基于纳米金属光栅结构的表面等离子体共振传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的发展和表面等离子体光子学的兴起,光与金属微纳米结构相互作用时呈现出的新颖光学效应及其应用已成为一个研究热点,而周期为波长量级的金属光栅则是人们在研究光与周期性金属结构相互作用时常采用的一种结构模型。本论文采用严格耦合波分析法(Rigorous Coupled Wave Analysis, RC WA),对基于纳米金属光栅结构的表面等离子体共振(Surface Plasmon Resonance, SPR)效应及其传感应用进行了深入的研究。
     本论文的主要研究内容包括以下几个方面:
     (1)运用数值模拟的方法研究了光栅耦合激发表面等离子体波的结构模型中光栅周期、光栅深度、入射介质折射率以及不同的金属材料对表面等离子体共振特性的影响,并通过理论分析给出了相应的物理解释;在分别研究了基于金和铝两种金属材料的光栅耦合表面等离子体传感器传感特性的基础上,提出了一种Al-Au双金属层结构的光栅耦合表面等离子体共振传感模型。数值分析表明,该传感器具有良好的传感特性,其角度灵敏度可达到187.2°/折射率单位,共振吸收峰的半峰值全宽(Full Width at Half Maximum, FWHM)仅为0.93°,且共振角与待测分析物的折射率具有良好的线性关系,线性相关系数达到0.99828。
     (2)在传统Kretschmann结构模型的基础上,通过金属膜层表面的光栅将表面等离子体波共振耦合为辐射模,并研究了光栅高度、光栅周期及其金属膜层厚度对耦合效率的影响;通过对介质光栅共振耦合表面等离子体波为辐射模的结构参数进行优化,得到了74.57%的峰值耦合效率。当自然光以共振角度入射时,此结构具有良好的偏振分束功能,其反射消光比和透射消光比分别可达到30dB和42.2dB;此外,利用表面等离子体共振条件对金属膜层周围介质折射率的变化高度敏感的特点,构建了一种透射型表面等离子体共振传感模型,并对金属光栅和介质光栅两种不同结构的透射型表面等离子体共振传感器的传感特性进行了对比分析,提出采用低折射率棱镜的方法来提高这种传感器的角度灵敏度。
     (3)基于连续膜金属光栅结构,提出了一种棱镜耦合和光栅耦合相结合的表面等离子体激发模型,分析了这种结构在小光栅周期和大光栅周期两种情况下的表面等离子体共振特性,并通过理论分析给出了相应的物理解释;研究了基于连续膜金属光栅结构的表面等离子体共振传感器的灵敏度增强特性,并在大周期光栅情况下引入双共振吸收峰测量法,大幅提高了表面等离子体共振传感器的灵敏度。数值模拟显示,其角度灵敏度可达到153.23°/折射率单位,且共振角与待测分析物的折射率具有较好的线性关系,线性相关系数达到0.99997。
     (4)针对表面等离子体共振传感系统对入射光波偏振态的要求,基于亚波长金属光栅的形式双折射效应设计了一种用于可见光波段范围的亚波长铝光栅偏振器。数值计算结果表明该器件在整个可见光波段范围内TM偏振光的透射率大于75%,透射消光比大于38dB,且器件还具有较大的可接收入射角范围;系统地分析了光栅制作误差对该器件偏振特性的影响,并采用铝栅条氧化模型分析了铝栅条氧化前后器件偏振特性的变化。结果显示该器件具有一定制作误差容忍度,且铝栅条氧化后器件仍然具有良好的偏振特性。
With the development of nanotechnology and the rise of plasmonics, the study of the interaction between light and metal micro/nano structure has become a hot subject in recent years. The metallic gratings with the period on the same order of wavelength are a basic structure that is employed in the research of the interaction between light and periodic metallic structure. In this paper, by using rigorous coupled wave analysis (RCWA), the surface plasmon resonance (SPR) sensors and polarizers based on nano metallic surface-relief gratings are analyzed.
