TGF-β3和BMP-7基因共转染兔骨髓间充质干细胞构建组织工程髓核的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的利用TGF-β3和BMP-7共转染兔骨髓间充质干细胞(BMSCs)并诱导其分化,以富血小板凝胶(PRG)为支架,构建可局部注射的组织工程髓核。研究方法以全骨髓贴壁法分离培养兔BMSCs,通过细胞表面标记物检测及中胚层细胞诱导分化,确定其为BMSCs。
     人工合成TGF-β3和BMP-7基因片段,并行基因测序确定序列。以pDC316-MCMV-EGFP为载体质粒, PPE3为骨架质粒,构建TGF-β3腺病毒(TGFβ3-pDC316-MCMV-EGFP)和BMP-7腺病毒(BMP7-pDC316-MCMV-EGFP),通过Realtime PCR检测腺病毒中TGF-β3和BMP-7基因mRNA的表达。
     将培养的兔BMSCs传代后,分成五组,分别为:A.空白对照组;B. GFP免疫荧光对照组;C. TGF-β3基因单独转染组;D. BMP-7基因单独转染组;E. TGF-β3和BMP-7基因共转染组;以普通DMEM培养基培养14天后,以Western blot方法检测A、C、D、E组TGF-β3和BMP-7蛋白的表达情况。以Realtime PCR测定各组细胞的ACAN、Collagen I、Collagen II、CollagenX、SOX9基因的mRNA表达水平。
     以Lendersberg二次离心法制备PRP,与激活剂以10:1比例混合激活后,以3000rpm离心10min获得富生长因子上清,检测其中TGF-β1和PDGF-AB生长因子的浓度,再将PRP分别与兔BMSCs及TGF-β3和BMP-7基因共转染的BMSCs分别混合,培养14天后,以扫描电镜观察共转染组组织工程髓核结构及细胞在富血小板凝胶支架中的生长情况。
     研究结果以全骨髓贴壁法分离培养获得的细胞在特定诱导条件下具备向成骨细胞、成软骨细胞及脂肪细胞三种中胚层细胞分化的能力;流式细胞术检测证实获得的细胞存在CD29、CD105、CD166表面标记物的表达。
     TGF-β3和BMP-7基因测序证明合成基因序列正确无误。以pDC316-MCMV-EGFP载体质粒和PPE3骨架质粒构建的TGF-β3和BMP-7腺病毒扩增后滴度分别为:1.495×1010pfu/ml和1.185×1010pfu/ml。TGF-β3和BMP-7腺病毒DNA经PCR扩增后酶切电泳检测显示构建腺病毒包含TGF-β3和BMP-7基因片段。
     以TGF-β3和BMP-7重组腺病毒转染兔BMSCs后常规DMEM培养基培养14天,细胞形态出现明显变化,圆形及椭圆形细胞明显增多。Western blot方法检测TGF-β3和BMP-7蛋白表达水平明显增高。培养14天时,Realtime PCR检测ACAN、CollagenI、Collagen II、SOX9基因的表达水平较对照组明显升高(P<0.05),其中Collagen I和SOX9单独转染组和共转染组表达无明显差异(P>0.05),Collagen II共转染组表达较单独转染组明显增高(P<0.05)。TGF-β3单独转染组和共转染组的Collagen X基因表达较BMP-7单独转染组和对照组明显降低(P<0.05)。
     以Lenderberg法制备得PRP后,以激活剂激活获得的富血小板凝胶支架中TGF-β1和PDGF-AB浓度分别为351.03±11.15ng/ml和267.38±14.2ng/ml,明显高于兔全血中的浓度。扫描电镜观察结果示:凝胶内部网状结构的孔隙直径约在40μm至100μm之间,转基因BMSCs较为均匀的分布于凝胶中,多数细胞伸出大量指突到纤维骨架和凝胶孔隙之中。细胞在富血小板凝胶支架中生长良好。
     研究结论通过全骨髓贴壁法可以成功分离获得状态良好的兔BMSCs。以pDC316-MCMV-EGFP为载体可成功构建TGF-β3和BMP-7腺病毒,且其可转染兔BMSCs,获得TGF-β3和BMP-7蛋白的表达。TGF-β3和BMP-7腺病毒共转染兔BMSCs后,ACAN、Collagen II、SOX9基因表达均明显升高,而Collagen X基因表达明显降低,说明兔BMSCs向类髓核细胞方向分化。Lenderberg法制备的富血小板凝胶支架孔隙率及孔隙直径适合转基因兔BMSCs在其中正常生长和增殖。
Objective The purpose of this study is to construct an injectable tissue engineering nucleuspulposus composed of Platelet-rich plasma gel(PRG) as scaffold and rabbit bone marrowmesenchymal stem cells (BMSCs) co-transfected byf adenoviral vectors with TGF-β3andBMP-7as seed cells.
