玉米芯酶解液培养真菌合成壳聚糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进行了以富含纤维素和半纤维素的农副产物玉米芯为发酵底物,以绿色木霉为产酶菌种纤维素、木聚糖复合水解酶的诱导合成,将此酶对10%氨水处理后的玉米芯进行酶水解,以水解液为底物培养真菌(黑曲霉、绿色木霉、米根霉和戴尔根霉),从真菌菌丝体中提取壳聚糖的研究。
     纤维素、木聚糖复合水解酶的诱导合成研究表明:碳源和氮源种类、浓度及碳氮比、培养温度、pH等因素对纤维素酶和木聚糖酶的合成都有一定的影响。以经过1%NaOH预处理的玉米芯为主要碳源和诱导物,碳源浓度为20g/L,利用蛋白胨+硫酸铵+尿素为复合氮源,控制碳氮比为5.6,初始pH值为4.8,培养温度28℃时,纤维素酶活力(以CMC酶活计)和木聚糖酶活力分别达到了40.71U/mL和141.32U/mL。
     利用所做复合水解酶对预处理玉米芯进行酶水解,当底物浓度为15%(W/V),pH值为4.8,温度为50℃,酶用量30U/g底物时水解效果最好,水解24h后还原糖浓度可达62.3g/L并趋于恒定。
     以预处理玉米芯的酶水解产物为碳源,分别对黑曲霉、绿色木霉、米根霉和戴尔根霉进行菌丝体培养提取壳聚糖的研究结果表明:省略浓碱处理过程时,可以从真菌菌丝体中提取壳聚糖,在同样的菌丝体培养和壳聚糖提取条件下,壳聚糖产量以黑曲霉最多。
     以酶水解玉米芯为发酵底物,黑曲霉为菌种制备壳聚糖的研究结果表明:当培养液中还原糖浓度为20g/L时,菌丝体培养温度30℃,pH7.0,摇床转速150r/min,培养48h后壳聚糖产量最高,壳聚糖浓度为0.69g/L培养液,此时,菌丝体浓度为8.11g/L培养液,壳聚糖在菌丝体中的含量为8.51%,产品得率为34.5mg壳聚糖/g还原糖。
Corn-cob is a kind of cellulose and xylan-riched agriculture byproduct.The synthesis of cellulase and xylanase with pretreated corn-cob as carbon source by Trichoderma viride and the hydrolysis with this enzyme pretreated corn-cob are studied in this thesis. Then using hydrolysates as carbon source to cultivate fungi (Aspergillus niger, Trichoderma viride, Rhizopus delemar, Rhizopus oryzae) and extracting chitosan from mycelia are studied.
    The result of cellulase and xylanase synthesis shows that the kind and concentration of carbon source, the kind of nitrogen source, and the C/N, the initial pH value, the culture temperature,etc all have some effects.The better preducing enzyme term is using 20g/L 1% NaOH pretreated corn-cob as carbon source and the peptone+ammonium sulfate+urea as nitrogen source, regulating C/N 5.6, initial pH value 4.8, ulture temperature28眑癈, 150r/min.The cellulase and xylanase activity reached 40.7IU/mL (CMC-ase activity) and 141.32U/mL respectively after 120 hours cultibvation.
    Enzyme hydrolysis result shows that the better substrate is 10% NH3 H2O pretreated corn-cob. And when substrate concentration is 15%(W /V), the optical hydrolysis condition is pH 4. 8, 50 C, enzyme quantity 30U/g substrate.After 24 hours the reducing sugars concentration reached 62.3g/L and almost kept constantly.
    The result shows that the yield of chitosan from Aspergillus niger is larger than Trichoderma viride, Rhizopus delemar and Rhizopus oryzae. The optimum conditions of cultiviating Aspergillus niger to produce chitosan using enzymatic hydrolysate as substrate is as follows: reducing sugars concentration 20g/L, culture temperature 30癈, initial pH value 7. 0, 150r/min. In this condition , mycelia and chitosan concentration reached 8. llg/L and 0.69g/L respectively. The content of chitosan in mycelia is 8.51% . Chitosan yield is 34. 5mg/(g reducing sugars) .
