液芯光纤受激拉曼散射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Research about Stimulated Raman Scattering in Liquid Fiber
  • 作者:陈建
  • 论文级别:硕士
  • 学科专业名称:光学
  • 学位年度:2004
  • 导师:里佐威
  • 学科代码:070207
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-04-01
摘要
激光拉曼光谱是研究分子结构的重要工具,在分子光谱中占有重
    要地位。拉曼光谱的强度、频移、线宽、特征峰数目,与分子的振动
    能态、转动能态、对称性等内部结构有紧密的联系,因此拉曼散射信
    号中包含了大量的分子内部信息。但是自发拉曼散射是一种十分微弱
    的效应,散射截面的典型数值要小于 10?30cm2 。虽然说,激光的问世
    使拉曼光谱在实践上发生了革命性的变化,但是拉曼效应是如此微弱,
    必须用特殊的检测手段才能观测到光谱,而且微弱的噪声光就能屏避
    掉所要观测的谱,这限制了拉曼光谱在很多领域的应用。
     而有着由于增益高,有很强的信号,高泵浦光转换效率的受激拉
    曼散射的发现,使得拉曼效应可以应用到更多的领域。受激拉曼散射
    现象是属于非线性光学效应,最早是在 1962 年,由 E.J.Woodbury 和
    W.K.Ng 发现,自发现受激拉曼散射现象以来,利用受激拉曼比泵浦光
    的光谱范围宽、转换效率高及单色性好等特点,人们将受激拉曼技术
    广泛应用于包括信息技术、光通讯、光谱探测、激光技术、传感技术
    等多领域。
     液芯光纤(Liquid-core optical fiber,LCOF)是一种新型结构的
    光传输元件,它采用液体材料作为内芯,石英、玻璃、聚合物材料等
    作为光学包层,硅橡胶等作为保护层,具有较大芯径、较大数值孔径,
    并且具有光谱传输范围广、光谱传输效率高、使用寿命长等特点。对
    于吸收光,根据郎伯-比尔定律增大光谱仪器中样品吸收池的长度,
    光谱仪器的灵敏度将随之等倍提高。液芯光纤技术自上世纪发明起,
    就广泛的应用于拉曼光谱的研究。而且对于散射光,当激光入射到液
    芯光纤内,被激发的拉曼光随入射光的传播不断地被累积加强,由于
     第 55 页
    
    
    吉林大学硕士学位毕业论文
    液芯光纤可以很长,拉曼光在光纤内得到“放大”。
    本论文中结合了受激拉曼效应及液芯光纤技术,实验证明利用液
    芯光纤技术可以降低受激拉曼散射阈值两到三个数量级,这是一种新
    的光谱技术手段。结合液芯光纤技术,可以大幅度降低受激拉曼振荡
    发生的阈值,在一定程度上可避免普通的受激拉曼振荡对活性拉曼产
    生的选择性,从而使受激拉曼光谱也可作为一种有用的光谱工具应用
    于物质分析及生物分子探测等方面,发挥受激拉曼光谱增益高,信号
    强,泵浦光强的转换效率高,灵敏性强等长处。
    在实验中采用的液芯光纤是使用德国进口石英拉制的光纤,在两
    面加上优质石英玻璃耦合头,充入实验样品制作而成,使用的光谱仪
    器为(Dilor-Omars 89 光谱仪)。本论文对纯溶剂(二硫化碳)及在
    溶剂中掺入不同浓度的荧光染料(β-胡萝卜素)的受激拉曼谱进行了
    研究,共有 10-6~10-8mol l 及纯溶液四个样品,在实验中获得了在
    改变激发光功率时的受激峰变化曲线。
    从实验过程中,充分验证了液芯光纤可以降低受激拉曼散射阈值
    的设想,在对实验数据的研究过程中还发现,当在溶剂(二硫化碳)
    中掺入不同量的溶质(β-胡萝卜素),二硫化碳的受激拉曼阈值及受
    激拉曼峰的饱和强度,随着溶质浓度的变化而变化,总的变化规律为,
    二硫化碳的一阶受激拉曼 Stokes 线的受激阈值随溶液浓度的变小而
    变小,但是变化不是成线形关系,当浓度小到一定程度,受激阈值的
    变化就不是很明显,另外受激谱线的饱和值随溶液浓度的增大而变小。
    这种现象产生的原因是当某种拉曼散射液体的某阶 Stokes 谱线落入
    某种染料的荧光谱带内,而激发光谱线落入该荧光物质的吸收带内,
    则染料荧光可选择性增强该拉曼散射液体的该阶 Stokes 谱线,其它未
    落入荧光谱带内的谱线可被削弱。
     第 56 页
    