     The main research works are as follows:
     Firstly, based on numerical simulation and theoretical analysis, the influences of the grating period, grating height, the refractive index of incident medium and different metal materials on the resonant properties are analyzed and explained in the scheme of excitation of surface plasmon polaritons (SPPs) using a metallic grating; a novel grating-coupled SPR sensor with Al-Au bimetallic layer is proposed, and the refractive index sensitivity of the SPR sensor is predicted to be 187.2 degree per refractive index units (°/RIU), the full width at half maximum (FWHM) of the resonant absorption peaks is 0.93°. In addition, the shift of resonance angle as the refractive index of the medium surrounding the metal surface varied is completely linear, and the correlation coefficient is 0.99828 according to linear regression analyses.
     Secondly, based on the scheme of excitation of SPPs using a prism coupler and the attenuated total refection method, the principle of resonant coupling surface plasmon wave to radiation modes by use of gratings is investigated, the influences of the grating height, grating period and the thickness of metal layer on coupled efficiency are analyzed. A peak coupling efficiency of 74.57% is obtained by use of a dielectric grating with optimized structural parameters, the configuration allows TM-polarized light to be transmitted and TE-polarized light to be reflected, the extinction ratio for radiation modes and reflection modes are 30dB and 42.2dB respectively. The configuration can be used as a transmission-type SPR sensor because the resonance condition is highly sensitive to the variations of the medium surrounding the metal surface, and the properties of the sensor with the dielectric gratings and metallic gratings are investigated respectively. In addition, a method to enhance the sensitivity of the transmission-type SPR sensor by use of low refractive index prism is proposed.
     Thirdly, we propose a SPPs excitation scheme based on continuous film metallic gratings, in which the prism coupling method and grating coupling method are combined. The properties of surface plasmon resonance are analyzed in condition of small period grating and large period grating respectively, and the physical interpretation related to the results is provided according to theoretical analysis. The sensitivity enhancement of SPR sensor with continuous film metallic gratings is investigated. When the period of gratings is comparatively large, the method of double dips is adopted in order to enhance the sensitivity of SPR sensor. It is found that the refractive index sensitivity of the SPR sensor is predicted to be 153.23°/RIU, and the shift of resonance angle as the refractive index of the medium surrounding the metal surface varied is completely linear, and the correlation coefficient is 0.99997 according to linear regression analyses.
     Finally, based on the effect of form-birefringence of subwavelength metallic gratings, an Aluminum wire-grid polarizer for visible wavelengths is proposed, and the theoretical research shows that aluminum wire-grid polarizer has high transmission coefficient and extinction ratio over the visible spectrum, as well as uniform performance with wide variations in the angle of incidence. In addition, the influences of the fabrication error of gratings and the oxide layers coated on the wire on the polarization properties are analyzed. It is shown that the small fabrication errors do not have a significant effect on the polarization properties of wire-grid polarizer, and the polarizer with oxide layers coating on the wires still provides high performance.
引文