     Methods Obtain the rabbit BMSCs with the method of direct way. Be sure of theBMSCs through the surface mark and induced differentiation into three differentmesoderm cells.
     Compose the TGF-β3and BMP-7gene fragment and make sure of their gene order.Establish the TGF-β3adenoviral vector(TGFβ3-pDC316-MCMV-EGFP) and BMP-7adenoviral vector(BMP7-pDC316-MCMV-EGFP) with plasmid pDC316-MCMV-EGFP.Determine the TGF-β3and BMP7expression in mRNA level through Realtime PCR.
     Divide BMSCs into five groups: A. blank control group; B. immunofluorescence controlgroup with GFP; C. singly transfected by TGF-β3adenovirus; D. singly transfected byBMP7adenovirus; E. co-transfected by both TGF-β3and BMP7adenovirus. After14days, measure the TGF-β3and BMP-7protein expression of group A、C、D、E and theexpression of ACAN、Collagen I、Collagen II、Collagen X and SOX9in mRNA levelthrough Western blot and Realtime PCR respcetively.
     Prepare the PRP by Lendersberg way. Obtain PRG by mixing PRP with activator. Obtaingrowth-factor-rich supernatant through centrifugalization. Then measure the concentrationof TGF-β1and PDGF-AB of it. Activating PRP by mixing with activator after combiningwith BMSCs and BMSCs co-transfected by both TGF-β3and BMP-7adenovirusseparately, and scan electron microscope (SEM) was used to discover the threedimensional structure of the tissue engineering nucleus pulposus and the growth conditionof co-transfected BMSCs at14days after activation.
     Result The cells got through the all bone marrow adherence method are able todifferentiate into at least three kinds of mesoderm cells: osteoblast, chondroblast andadipocyte. The cells also express cell surface marker of CD29, CD105, CD166accordingto flow cytometry detection. Gene order sequencing demonstrate that the gene fragments are correct. The tite ofadenoviral vector of TGF-β3and BMP-7are1.495×1010pfu/ml and1.185×1010pfu/mlseparately. The amplified DNA by PCR contain TGF-β3and BMP-7gene fragments testedby electrophoresis.
     14days after culture of Co-transfected BMSCs, the shape of most cells changed obviously.Western blot showed TGF-β3and BMP-7proteins at a higher level than BMSCs. Theexpression level of ACAN, Collagen I, Collagen II and SOX9gene were much higher thancontrol group(P<0.05), and the expression level of Collagen II in co-transfected group washigher compared to solo-transfected groups(P<0.05). The expression of Collagen X inTGF-β3transfected group and co-transfected group were obviously lower than BMP-7transfected group and control group(P<0.05).
     The concentration of TGF-β1and PDGF-AB in PRG are351.03±11.15ng/ml and267.38±14.2ng/ml separately, which are obviously higher than the concentration of them inrabbit blood. Scanning electron microscope showed that diameter of ventage in PRG wasbetween40μm to100μm, and co-transfected BMSCs were well-distributed in PRG byputting stylodes into the ventage. The cells growed well in PRG.
     Conclusion It is pertinent to prepare the BMSCs by direct way. Adenoviral vector ofTGF-β3and BMP-7could transfect the BMSCs and express the TGF-β3and BMP-7withpDC316-MCMV-EGFP. BMSCs transfected by TGF-β3and BMP-7get higher expressionof ACAN, Collagen I, SOX9and lower expression of Collagen X, what demonstrated thatboth TGF-β3and BMP-7are able to induce the BMSCs into nucleus pulposus-likecells(NPCs). PRG preparated through Lenderberg method had a proper structure forco-transfected BMSCs growth.
引文
[1]Sakai D, Mochida J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded inAtelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration.Biomaterials,2003,24:3531–3541.
    [2]Sakai D, Mochida J, Iwashina T, et al. Regenerative effects of transplanting mesenchymal stem cellsembedded in atelocollagen to the degenerated intervertebral disc. Biomaterials,2006,27:335–345.
    [3]Sakai D, Mochida J, Iwashina T, et al. Differentiation of mesenchymal stem cells transplanted to arabbit degenerative disc model: potential and limitations for stem cell theapy in disc regeneration.Spine,2005,30:2379–2387.