    
    吉林大学硕士学位毕业论文
    在论文中还发现,随着光纤长度的增强,可以受激拉曼散射的阈
    值是可以降低的,但是光纤损耗等耗散效应也随着光纤长度的增强而
    增强,这说明有一个平衡点,使得光纤的累积作用同耗散作用达到平
    衡,这就是光纤的最佳长度,通过分析得到光纤最佳长度为2 αp ,αp
    为光纤及样品对斯托克斯光的损耗因子,可见随着光纤研制技术的发
    展,光纤最佳长度可以越来越长,而受激拉曼散射阈值会降的更低。
    液芯光纤受激拉曼散射研究提供了一种可以大幅度降低受激拉曼
    散射阈值的方法,从而可以在没有高功率的激发光时,能够得到受激
    拉曼谱,这在分子结构研究,光谱探测,传感技术等领域,有着很强
    的应用性。而且论文实验过程中,发现的受激拉曼阈值及受激光谱线
    的饱和值随着荧光染料浓度的不同而发生变化的现象,为实现可控的
    受激拉曼效应提供了一种可行的实验方法。
    根据光纤受激拉曼散射的效应制成的宽带可调谐的光纤拉曼激光
    器(RFL)用于光纤拉曼放大器(FRA),目前光纤拉曼激光器的研究
    正成为大功率单模激光器的一个研究热点。随着液芯光纤技术研究的
    深入,液芯光纤在这一领域将会得到更广阔的应用。
    本论文中所进行的受激拉曼阈值的研究,在国内外未见相关报道,
    是全新的研究,这种研究为分子探测,分子结构研究提供了一种全新
    的实验技术,随着技术手段的成熟必然会对各种领域中拉
For many years laser Raman spectroscopy has been an important
    tool for the investigation of microscopic molecular structure. Its intensity,
    frequency shift, line width, characteristic peaks and so on have close
    relation with molecule’s vibration, rotation, symmetry property and other
    else information of fine-structure. But Spontaneous Raman Spectroscopy is
    a kind of weak spectroscopy, and a representative data of scattering section
    is below 10 ?30cm .Of course ,along with invention of laser ,Raman
     2
    Spectroscopy be used in many fields .Raman Spectroscopy is still so weak
    that we need special instrument to get Raman Spectroscopy and only little
    noise of light could shield correct Raman Spectroscopy .All of these have
    restricted applications in many fields.
     Discover of Stimulated Raman Scattering (SRS)that has
    characteristic of high reciprocal coefficient ,strong signal , high transition
    efficiency etc. ,let Raman Spectroscopy be used in a wider field .SRS is
    non-linear optic phenomena ,and it be discovered by E.J.Woodbury and
    W.K.Ng at 1962.Since discover of SRS ,we utilize its wide range of
    spectroscopy , high transition efficiency and homochromy to apply it in the
    field of information technology ,optics communication , spectrum
    technology ,laser technology , sensor and otherwise.
     Liquid-core optical fiber(LCOF) is a new type component of
    optic ,and it be consisted of liquid core , envelope (quartzose ,glass or
    polymer) ,and a safe-layer .LCOF has a bigger diameter and IA than solid
    fiber , and LCOF have some characteristics include wide range of spectrum
    transmission ,high transmission efficiency and long used life .To
    absorption light ,longer length of absorption pool ,more delicacy from
    Lombard-Bill law .LCOF have been used for Raman Spectroscopy since it
    invented .To scattering spectroscopy , intensity of spectrum will enhance
    with that laser transmit in fiber .Because a fiber could be very long ,so
    Raman spectrum be “magnified” in fiber .
     Threshold value of SRS can be 102~103 lower if applying the
    technique of liquid core optics fiber (LCOF) together with stimulated
    Raman effect . This is a new experiment technique .Through application of
    LCOF ,we can get SRS spectrum at low laser power, and avoid the choice
    of Raman matter that could bring SRS .So we can use SRS as a tool in the
    field of matter analysis and biology molecule detect ,the strongpoint of
    SRS could be exerted .
     第 58 页
    
    
    吉林大学硕士学位毕业论文
     The fiber used in my experiment is made of high quality quartz ,and
    its two side is enveloped with quartz coupling- component. The
    spectrophotometer is a Dilor-Omars 89 made in France .In this paper ,
    sample that we used include a pure solvent(CS2) and 10-6~10-8 mol l
    β-carotene in CS2, we get the SRS spectrum under different laser power .
     Through experiment data, we prove that threshold value of SRS
    could be reduced in LCOF. Analyses the data ,we detect that the threshold
    value and the max peak value of SRS will change when the concentration
    of β-carotene is different . Rule is :to 1st stokes SRS spectrum, threshold
    value will reduce if the concentration of β-carotene in CS2 decrease, but
    the relation is not linearity; the max peak value will increase when
    concentration decrease. Reason of this phenomenon is when Stokes line is
    in the fluorescence range of another matter, and the wavelength of laser is
    in the absorption range of this fluorescence matter. Then the Stokes line be
    enhanced and other Stokes lines out of the fluorescence range are
    weakened.
     In the experiment, we find that wasting in optical fiber is larger
    along with longer fiber. So, there is a point that the enhance and ullage
    could be balance, The value of this point, called the optimum length or the
    shortest length, can be computed by a formulae, which can give off a
    conclusion L = 2αF, namely the value of the sho
引文
[1]G.E.Walrafen; J.Stone, “ Intensification of Spontaneous
    Raman Spectra by Use of Liquid Core Optical Fibers”, App.
    Spectroscopy ,26(6),(1972)
    [2]J.Stone, “cw Raman fiber amplifier”,App.Phys.Let., 26(4),
    163,(1975)
    [3]Howard B.Ross and William M.McClain, “Liquid Core Optical
    Fibers in Raman Spectroscopy”, App.Spectroscopy, 35(4), 439,
    (1981)
    [4]C.Kalpouzos, W.T.Lotshaw, D.McMorrow, and G.A.Kenny-
    Wallace, “Femtosecond Laser-Induced Kerr Responses in Liquid
    CS2”,J.Phys.Chem., 91, 2028-2030, (1987)
    [5] M.Golombok and D.B.Pye, “ Multimode Stimulated Raman
    Scattering in fuel Droplets ” Che.Phy.Let , 151(1.2), 161(1988)
    [6] Guang S.He and Dun Liu and Song-Hao Liu,Opt.Com. 70(2),161,
    (1989)
    [7]M.D.Duncan, R.Mahon, L.L. Tankersley,and J.Reintjes ,
    “Control of transverse spatial modes in transient stimulated
    Raman amplification”, J.Opt.Soc.Am.B., 7(7),1336,(1990)
    [8]G.S. He , P.N.Prasad , “ Stimulated Kerr scattering and
    reorientation work of molecules in liquid CS2”Phy. Rev. A,
    41(5),2687(1990)
    [9]G.S. He,Ryszard Burzynski, and P.N.Prasad,J.Chem.Phys, “A
    novel nonlinear optical effect:Stimulated Raman-Kerr
     第 51 页
    