[1]Ohtsu M, Kobayashi K, Kawazoe T, et al. Nanophotonics:design, fabrication, and operation of nanometric devices using optical near fields. IEEE Journal of Selected Topics in Quantum Electronics,2002,8(4):839-862
    [2]明海,陈博,李晴等.纳米光子学的最新进展.物理,2004,33(9):636-640
    [3]Wood R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. London,1902,18(1):269-275
    [4]Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves). J. Opt. Soc. Am.,1941,31(3):213-222
    [5]Ritchie R. H. Plasma losses by fast electrons in thin films. Phys. Rev.,1957,106(5): 874-881
    [6]Powell C. J, Swan J. B. Origin of the characteristic electron energy losses in Aluminum. Phys. Rev.,1959,115(4):869-875
    [7]Stern E. A, Ferrell R. A. Surface plasma oscillations of a degenerate electron gas. Phys. Rev.,1960,120(1):130-136
    [8]Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmon excited by light. Z. Naturforsch,1968,23A:2135-2136
    [9]Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik,1968,216(4):398-410
    [10]Ebbesen T. W, Ghaemi H. F, Thio T, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391(6668):667-669
    [11]Bethe H. A. Theory of diffraction by small holes. Phys. Rev.,1994,66(7-8): 163-182
    [12]Grupp D. E, Thio T, Ebbesen T. W, et al. Tunable enhanced light transmission through a single sub-wavelength aperture. Advanced Materials.1999,11(10):860-862
    [13]Grupp D. E, Lezec H. J, Ebbesen T. W. Crucial role of metal surface in enhanced transmission through subwavelength apertures. Appl. Phys. Lett.,2000,77(11): 1569-1571
    [14]Degiron A, Lezec H. J, Barnes W. L, et al. Effects of hole depth on enhanced light
    transmission through subwavelength hole arrays. Appl. Phys. Lett.,2002,81(23): 4327-4329
    [15]Ghaemi H. F, Thio T, Grupp D. E. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B,1998,58(11):6779-6782
    [16]Thio T, Ghaemi H. F, Lezec H. J, et al. Surface-plasmon-enhanced transmission through hole arrays in Cr films. J. Opt. Soc. Am. B,1999,16(10):1743-1748
    [17]Martin-Moreno L, Garcia-Vidal F. J, Lezec H. J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett.,2001, 86(6):1114-1117
    [18]Bonod N, Enoch S, Li L, et al. Resonant optical transmission through thin metallic films with and without holes. Optics Express,2003,11(5):482-490
    [19]Vigoureux J. M. Analysis of the Ebbesen experiment in the light of evanescent short range diffraction. Optics Communications,2001,198(4-6):257-263
    [20]Barnes W. L, Murray W. A, Dintinger J, et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett.,2004,92(10):107401-107404
    [21]Barnes W. L, Dereux A, Ebbesen T. W. Surface plasmon subwavelength optics. Nature,2003,424(6950):824-830
    [22]苑光辉.微纳结构光子器件设计及理论分析:[博士学位论文].合肥:中国科技大学,2007
    [23]Schroter U, Heitmann D. Surface-plasmon-enhanced transmission through metallic gratings. Phys. Rev. B,1998,58(23):15419-15421
    [24]Barnes W. L, Preist T. W, Kitson S, et al. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B,1996,54(9):6227-6244
    [25]Porto J A, Garcia-Vidal F. J, Pendry J. B. Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett.,1999,83(14):2845-2848
    [26]Astileana S, Lalanne P, Palamaru M. Light transmission through metallic channels much smaller than the wavelength. Optics Communications,2000,175(4-6): 265-273
    [27]Takakura Y. Optical resonance in a narrow slit in a thick metallic screen. Phys. Rev.
    Lett.,2001,86(24):5601-5603
    [28]谈春雷,易永祥,汪国平.一维金属光栅的透射光学特性.物理学报,2002,51(5):1063-1065
    [29]Treacy M. M. J. Dynamical diffraction explanation of the anomalous transmission of light through metallic graing. Phys. Rev. B,2002,66(19):195105-1951011
    [30]Cao Q, Lalanne P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett.,2002,88(5):057403-057406
    [31]Garcia-Vidal F. J, Lezec H. J, Ebbesen T. W, et al. Multiple paths to enhance optical transmission through a single subwavelength slit. Phys. Rev. Lett.,2003,90(21): 213901-213904