引文
[1] 朱正华,朱良军,陆旋.壳聚糖的制备及其利用[J].科技通报,2003,19(6):521∽524
    [2] 谢德明,张志航.真菌发酵制备生物材料壳聚糖[J].生物医学工程学杂志,1999(16):90∽91
    [3] 徐健,金鑫荣.天然高分子甲壳素/壳聚糖在生物和医药方面的应用[J].大学化学,1994,9(3):22∽25
    [4] Hirano S et al..Progress in Biomedical Polymers[J].New York:Plenum Press, 1990:283∽290
    [5] Hiranl S et al..Polym. Mater. Sci.Eng.,1990,63:699
    [6] 陈忻,赖兴华,袁毅桦等.用丝状真菌制备壳聚糖的研究[J].精细化工,2000,17(3):132∽134
    [7] 陈碧琼,孙康.甲壳素利壳聚糖纤维的发展及应用[J].化工新型材料,2001,29(5):20∽22
    [8] 王惠杰,童岩,阎家麒.微生物米源的甲壳素和壳聚糖的研究[J].中国生化药物志,1999,20(5):227∽229
    [9] 魏光,李兆兰.从蓝色梨头霉中提取壳聚糖的初步研究[J].安徽师大学报,1998,21(3):227∽231
    [10] 陈世年.从米根霉细胞壁寻找天然壳聚糖的研究Ⅳ[J].华侨大学学报,1997,18(1):81∽82
    [11] White A, Farina P F, Pulton I. Production and isolation of chitosan from Mucor rouxii[J].Appl Enuiron. Microbiol, 1979,38(2):323∽328
    [12] 陈育如.植物纤维原料预处理及酶水解和乳酸发酵的研究[D].浙江大学博士学位论文.2000
    [13] 章朝晖.纯天然高分子化合物甲壳素及其衍生物[J].广西轻工业,1999,(3):15∽18
    [14] 董学畅,杨燕兵.甲壳素和壳聚糖应用研究新动向[J].云南民族学院学报(自然科学版),2002,11(1):566∽571
    [15] 汪秋安.甲壳素及壳聚糖资源的开发与利用[J].再生资源研究,2000(6):28∽31
    [16] 章朝晖.纯天然高分子化合物甲壳素及其衍生物(续)[J].广西轻工业,1999,(4):15∽17阻遏
    [17] 黄光佛,卿胜波,李盛彪.多糖类生物医用材料—甲壳素和壳聚糖的研究及应用[J].高分子通报,2001,(3):43∽49
    [18] 王爱琴,杨立明.天然高分子材料壳聚糖的研究应用进展[J].化工新型材料,1994,(9):9∽13
    [19] J. Braun et al..Biotechnol and Bioeng..1989,33(2):242
    [20] 姜涌明.生物化学杂志.1993,9(4):470
    
    
    [21] 宋清华,陈晓军.壳聚糖/甲壳素及其衍生物的食品应用[J].中国食品添加剂,2001,(2):37∽41
    [22] 万鹏,潘婉莲.甲壳素及其衍生物的应用开发[J].上海化工情报调研,2000,(5):32∽35
    [23] Dietrich Knorr. Food Technology, 1991,(1):14∽22
    [24] 冯福建.第二届甲壳素化学与应用研讨会论文集[C],武汉,1999,11:54∽58
    [25] 扬丹.甲壳素及其衍生物的研究与应用[J].湛江海洋大学学报,1998,18(4):77∽80
    [26] 曹农.壳聚糖衍生物的抗凝血.活性[J].中国生化约物杂志,1998,19(3):148∽149
    [27] 见矢胜.高分子论文集[C],1986,43(2)
    [28] 李秀.膜科学与技术[M],1987,15(7)
    [29] 陈忻,袁毅桦,黄耀威等.微生物培养法生产壳聚糖的初步研究
    [30] 张树政.糖生物学与糖生物工程[M].清华大学出版社,2002年11月第一版
    [31] 潘彤.甲壳素/壳聚糖开发和研究进展[J].衡阳师范学院学报(自然科学),2001,22(3):31∽36
    [32] 壳聚糖开发应用及市场状况[J].江苏食品与发酵,2003,(2):11∽14
    [33] 张矢主编.植物原料水解工艺学[M].中国林业出版社,1992,10
    [34] Alex H.C. Yu. Dora lee et al. Biotechnol. Appl. Biochem, 1995(21):203∽216
    [35] 何源禄,贾眉.林产化学与工业,1990,10(4):249∽255
    [36] Stephen G.A. Michael J.N. Jr. Mark S.L. et al. AICHE annual meeting session, 1997,228
    [37] Hsn The-An. Mike Himmel. Dan Schell. Applied Biochemistry and Biotechnology. 1996.3(18):57∽58
    [38] Robert W.T. Nick N..Lawrence B. et al. Reactor options and design parameter for the total hydrolysis of the carbohydrates in lignocellulosic biomass using dilute acid. AICHE annual meeting session, 1997,228
    [39] Szczodrak J. et al. Biotechnol.&Bioeng. 1988, (31):300∽303
    [40] 陈洪章,曲音波,高培基.食品与发酵工业.1992,(3):7∽11
    [41] 陈嘉翔.制浆原理与工程[M].轻工业出版社,1990
