool forcombining physiology and molecular biology. Circ J,2003,67:788-92.
    14. Stanton L. W, Garrard L. J, Damm D, et al. Altered Patterns of Gene Expression inResponse to Myocardial Infarction. Circ. Res,2000,86:939-945.
    15. Sehl P. D, Tai J. T. N, Hillan K. J, et al. Application of cDNA Microarrays inDetermining Molecular Phenotype in Cardiac Growth, Development, and Response toInjury. Circulation,2000,101:1990-1999.
    16. LYN D, LIU X, BENNETT N. A, et al. Gene expression profile in mouse myocardiumafter ischemia. Physiol Genomics,2000,2:93-100.
    17. Hagg U, Johansson M. E, Gronros J, et al. Gene expression profile and aortic vesseldistensibility in voluntarily exercised spontaneously hypertensive rats: potential roleof heat shock proteins. Physiol Genomics,2005,22:319-326.
    18. Chen H-W, Yu S-L, Chen W-J, et al. Dynamic changes of gene expression profilesduring postnatal development of the heart in mice. Heart,2004,90:927-934.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700