    [4]Steck E, Bertram H, Abel R. Induction of intervertebral disc-like cells from adult mesenchymal stemcells. Stem Cells,2005,23:403-411.
    [5]Shen B, Wei A, Tao H, et al. BMP-2enhances TGF-beta3-mediated chondrogenic differentiation ofhuman bone marrow multipotent mesenchymal stromal cells in alginate bead culture. Tissue Eng Part A,2008,14:1089-1099.
    [6]Risbud MV, Albert TJ, Guttapalli A, et al. Differentiation of mesenchymal stem cells towards anucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine,2004,29:2627-2632.
    [7]Vadala G, Studer RK, Sowa G, et al. Cocuhure of bone marrow mesenchymal stem cells and nucleuspulposus cells modulate gene expression profile without cell fusion. Spine,2008,33:870-876.
    [8]Turgeman G, Pittman DD, Muller R, et al. Engineered human mesenchymal stem cells: a novelplatform for skeletal cell mediated gene therapy. J Gene Med,2001,3:240-251.
    [9]Sive JI, Baird P, Jeziorsk M, et al. Expression of chondrocyte markers by cells of normal anddegenerate intervertebral discs. Mol Pathol,2002,55:91–97.
    [10]Risbud MV, Di Martino A, Guttapalli A, et al. Toward an optimum system for intervertebral discorgan culture: TGF-beta3enhances nucleus pulposus and anulus fibrosus survival and function throughmodulation of TGF-beta-R expression and ERK signaling. Spine,2006,31:884-890.
    [11]Masuda K, Takegami K, An H, et al. Recombinant osteogenic protein-1upregulates extracellularmatrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. JOrthop Res,2003,21:922–930.
    [12]Takegami K, Thonar EJ, An HS, et al. Osteogenic protein-1enhances matrix replenishment byintervertebral disc cells previously exposed to interleukin-1. Spine,2002,27:1318–1325.
    [13]Knippenberg M,Helder M.N.,Zandieh-Doulubi B,et al. Osteogenesis versus chondrogenesis byBMP-2and BMP-7in adipose stem cells. Biochem Biophys Res Commun,2006,342:902-908.
    [14]Miyamoto C, Matsumoto T, Sakimura K, et al. Osteogenic protein-1with transforming growthfactor-beta1: potent inducer of chondrogenesis of synovial mesenchymal stem cells in vitro. J OrthopSci,2007,12:555-561.
    [15]丰干钧,刘浩,陈晓禾等。hBMSCs诱导分化类髓核细胞。中国修复重建外科杂志,2008,22:1470-1475.
    [16] Chen WH, Lo WC, Lee JJ, et al. Tissue-engineered intervertebral disc and chondrogenesis usinghuman nucleus pulposus regulated through TGF-beta1in platelet-rich plasma. J Cell Physiol,2006,209:744–754.
    [17] Chen W.H., Liu H.Y., Lo W.C., et al. Intervertebral disc regeneration in an ex vivo culture systemusing mesenchymal stem cells and platelet-rich plasma. Biomaterials,2009,30:5523–5533.
    [18] Doucet C, Ernou I, Zhang Y, et al. Platelet lysates promote mesenchymal stem cell expansion: asafety substitute for animal serum in cell-based therapy applications. J Cell Physiol,2005,205:228-236.
    [19]羊书勇,毛天球,程晓兵等。富含血小板血浆凝胶结构用于组织工程载体可能性的扫描电镜观察。中国临床康复,2005,9:114-115.
    [20] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissueengineering. Trends Biotechnol,1998,16:224-233.
    [1]梁雪,粟永萍,孔佩艳。人骨髓间充质干细胞体外培养及鉴定[J]。医学研究生学报,2007,20:459-466.
    [2] Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenchymalstem cells. Science,1999,284:143-147.
    [3] Rose F R, Oreffo R O. Bone tissue engineering: hope vs. hype[J]. Biochem Biophys Res Commun,2001,292:1-7.
    [4] adlowiec J A, Celil A B, Hollinger J O. Bone tissue engineering:recent advances and promisingtherapeutic agents. Expert Opin Biol Ther,2003,3:409-423.
    [5] Steck E, Bertram H, Abel R. Induction of intervertebral disc-like cells from adult mesenchymal stemcells. Stem Cells,2005,23:403-411.
    [6] Sakai D, Mochida J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded inAtelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration.Biomaterials,2003,24:3531–3541.
    [7] Sakai D, Mochida J, Iwashina T, et al. Regenerative effects of transplanting mesenchymal stem cellsembedded in atelocollagen to the degenerated intervertebral disc. Biomaterials,2006,27:335–345.