    [32]Schouten H. F, Kuzmin N, Dubois G. Plasmon-assisted two-slit transmission: Young's experiment revisited. Phys. Rev. Lett.,2005,94(5):053901-053904
    [33]Lee K. G, Park Q-Han. Coupling of surface plasmon polaritons and light in metallic nanoslits. Phys. Rev. Lett.,2005,95(10):103902-103905
    [34]Crouse D, Keshavareddy P. Role of optical and surface plasmon modes in enhanced transmission and applications. Optics Express,2005,13 (20):7760-7771
    [35]Borisov A. G, Garcia de Abajo F. J, Shabanov S. V. Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials. Phys. Rev. B,2005, 71(7):075408-075414
    [36]Collin S, Pardo F, Pelouard J. L. Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector. Appl. Phys. Lett.,2003,83(8):1521-1523
    [37]Collin S, Pardo F, Teissier R, et al. Efficient light absorption in metal-semiconductor-metal nanostructures. Appl. Phys. Lett.,2004,85(26):194-196
    [38]Crouse D, Keshavareddy P. Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectrionic device applications. IEEE Transactions Electron Devices,2005,52(11):2365-2373
    [39]Crouse D, Arend M, Zou J, et al. Numerical modeling of electromagnetic resonance enhanced silicon metalsemiconductor-metal photodetectors. Optics Express,2006, 14 (6):2047-2061
    [40]Crouse D, Solomon R. Numerical modeling of surface plasmon enhanced silicon on
    insulator avalanche photodiodes. Solid-State Electronics,2005,49(10):1697-1701
    [41]Crouse D. Polarization independent enhanced optical transmission in one-dimensional gratings and device applications. Optics Express,2007,15 (4):1415-1427
    [42]Knop K. Reflection grating polarizer for the infrared. Optics Communications,1978, 26(3):281-283
    [43]Zhou Libing, Liu Wen. Broadband polarizing beam splitter with an embedded metal-wire nanograting. Optics Letters,2005,30(12):1434-1436
    [44]Hertz H. Electric wave:being researches on the propagation of electric action with finite velocity through space. New York:Dover publication,1962.265
    [45]Larsen T. A survey of the theory of wire grids. IRE Transactions on Microwave Theory and Techniques,1962,10:191-201
    [46]Casey J. P, Lewis E. A. Interferometer action of a parallel pair of wire gratings. J. Opt. Soc. Am.,1952,42(12):971-977
    [47]Lewis E. A, Casey J. P. Metal grid interference filter. J. Opt. Soc. Am.,1951,41(5): 360-360
    [48]Martin D. H, Puplett E. Polarised interferometric spectrometry for the millimeter and submillimeter spectrum. Infrared Phys.,1970,10(2):105-109
    [49]Bird G. R, Parrish M. J. The wire grid as a near-infrared polarizer. J. Opt. Soc. Am., 1964,50(9):886-891
    [50]Young J. B, Graham H. A, Peterson E. W. Wire grid infrared polarizer. Appl. Opt., 1965,4(8):1023-1026
    [51]Song P. Polarization-control components and narrow-band filters based on subwavelength grating structures:[Doctoral Dissertation]. New York:University of Rochester,1996
    [52]Tamada H, Doumuki T, Yamaguchi T, et al. Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-um-wavelength band. Optics Letters,1997, 22(6):419-421
    [53]Yu Z, Deshpande P, Wu W, et al. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography. Applled Physics Lellters,2000,77(7):927-929
    [54]Schider G, Krenn J. R, Gotschy W, et al. Optical properties of Ag and Au nanowire
    gratings. Journal of Applied Physics,2001,90(8):3825-3830
    [55]Wang J J, Zhang W, Deng X, et al. High-performance nanowire-grid polarizers. Optics Letters,2005,30(2):195-197
    [56]Yamada I, Kintaka K, Nishii J, et al. Mid-infrared wire-grid polarizer with silicides. Optics Express,2008,33(3):258-260
    [57]廖艳林,韩正莆,曹卓良.亚波长金属/电介质双层光栅偏振片.中国科技大学学报,2005,35(5):650-654