    
    吉林大学硕士学位毕业论文
    scattering in a benzene liquid-core fiber” 93(11), 7647 (1990)
    [10]P.P. Kircheva , “ Resonance Raman Four-Wave Mixing in
    Molecular Systems”Jou. of Ram. Spe.,25,409-413(1994)
    [11]Mitchell H.Fields,Jurgen Popp,and Richard K.Charg,
    “ External seeding of stimulated Raman scattering in
    microdroplets” Opt.Let.1996.21(18):1457
    [12]Altkorn, I. Koev, R. P. Van Duyne, and M Litorja, Appl Optics,
    Vol. 36,No.34, 8992-8998(1997).
    [13]Robert altkorn; Intensity Considerations in Liquid Core
    Optical Fiber Raman Spectroscopy;APPLIED SPECTROSCOPY
    Vol55,Num4,2001
    [14] S.Uetake,R.S.D.Sihombing,and K.Hakuta , “Stimulated Raman
    scattering of a high-Q liquid-hydrogen droplet in the
    ultraviolet region ”Opt.Let . 421.27(6) (2002)
    [15]N.R.Newbury, “Raman gain: pump-wavelength dependence in
    single-mode fiber”,Opt.Soc.Am.,27(14),1232,(2002)
    [16]里佐威等, “液芯光纤拉曼光谱的研究”,光学学报,11(9),
    786-789,(1991)
    [17]陈逸清,王磊,邱明新,“四氯化碳和苯乙醇混合液液芯光纤中的
    受激喇曼散射和四波混频”,中国激光,20(4),1993
    [18] 王磊,阎咏和,陆雪标等,“氯苯液芯光纤中的受激喇曼散射”.
    应用激光,13(1),32,(1993)
    [19]高淑琴、里佐威等,“液芯光纤共振拉曼光谱”,中国激光, 8,
    A24(8),(1997)
    [20]里佐威等,“样品吸收对光纤共振拉曼光谱的影响”,光学学报,
     第 52 页
    
    
    吉林大学硕士学位毕业论文
    17(10),(1997)
    [21]钟先琼等,“染料荧光增强苯的受激拉曼散射”,光学学报,11(4),
    293,(1999)
    [22] 钟先琼等,“若丹明 B 荧光增强二硫化碳高阶受激拉曼散射”,4,
    12(2),(2000)
    [23]迟荣华等,“两级串联拉曼全光纤激光器的数值模拟及分析”,中
    国激光, 29(9),2002
    [24]郑顺旋,激光拉曼光谱学,上海科学技术出版社,1985(145-199)
    [25]钟立晨、丁海曙,分子光谱及激光。北京:电子工业出版社,1987
    [26]沈元壤 《非线性光学原理(上)》,科学技术出版社,1987 年
    版,(151-200)
    [27]张国威,王兆民 《激光光谱学(原理与技术)》,北京理工大学出
    版社,1989 年版,(316-347)
    [28]费浩生 《非线性光学》,高等教育出版社,1990 年版,(116-128)
    [29]周炳琨 高以智 《激光原理》,清华大学出版社,1995 年版
    [30]刘德明,向清,黄德修著,《光纤光学》,国防工业出版社,1995
    年版
    [31]张寒琦、王芬蒂、金钦汉等,《光谱化学分析》,吉林大学出版社,
    1996 年版
    [32]蓝信钜 《激光技术》,科学出版社,2000 年版,(252-258)
    [33]廖延彪 《光纤光学》,清华大学出版社,2000 年版
    [34]程光煦 《拉曼 布里渊散射原理与应用》,科学出版社,2001 年
    版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700