    [8] Mishra A, Tummala P, King A, et al. Buffered platelet-rich plasma enhances mesenchymal stem cellproliferation and chondrogenic differentiation. Tissue Eng Part C Methods,2009,15:431-435.
    [9] Niu C, Yuan L J, Lin S S, et al. Mesenchymal stem cell and nucleus pulposus cell coculturemodulates cell profile[J]. Clin Orthop Relat Res,2009,467:3263-3272.
    [10] Hegewald AA, Endres M, Abbushi A, et al. Adequacy of herniated disc tissue as a cell source fornucleus pulposus regeneration[J]. J Neurosurg Spine,2011,14:273-280.
    [11] Weiler C, Nerlich AG, Schaaf R, et al. Immunohistochemical identification of notochordal markersin cells in the aging human lumbar intervertebral disc[J]. Eur Spine J,2010,19:1761-1770.
    [12] Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adiposetissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials,2012,33:7008-7018.
    [13] Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood),2001,226:507-20.
    [14] Fromigue O, Hamidouche Z, Chateauvieux S, et al. Distinct osteoblastic differentiation potential ofmurine fetal liver and bone marrow stroma-derived mesenchymal stem cells[J]. J Cell Biochem,2008,104:620-628.
    [15] Paniushin OV, Domaratskaia EI, Starostin VI. Mesenchymal stem cells: sources, phenotype, anddifferentiation potential. Izv Akad Nauk Ser Biol,2006,(1):6-25.
    [16] Turgeman G, Pittman DD, Müller R, et al. Engineered human mesenchymal stem cells: a novelplatform for skeletal cell mediated gene therapy. J Gene Med,2001,3:240-51.
    [17] Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived fromadult marrow. Nature,2002,418:41-9.
    [18] Conget PA, Minguell JJ. Phenotypicaland functional properties of human bone marrowmesenchymal progenitor cells[J]. J Cell Physiol,1999,181:67-73.
    [19] Colter DC, Class R, DiGirolamo CM, et al. Rapid expension of recycling stem cells in cultures ofplastic-adherent cells from human bone marrow. Proc Nati Acad Sci USA,2000,97:3213-3218.
    [20] Di Nicola M, Carlo-Stella C, Magni M, et al Human bone marrow stromal cells suppressT-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood,2002,99:3838-43.
    [21] Yoo JU, Bart hel TS, Nish imura K, et al. The chondrogenicpotential of human bone-marrowderived mesenchymal progenitor cells. J Bone Joint Surg,1998,8:17-25.
    [22] Jones EA, Kinsey SE, English A, et al. Isolation and characterization of bone marrowmultipotential mesenchymal progenitor cells. Arthritis Rheum.2002,46:3349-60.
    [23] Colter D C, Sekiya I, Prockop D J. Identification of a subpopulation of rapidly self-renewing andmultipotential adult stem cells in colonies of human marrow stromal cells[J]. Proc Natl Acad Sci USA,2001,98:7841-7845.
    [24]Koga H, Muneta T, Ju YJ, et al. Synovial stem cells are regionally specified according to localmicroenvironments after implantation for cartilage regeneration. Stem Cells,2007,25:689-96.
    [25] Zhu H, Mitsuhashi N, Klein A, et al. The role of the hyaluronan receptor CD44in mesenchymalstem cell migration in the extracellular matrix[J]. Stem Cells,2006,24:928-935.
    [1] Knippenberg M,Helder M.N.,Zandieh-Doulubi B,et al. Osteogenesis versus chondrogenesis byBMP-2and BMP-7in adipose stem cells. Biochem Biophys Res Commun,2006,342:902-908.
    [2] Miyamoto C, Matsumoto T, Sakimura K, et al. Osteogenic protein-1with transforming growthfactor-beta1: potent inducer of chondrogenesis of synovial mesenchymal stem cells in vitro. J OrthopSci,2007,12:555-561.
    [3] Steck E, Bertram H, Abel R. Induction of intervertebral disc-like cells from adult mesenchymal stemcells. Stem Cells,2005,23:403-411.
    [4]丰干钧,刘浩,陈晓禾等。hBMSCs诱导分化类髓核细胞。中国修复重建外科杂志,2008,22:1470-1475.
    [5]expression in malignant cells using adenovirus vectors. Hum Gene Ther,1994,5:437-47.
    [6] Descamps V, Duffour MT, Mathieu MC, Femandez N, Cordier L, Abina MA, Kremer E, PerricaudetM, Haddada H.Strategies for cancer gene therapy using adenovirals vectors. J Mol Med,1996,74:183-9.