    [58]Zhou L, Liu W. Broadband polarizing beam splitter with an embedded metal-wire nanograting. Optics Letters,2005,30(12):1434-1436
    [59]Liu W. Optical devices based on metal-wire nano-grating. Proceedings of SPIE, 2007,6781:67811B1-67811B8
    [60]Zhang L, Zhang F, Li C et al. High performance polarizing beam splitter with embedded metal-wire nanograting. Proceedings of the 1st IEEE international conference on nano/micro engineered and molecular systems, January 18-21, Zhuhai, China,2006.947-950
    [61]张亮,李承芳,张飞.一维金属亚波长周期光栅的衍射特性.中国激光,2006,23(6):805-808
    [62]张亮,李承芳.150nm亚波长铝光栅的近红外偏振特性.中国激光,2006,33(4):467-471
    [63]Zhang L, Li C, Li J, et al. Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication. Journal of Optoelectronics and Advanced Materials,2006,8(2):847-850
    [64]张亮,李承芳,刘文等.一种亚波长偏振分波/合波器的研制.光学学报,2006,26(7):1048-1052
    [65]张娜,褚金奎,赵开春等.基于严格耦合波理论的纳米金属线栅结构偏振器设计.传感技术学报,2006,19(5):1739-1743
    [66]孟凡涛,褚金奎,韩志涛等.亚波长金属光栅偏振器设计.纳米技术与精密工程,2007,5(4):269-272
    [67]Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance. Sensors and Actuators,1982,3:79-88
    [68]Liedberg B, Nylander Cand, Lunstrom I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators,1983,4:299-304
    [69]Cullen D. C, Brown R. G, Lowe C. R. Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors,1987, 3(4):211-25
    [70]Paras N. P. Nanophotonics. New Jersey:John Wiley& Sons, Inc,2004.30-31
    [71]Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem.,2002,74(3):504-509
    [72]Enoch S, Quidant R, Badenes G. Optical sensing based on plasmon coupling in nanoparticle arrays. Optics Express,2004,12(15):3422-3427
    [73]Douglas A. S, Amanda H, Adam D, et al. Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms. Proceedings of SPIE,2004,5327:60-73
    [74]Byun K. M, Yoon S. J, Kim D. Effect of surface roughness on the extinction-based localized surface plasmon resonance biesensors. Applied Optics,2008,47(31): 5886-5892
    [75]Byun K. M, Kim S. J, Kim D. Investigation of metallic nanowire-based localized surface plasmon resonance optical biosensors using extinction spectra. Proceedings of SPIE,2006,6099:60990U-1-60990U-8
    [76]Byun K. M, Kim S. J, Kim D. Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors with metallic nanowire. Applied Optics,2006,45(14):3382-3389
    [77]Yang X, Liu D. The sensitivity enhancement of surface plasmon resonance sensors through planar metal films closely coupled to nanogratings. In:Proceedings of OSA Topical Conference on Nanophotonics (NANO). Hangzhou China:OSA,2007. 98-99
    [78]Yang X, Xie W, Liu D. Design of highly sensitive surface plasmon resonance sensors using planar metal films closely coupled to nanogratings. Chinese Physics Letters, 2008,25(1):148-151
    [79]Yang X, Liu D. Sensitivity enhancement of surface plasmon resonance sensors
    through planar metal films closely coupled to nanogratings. Chinese Optics Letters, 2007,5(10):563-565
    [80]Hutter E, Fendler J. H. Exploitation of localized surface plasmon resonance. Adv. Mater.,2004,16:1685-1706
    [81]Haynes C. L, McFarland A. D, Zhao L, et al. Nanoparticle optics:The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B, 2003,107:7337-7342
    [82]Enoch S, Quidant R, Badenes G. Optical sensing based on plasmon coupling in nanoparticle arrays. Optics Express,2004,12:3422-3427
    [83]Byun K. M, Kim S. J, Kim D. Investigation of metallic nanowire-based localized surface plasmon resonance optical biosensors using extinction spectra. Proceedings of SPIE,2006,6099:1-8
    [84]Chen S. J, Chien F. C, Lin G. Y, et al. Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. Optics Letters,2004,29(12):1390-1392
    [85]Underwood S, Mulvaney P. Effect of the solution refractive index on the color of gold colloids. Langmuir,1994,10(10):3427-3430