    [42] 中国林科院情报所,1982
    [43] 王体科.世界植物纤维水解概况[R].世界林业研究,1993,(6):51∽57
    [44] 施良和,胡汉杰.高分子科学的今天和明天[M].化学工业出版社,1994
    [45] Masayaki Tanigachi. et al. European J. Appl Microbiol Biotechnology, 1982,14:74∽80
    [46] David J. G. John N.S. Biotechnol.&Bioeng, 1996(51):375∽383
    [47] 中国林学会林产化工学会[C].第三届水解学术会议论文集,1989
    [48] 余世袁.林产资源的生物转化与利用[J].南京林业大学学报,2000,24(2):
    [49] Ingrid. p. et al. Process Biochemistry, 1991,(36):51∽65
    
    
    [50] Toyama. H.K..et al. Biotechnol. Bioeng, 1981, (23):1867
    [51] Kirimura. K..et al. Agric. Biol. Chem.,1990,54(5):1281∽1283
    [52] 曲音波.真菌学报,1984,(3):328
    [53] Warzywoda. M..et al. Bioresource Technology, 1992, (39):125∽130
    [54] Barnett. c.c..et al. Biotechnology, 1991, (9):562∽567
    [55] 勇强.植物纤维资源生物转化制取酒精的研究[D].南京林业大学博士学位论文,1998
    [56] 刘稳,高培基.半纤维素酶的分子生物学[J].纤维素科学与技术,1998,6(1):9∽15
    [57] Durand. H. et al. Enzyme Microbiol. Technol.,1988(10):341∽346
    [58] Persson. I..et al. Process Biochem.,1991,(26):65∽74
    [59] Shu, C..et al. Novel induces for cellulase Degradation by Trichderma reesei. Fourth American Chemicals. newyork. 1992,21
    [60] Brown, J.A..et al. Enzyme Microb. Technol.,1987, (9):176∽201
    [61] Sanmartin. R. et al. Biotechnol. Bioeng.,1986, (28):564∽568
    [62] 夏黎明.固定化里氏木霉合成纤维素酶的研究[D].南京林业大学博士学位论文,1993
    [63] Reetta. H..et al. Enzyme Microb. Technol.,1996, (18):495∽501
    [64] 王捷.木质纤维原料制备纤维素酶及酶水解的机理研究[D].南京林业大学硕士学位论文1991
    [65] Neeta Kuikarni, et al. Molecular and biotechnological aspects of xylanases[J]. FEMS Microbiology Reviews, 1999, (23):411∽456
    [66] 刘超纲.里氏木霉木聚糖酶的选择性合成及其应用基础研究[D].南京:南京林业大学博士学位论文,1999
    [67] 岑沛霖,蔡谨.工业微生物学[M].化学工业出版社,2000
    [68] Ingrid Person, et al. Fungal cellulo]itic enzyme production:a review[J].Process Biochemistry, 1991, (26):65∽74
    [69] 韩峰,孙彩云.宋小焱等.拟康氏木霉纤维素酶合成的诱导与阻遏[J].工业微生物,2003,33(1):23∽26
    [70] T. Kent Kirk, et al. Enzymology and Molecular Genetics of Wood Degradation by White-Rot Fungi In:Raymond A. Young and Masood Akhtar ed. Environmentally Friendly Technologies for the Pulp and Paper Industry s[M]..John Wiley & Sons, Inc. Canada, 1998,273∽299
    [71] 张树政.酶制剂工业(下)[M].科学出版社,1998
    [72] 黄峰,陈嘉翔,余家鸾.制浆造纸工业中的微生物及其酶.中国造纸学报,1997,12:109-11
    [73] 诸葛键.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994
    [74] 彭益强,徐锦海,高超等.从几种真菌中提取几丁质和壳聚糖的研究[J].福建化工,2000,(4):10∽14
    [75] 贺淹才,许庆清,许嫣红等.从黑曲霉提取甲壳素和壳聚糖[J].生物技
    
    术,2000,10(2):20∽23
    [76] 申南竹,陈邦林.光度法测定壳聚糖.化学世界[J],1989,(5):215∽217
    [77] 邬义明主编.植物纤维化学[M].中国轻工业出版社,1997
    [78] 王蔚.纤维素酶合成机制的探讨[J].济南大学学报,1999.9(5):63∽65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700