    [7] Haisma HJ, Pinedo HM, Rijswijk A, et al. Tumor-specific gene transfer via an adenoviral vectortargeted to the pan-carcinoma antigen EpCAM. Gene Ther,1999,6:1469-74.
    [8] Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science,1995,270:404-10.
    [9] Brody SL, Jaffe HA, Han SK, Wersto RP, Crystal RG. Direct in vivo gene transfer and expression inmalignant cells using adenovirus vectors. Hum Gene Ther,1994,5:437-47.
    [10] Lusky M, Christ M, Rittner K, et al. In vitro and in vivo biology of recombinant adenovirus vectorswith E1, E1/E2A, or E1/E4deleted[J]. Journal of Virology,1998,72:2022-2032.
    [11] Gorziglia MI, Lapcevich C, Roy S, et al. Generation of an adenovirus vector lacking E1, e2a, E3,and all of E4except open reading frame3. J Virol,1999,73:6048-55.
    [12] Moorhead J W, Clayton G H, Smith R L, et al. A replication-incompetent adenovirus vector withthe preterminal protein gene deleted efficiently transduces mouse ears. Journal of Virology,1999,73:1046-1053.
    [13]Andrews JL, Kadan MJ, Gorziglia MI, Kaleko M, Connelly S. Generation and characterization ofE1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol Ther,2001Mar,3(3):329-36.
    [14] Amalfitano A, Hauser M A, Hu H, Serra, et al. Production and characterization of improvedadenovirus vectors with the E1, E2b, and E3genes deleted. Journal of Virology,1998,72:926-933.
    [15] Bao JJ, Zhang WW, Kuo MT. Adenoviral delivery of recombinant DNA into transgenic micebearing hepatocellular carcinomas. Hum Gene Ther,1996,7:355-65.
    [16] Smith AE. Viral vectors in gene therapy. Annu Rev Microbiol,1995,49:807-38.
    [17] Ali M, Lemoine NR, Ring CJ. The use of DNA viruses as vectors for gene therapy. Gene Ther,1994,1:367-84.
    [18] Bolontrade MF, Sganga L, Piaggio E, et al. A specific subpopulation of mesenchymal stromal cellcarriers overrides melanoma resistance to an oncolytic adenovirus.Stem Cells Dev,2012Sep20,21(14):2689-702.
    [19] Kosaka H, Ichikawa T, Kurozumi K, et al. Therapeutic effect of suicide gene-transferredmesenchymal stem cells in a rat model of glioma. Cancer Gene Ther,2012Aug,19(8):572-8.
    [20] Tan WQ, Gao ZJ, Xu JH, Yao HP. Inhibiting scar formation in vitro and in vivo byadenovirus-mediated mutant Smad4: a preliminary report. Exp Dermatol,2011,20:119-24.
    [21] Stone D, Lieber A, New serotypes of adenoviral vectors. Curropin Mol Ther,2006,8:423-431.
    [22] Han ZS, Li QW, Zhang ZY, et al. High-level expression of human lactoferrin in the milk of goatsby using replication-defective adenoviral vectors. Protein Expr Purif,2007,53:225-231.
    [23] Ulasov IV, Tyler MA, Han Y, et al. Novel recombinant adenoviral vector that targets theinterleukin-13receptor alpha2chain permits effective gene transfer to malignant glioma. Hum GeneTher,2007,18:118-129.
    [24] Matthews DA, Cummings D, Evelegh C, et al. Development and use of a293cell line expressinglac repressor for the rescue of recombinant adenoviruses expressing high levels of rabies virusglycoprotein. J Gen Virol,1999,80:345-353.
    [25]陈岩,胡有谷,吕振华.转化生长因子β对椎间盘细胞II型胶原基因表达的调节作用.中华外科杂志,2000,38:703-706.
    [26] Cancedda R, Descalzi Cancedda F, et al. Chondrocyte differentiation. Int Rev Cytol,1995,159:265-358.
    [27] Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science,2002,296:1646-1647.
    [28] Pecina M, Haspl M, Jelic M, et al. Repair of a resistant tibia non-union with a recombinant bonemorphogenetic protein-7(rh-BMP-7). Int Orthop,2003,27:320-1.
    [29] Masuda K, Takegami K, An H, et al. Recombinant osteogenic protein-1upregulates extracellularmatrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. JOrthop Res,2003,21:922–930.