    [86]Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996,12(33):788-800
    [87]Haynes C. L, Van Duyne R. P. Nanosphere lithography:A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B,2001, 105(24):5599-5611
    [88]Kim D. Effect of resonant localized plasmoncoupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors. J. Opt. Soc. Am. A,2006, 23(9):2037-2313
    [89]Byun K. M, Kim D, Kim S. J. Investigation of the sensitivity enhancement of nanowire-based surface plasmon resonance biesensors. In:The 13th Intcmational Conference on Solid-state Sensors, Actuators and Micros-ystems, Seoul. Korea, June 5-9,2005.13-19
    [90]Byun K. M, Kim D, Kim S. J. Investigation of the sensitivity enhancement of nanoparticle based surface plasmon resonance biosensors using rigorous coupled
    wave analysis. Proceedings of SPIE,2005,5703:61-70
    [91]Byun K. M, Kim S. J. Design study of highly sensitive nanowire enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis. Optics express, 2005,13(10):3737-3742
    [92]Kim K, Yoon S. J, Kim D. Nanowire-base enhancement of localized surface plasmon resonance for highly sensitive detection:a theoretical study. Optics Express,2006, 14(25):12419-12431
    [93]Byun K. M, Jang S. M, Kim S. J, et al. Effect of target localization on the sensitivity of a localized surface plasmon reonance biosensor based on subwavelength metallic nanostructures. J. Opt. Soc. Am. A,2009,26(4):1027-1034
    [94]Hoa X. D, Kirk A. G, Tabrizian M. Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings. Biosensors and Bioelectrionics, 2009,24:3043-3048
    [95]Kim D. Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors. J. Opt. Soc. Am. A,2006, 23(9):2307-2341
    [96]Kim D, Yoon S. J. Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance. Applied Optics,2007,46(6):872-880
    [97]Byun K. M, Yoon S. J, Kim D, et al. Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness. J. Opt. Soc. Am. A,2007,24(2):522-529
    [98]Byun K. M, Kim D, Kim S. J. Effect of the nanowire cross-section on the sensitivity enhancement of localized surface plasmon resonance biosensors. Proceedings of SPIE,2006,6099:60990T-1-60990T-1
    [99]Byun K. M, Kim D, Kim S. Invesitgation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors. Sensors and Actuators B,2006,117:401-407
    [100]Yoon S. J, Kim D. Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors. J. Opt. Soc. Am. A,2008,25(3): 725-735
    [101]刘敏敏.表面增强拉曼散射的电磁理论:[硕士学位论文].武汉:华中师范大学,
    2005
    [102]胡国进,胡秀霞,聂义友.TM模场入射到金属光栅的表面增强喇曼散射计算分析.光子学报,2008,37(1):152-155
    [103]胡国进,胡秀霞.金属光栅的表面喇曼散射.江西教育学院报,2006,27(3):6-9
    [104]胡国进,胡秀霞,聂义友.金属光栅表面增强喇曼散射TE模的计算分析.光子学报,2007,36(6):1138-1141
    [105]聂娅.亚波长光学元件的特性及应用研究:[博士学位论文].成都:四川大学,2004
    [106]Goodman J. W. Introduction to Fourier optics,2nd Ed. New York:McGraw Hill, 1996.126
    [107]Shin D, Magnusson R. Diffraction by surface-relief gratings with conic cross-sectional grating shapes. J. Opt. Soc. Am. A,1989,6(9):1249-1253
    [108]Kogelnik H. Coupled-wave theory for thick hologram gratings, The Bell System Technical Journal,1969,48(9):2908-2947
    [109]李以贵,陈迪,朱军等.基于一种微细加工技术的亚波长光栅的研制.光学学报,2002,22(8):1008-1010
    [110]陈四海,程志军,黄光等.亚波长消反射光栅.光学学报,2003,23(11):1359-1361
    [111]Yi D, Yan Y, Liu H et al. Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain. Optics Letters, 2004,29(7):754-756
    [112]傅克祥,王植恒,张大跃等.亚波长表面正弦介质的高反射特性.中国激光,1999,A26(9):799-802
    [113]袁惠,周进,王晓伟等.一维深亚波长光栅的耦合波分析及偏振特性研究.中国激光,2002,A29(9):795-800
    [114]伊德尔,严瑛白,谭崤峰等.亚波长光栅用于实现宽光谱消色散1/4波片的研究.中国激光,2003,30(5):405-408
    [115]王植恒,傅克祥,文军等.亚波长位相光栅的反射率特性及其应用.中国激光,1998,A25(3):270-274
    [116]Sonthwell W. H. Pramid-arry surface-relief structure producing antireflection index matching on optical surfaces. J. Opt. Soc, Am. A,1991,8(3):549-553
    [117]Motamedi M. E, Southwell W. H. Antireflection surfaces in silicon using binary optical technology. Applied Optics,1992,31(22):4371-4376
    [118]Grann E. B, Moharam M. G, Pommet D. A. Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary grating. J. Opt. Soc. Am. A,1994, 11(10):2695-2703
    [119]Grann E. B, Moharam M. G, Pommet D. A. Optimal design for antireflective tapered two-dimensional subwavelength grating structures. J. Opt. Soc. Am. A,1995,12(2): 333-339
    [120]Santos J. M, Bernardo L. M. Antireflection structure with use of multilevel subwavelength zero-order gratings. Applied Optics,1997,36(34):8935-8938
    [121]曹召良,卢振武,李凤有等.亚波长周期结构抗反射介质光栅的衍射特性.光电子·激光,2003,14(7):694-697
    [122]Brundrett D. L, Glytsis E. N, Gaylord T. K, Subwavelength transmission grating retarders for use at 10.6um. Applied Optics,1996,35(31):6195-6202
    [123]Magnusson R, Gaylord T. K. Equivalence of multiwave coupled-wave theory and modal theory for periodic-media diffraction. J. Opt. Soc. Am. A,1978,68(12): 1777-1779
    [124]Moharam M. G, Gaylord T. K. Rigorous coupled-wave analysis of planar grating diffraction. J. Opt. Soc. Am.,1981,71(7):811-818
    [125]Moharam M. G, Gaylord T. K. Rigorous coupled-wave analysis of grating diffraction-E-mode polarization and losses. J. Opt. Soc. Am.,1983,73(4):451-455
    [126]Moharam M. G, Gaylord T. K. Rigorous coupled-wave analysis of dielectric surface-relief grating. J. Opt. Soc. Am.,1982.,72(10):1385-1392
    [127]Moharam M. G, Gaylord T. K. Rigorous coupled-wave analysis of metallic surface-relief grating. J. Opt. Soc. Am. A,1986,3(11):1780-1787
    [128]Chateau N, Hugomin J. P. Algorithm for the rigorous coupled-wave analysis of grating diffraction. J. Opt. Soc. Am. A,1994,11(4):1321-1331
    [129]Moharam M. G, Pommet D. A, Grann E. B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief grating-enhanced transmittance
    matrix approach. J. Opt. Soc. Am. A,1995,12(54):1077-1086
    [130]Moharam M. G, Grann E. B, Pommet D. A, et al. Formulation for stable and efficient implemention of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A,1995,12(5):1068-1076
    [131]Peng S, Morris G. M. An efficient implementation of rigorous coupled-wave analysis for surface-relief gratings. J. Opt. Soc. Am. A,1995,12(5):1087-1096
    [132]Lalanne P, Morris G. M. Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A,1996,13(4):1779-1784
    [133]Granet G, Guizal B. Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J. Opt. Soc. Am. A,1996,13:1019-1023
    [134]Jung C, Yee S, Kuhn K. Electro-optics polymer light modulator based on surface plasmon resonance. Applied Optics,1995,34(6):946-949
    [135]Okamoto T, Kamiyama T, Yamaguchi I, All-optical spatial light modulator with surface plasmon resonance, Optics Letters,1993,18(18):1570-1572
    [136]Wu Z, Nelson R L, Haus J W, Zhan Q, Plasmonic electro-optic modulator design using a resonant metal grating, Optics Letters,2008,33(6):551-553
    [137]Kajenski P. J. Tunable optical filter using long-range surface plasmons. Opt. Eng., 1997,36(5):1537-1541
    [138]Wu Z, Haus J W, Zhan Q, et al. Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating. Plasmonics,2008,3:103-108
    [139]Lim Y, Chung S, Kim S, et al. Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography. IEEE Photonics Technology Letter,2006,18(23):2532-2534
    [140]Matsubara K, Kawata S, Minami S. Optical chemical sensor based on surface plasmon measurement. Applied Optics,1988,27(6):1160-1163
    [141]Nenninger G G, Tobiska P, Homola J, et al. Long-rang surface plasmon for high-resolution surface plasmon resonance sensors. Sens. Actuator B,2001,74(1-3): 145-151
    [142]Chiang H. P, Lin J. L, Chang R, et al. High-resolution angular measurement using surface-plasmon-resonance via phase interrogation at optimal incident wavelengths.