    [30] Masuda K, Imai Y, Okuma M, et al. Osteogenic protein-1injection into a degenerated disc inducesthe restoration of disc height and atructural changes in the rabbit anular puncture model. Spine,2006,31:742-754.
    [31] Takegami K, Thonar EJ, An HS, et al. Osteogenic protein-1enhances matrix replenishment byintervertebral disc cells previously exposed to interleukin-1. Spine,2002,27:1318–1325.
    [32]丰干钧,刘浩,陈晓禾等。hBMSCs诱导分化类髓核细胞。中国修复重建外科杂志,2008,22:1470-1475.
    [1] Niu C, Yuan L J, Lin S S, et al. Mesenchymal stem cell and nucleus pulposus cell coculturemodulates cell profile[J]. Clin Orthop Relat Res,2009,467:3263-3272.
    [2] Hegewald AA, Endres M, Abbushi A, et al. Adequacy of herniated disc tissue as a cell source fornucleus pulposus regeneration[J]. J Neurosurg Spine,2011,14:273-280.
    [3] Weiler C, Nerlich AG, Schaaf R, et al. Immunohistochemical identification of notochordal markersin cells in the aging human lumbar intervertebral disc[J]. Eur Spine J,2010,19:1761-1770.
    [4] Cancedda R, Descalzi Cancedda F, et al. Chondrocyte differentiation. Int Rev Cytol,1995,159:265-358.
    [5] Knippenberg M,Helder M.N.,Zandieh-Doulubi B,et al. Osteogenesis versus chondrogenesis byBMP-2and BMP-7in adipose stem cells. Biochem Biophys Res Commun2006;342:902-908.
    [6]丰干钧,刘浩,陈晓禾等。hBMSCs诱导分化类髓核细胞。中国修复重建外科杂志,2008;22:1470-1475.
    [7] Barry F, Raymond EB, Beishan L, et al. Chondrogenic differentiation of mesenchymal stem cellsfrom bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res,2001;268:189.
    [8] You HB, Chen AM. Transfection of precartilaginous stem cells with enhanced green fluorescenceprotein gene and transforming growth factor Binducing chondrogenesis in precartilaginous stem cell.Chin J Pediatr Surg,2004;25:545-549.
    [9] Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science,2002,296:1646-1647.
    [10] Hosokawa R, Nonaka K, Morifuji M, et al. TGF-beta3decreases type I collagen and scarring afterlabioplasty. J Dent Res,2003,82:558-564.
    [11] Na K, Kim S, Woo DG, et al. Synergistic effect of TGF beta-3on chondrogenic differentiation ofrabbit chondrocytes in thermo reversible hydrogel constructs blended with hyalurnoic acid by in vivotest. J Biotechnol,2007,128:412-422.
    [12] Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic analysis of the roles ofBMP2, BMP4, and BMP7in limb patterning and skeletogenesis. PLoS Genet,2006,2:e216.
    [13] Stone CA. A molecular approach to bone regeneration. Br J Plast Surg,1997,50:369-73.
    [14]张子军,卢世璧,王继芳,等。骨缺损中内源性BMP的分布及其作用。中华外科杂志,1996,34:596-7.
    [15] Nishihara A, Fujii M, Sampath TK, Miyazono K, Reddi AH. Bone morphogenetic protein signalingin articular chondrocyte differentiation. Biochem Biophys Res Commun,2003,301:617-22.
    [16] Chimon-Monray J, Rodriguez-Leon J, Montero JA, et al. Analysis of the molecular cascaderesponsible for mesoderm limb chondrogenesis: sox genes and BMP signaling. Dev Biol,2003,257:292-301.
    [17] Solursh M. Formation of cartilage tissue in vitro. J cell Biochem,1991;45:258-260.
    [18] Boos N, Nerlich AG, Wiest I, et al. Immunolocalization of type X collagen in human lumbarintervertebral discs during ageing and degeneration. Histochem Cell Biol,1997,108:471-480.
    [1] Amy D B,May J R,Helene S.SPARC-null mice exhibit accelerated cutaneous wound closure[J].JHistochem&Cytochem,2002,50(1):1-10.
    [2] Doucet C, Ernou I, Zhang Y, et al. Platelet lysates promote mesenchymal stem cell expansion: asafety substitute for animal serum in cell-based therapy applications. J Cell Physiol,2005,205:228-236.
    [3]羊书勇,毛天球,程晓兵等。富含血小板血浆凝胶结构用于组织工程载体可能性的扫描电镜观察。中国临床康复,2005,9:114-115.
    [4] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissueengineering. Trends Biotechnol,1998,16:224-233.
    [5] Fortier LA, Barker JU, Strauss EJ, et al. The role of growth factors in cartilage repair. Clin OrthopRelat Res,2011,469:2706-2715.
    [6] Mishra A, Tummala P, King A, et al. Buffered platelet-rich plasma enhances mesenchymal stem cellproliferation and chondrogenic differentiation. Tissue Eng Part C Methods,2009,15:431-435.
    [7] Sun Y, Feng Y, Zhang CQ, et al. The regenerative effect of platelet-rich plasma on healing in largeosteochondral defects. Int Orthop,2010,34:589-597.
    [8] Vinatier C, Mrugala D, Jorgensen C, Guicheux J, et al. Cartilage engineering: a crucial combinationof cells, biomaterial and biofactors. Trends Biotechnol,2009,27:307-314.
    [9] Freyria AM, Mallein-Gerin F, Chondrocytes or adult stem cells for cartilage repair: the indisputablerole of growth factors. Injury,2011,43:259-265.
    [10] Akeda K, An HS, Okuma M, et al. Platelet-rich plasma stimulates porcine articular chondrocyteproliferation and matrix biosynthesis. Osteoarthritis Cartilage,2006,14:1272-1280.
    [11] Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adiposetissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials,2012,33:7008-7018.
    [12] Park JS, Shim MS, Shim SH, Yang HN, Jeon SY, Woo DG, et al. Chondrogenicpotential of stemcells derived from amniotic fuid, adipose tissue, or bonemarrow encapsulated in fbrin gels containingTGF-b3. Biomaterials,2011,32:8139-8149.
    [13] Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, et al. A three-dimensional nanofbrousscaffold for cartilage tissue engineering usinghuman mesenchymal stem cells. Biomaterials,2005,26:599-609.
    [14] Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of thearticular surfaceof the rabbit synovial joint by cell homing: a proof of conceptstudy. Lancet,2010,376:440-448.
    [15] Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, et al. Effect of IGF-Ⅰ in thechondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-betasignaling. J Bone Miner Res,2006,21:626-636.
    [16] Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-Ⅰenhances cell-basedrepair of articular cartilage. J Bone Joint Surg Br,2002,84:276-288.
    [17] Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growthfactor and plateletderived growth factor on in vivo cartilage healing andrepair. Osteoarthritis Cartilage,2006,14:403-412.
    [18] Stewart AA, Byron CR, Pondenis H, Stewart MC. Effect of fbroblast growthfactor-2on equinemesenchymal stem cell monolayer expansion and chondrogenesis. Am J Vet Res,2007,68:941-915.
    [19] Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair offull-thicknessdefects of articular cartilage. J Bone Jt Surg Am,1993,75:532-553.
    [20] Kang YH, Jeon SH, Park JY, Chung JH, Choung YH, Choung HW, et al. Platelet-rich fbrin is abioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng Part A,2011,17:532-553.
    [1] Amy D B, May J R, Helene S. SPARC-null mice exhibit accelerated cutaneous wound closure[J]. JHistochem&Cytochem,2002,50(1):1-10.
    [2] Whitman DH, Berry RL, Green DM, et al. Platelet gel: an autologous alternative to fibrin glue withapplications in oral and maxillofacial surgery. J Oral Maxillofac Surg,1997,55(11):1294-1299.
    [3] Doucet C, Ernou I, Zhang Y, et al. Platelet lysates promote mesenchymal stem cell expansion: asafety substitute for animal serum in cell-based therapy applications. J Cell Physiol,2005,205:228-236.
    [4] Celotti F, Colciago A, Negri-Cesi P, et al. Effect of platelet-rich plasma on migration andproliferation of SaOS-2osteoblasts: role of platelet-derived growth factor and transforming growthfactor-beta.Wound Repair Regen,2006,14(2):195-202.
    [5] Tonelli P, Mannelli D, Brancato L, et al. Counting of platelet derived growth factor and transforminggrowth factor-beta in platelet-rich-plasma used in jaw bone regeneration.Minerva Stomatol,2005,54:23-34.
    [6] Betsholtz C, Johnsson A, Heldin CH, et al. cDNA sequence and chromosomal localization of thehuman plateletderived growth factor A-chain and it expression in tumor cell lines. Nature,1986,320:695-699.
    [7] Bouletreau PJ, Warren SM, Spector JA, et al. Factors in the fracture microenvironmentinduceprimary osteoblast angiogenic cytokine production[J]. Plast Reconstr Surg,2002,110(1):139-148.
    [8] Horner A, Bord S, Kemp P, et al. Distribution of platelet-derived growth factor(PDGF)A chainmRNA,protein,and PDGF-alpha receptor inrapidly forming human bone. Bone,1996,19:353-62.