    Optics Letters,2005,30(20):2727-2729
    [143]Chiang H. P, Yeh H. T. Surface plasmon resonance monitoring of temperature via phase measurement. Optics Communications,2004,241(4-6):409-418
    [144]Adam P, Dostalek J, Homola J. Multiple surface plasmon spectroscopy for study of biomolecular systems. Sensors and Actuators B,2006,113:774-781
    [145]张斗国,王沛,焦小瑾等.表面等离子体亚波长光学前沿进展.物理,2005,34(7):508-512
    [146]Homola J, Koudela I, Yee S. S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers:sensitivity comparision. Sensors and Actuators B,1999,54:16-24
    [147]刘国华,常露,张维等.SPR传感技术的发展与应用.仪器技术与传感器,2005,11:l-5
    [148]Rajan J, Anuj K. S. High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Optics Letters,2009, 34(6):749-751
    [149]Cai D, Lu Y, Lin K, et al. Improving the sensitivity of SPR sensors based on gratings by double-dips-method (DDM). Optics Express,2008,16(19):14597-14602
    [150]Sharma A. K, Gupta B. D. On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Optics Communications,2005,245(1-6):159-169
    [151]Guo J, Keathley P. D, Hastings J. T. Dual-mode surface-plasmon-resonance sensors using angular interrogation. Optics Letters,2008,33(5):512-514
    [152]Gaurav G, Kondoh J. Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sensors and Actuators B,2007,122:381-388
    [153]Park S, Lee G, Song S H, et al. Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings. Optics Letters,2003,28(20):1870-1872
    [154]Lenaerts C, Fabrice M, Bernard T, et al. High transmission efficiency for surface plasmon resonance by use of a dielectric grating. Applied Optics,2005,44(28): 6017-6022
    [155]Shen S, Forsberg E, Han Z et al. Strong resonant coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings. J. Opt.
    Soc. Am. A,2007,24(1):225-230
    [156]Byun K M, Kim S J, Kim D. Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic grating. Applied Optics,2007, 46(23):5703-5708
    [157]Fischer B, Rothenhausler B, Knoll W. Surface-plasmon-enhanced diffraction orders in polymer gratings. Thin Solid Films,1995,258(1-2):247-251
    [158]孙志军,Kim H. K.一种连续膜金属光栅的异常反射和透射特性.光电子·激光,2008,19(6):839-842
    [159]Taylor M. P, Bucher G. L, Jones K. High-contrast polarizers for the near infrared. Proc. SPIE,1988,1166:446-454
    [160]金国藩,严瑛白,邬敏贤等.二元光学.北京:国防工业出版社,1998.45-47
    [161]Zhaoning Yu. Subwavelength Gratings and Applications:[Doctoral Dissertation]. Princeton:Princeton University,2003
    [162]Bokor N, Shechter R, Davidson N, et al. Achromatic phase retarder by slaned illumination of a dielectric grating with period comparable with the wavelength. Applied Optics,2001,40(13):2076-2080
    [163]孟凡涛,褚金奎,韩志涛等.亚波长金属光栅偏振器设计.纳米技术与精密工程,2007,5(4):269-272
    [164]曹召良,卢振武,李凤有等.亚波长介质光栅的制作误差分析.光子学报,2004,33(1):76-80
    [165]孟凡涛,褚金奎,韩志涛等.面形误差对亚波长金属光栅偏振器性能的影响.光子学报,2009,38(4):951-955
    [166]Palik E. D. Handbook of Optical Constants of Solids. Orlando:Academic press,1985. 285-286
    [167]Joshua H. J. Wire Grid Polarizers for visible Wavelengths:[Doctoral Dissertation]. Rochester:University of Rochester,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700