    [9] Antoniades HN. Human platelet-derived growth factor (PDGF): purification of PDGF-I andPDGF-II and separation of their reduced subunits.Proc Natl Acad Sci USA,1981,78(12):7314-7317.
    [10] Marx RE, Carlson ER, Eichstaedt RM, et al. Platelet-rich plasma: Growthfactor enhancement forbone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,1998,85:638-46.
    [11] Howes R, Bowness JM, Grotendorst GR, et al. PDGF enhances demineralized bone matrix-inducedcartilage and bone formation. Calcif Tissue Int,1988,42:34-38.
    [12] Nash TJ, Howlett CR, Martin C, et al. Effect of platelet-derived growth factor on tibial osteotomiesin rabbits. Bone,1994,15:203-208.
    [13] Vikjaer D, Blom S, Horting-Hansen E, et al. Effect of PDGF on bone formation in calvarial defects.An experimental study in rabbits. Eur J Oral Sci,1997,105:59-66.
    [14] Assoian RK, Komoriya A, Meyers CA, et al. Transforming growth factor-beta in human platelets.Identification of a major storage site, purification and characterization. J Biol Chem,1983,258:7155-7160.
    [15] Centrella M, McCarthy T, Canalis E. Transforming growth factors beta is a bifunctional regulatorof replication and collagen synthesis in osteoblast enriched cell cultures from fetal rat bone. J BiolChem,1987,262:2869-2874.
    [16] Carlson ER.Bone grafting the jaws in the21st century:the use ofplatelet-richplasma and bonemorphogenetic protein[J].Alpha Omegan,2000,93(3):26-30.
    [17] Roberts AB. Physiological actions and clinical applications of transforming growth factor-B(TGF-B). Growth Factors,1993,8:1-9.
    [18] Carano RA, Filvaroff EH. Angiogenesis and bone repair[J]. Drug Discov Today,2003,8(21):980-989.
    [19] Kanno T, Takahashi T, Tsujisawa T, et al. Platelet-rich plasma enhances human osteoblast-likecellproliferation and differentiation[J]. J OralMaxillofac Surg,2005,63(3):362-369.
    [20] Trippel SB. Potential role of insulin-like growth factors in fracture healing. Clin OrthopRelat Res,1998,355(Suppl):301-313.
    [21] Galiano RD, Zhao LL, Clemmons DR, et al. Interaction between the insulin-like growth factorfamily and the integrin receptor family in tissue repair processes. Evidence in arabbit ear dermal ulcermodel. J Clin Invest,1996,98:2462-2468.
    [22] Freymiller EG, Agbaloo TL. Platelet-rich plasma:ready or not?[J] J Oral Maxillofac Surg,2004,62(4):484-488.
    [23] Xiaojun D, Liu Y, Qi-hong L. Molecularmechanism of synergism of angiogenesis and boneregeneration[J]. Journal of Clinical Orthopaedics,2005,8(1):88-91.
    [24] MayrWohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growthfactor stimulateschemotacticmigration of primary human osteoblasts[J]. Bone,2002,30(3):472-477.
    [25] David M, Dohan E, Lars R, et al. Classification of platelet concentrates from pure platelet-richplasma(P-PRP)to leucocyte and platelet-rich fibrin(L-PRF)[J]. Trends Biotechnol,2009,27(3):158-167.
    [26] Anitua E. Plasma rich in growth factors: preliminary results of use in the preparation of future sitesfor implants. Int J Oral Maxillofac Implants,1999,14:529-535.
    [27] Sonnleitner D, Huemer P, Sullivan DY. A simplified technique for producing platelet-rich plasmaand platelet concentrate for intraoral bone grafting techniques: a technical note. Int J Oral MaxillofacImplants,2000,15:879-882.
    [28] Petrungaro PS. Using platelet-rich plasma to accelerate soft tissue maturation in estheticperiodonatal surgery. Compend Contin Educ Dent,2001,22(9):729-32,734,736passim; quiz746.
    [29] Landesberg R, Roy M, Glickman RS, et al. Quantification of Growth Factor Levels Using aSimplifed Method of Platelet-Rich Plasma Gel Preparation. J Oral Maxillofac Suig,2000,58:297-300.
    [30] Aghaloo TL, Moy PK, Freymiller EG. Investigation of platelet-rich plasma in rabbit cranial defects:A pilot study.J Oral Maxillofac Surg,2002,60:1176-1181.
    [31]陈龙菊,程亚媛,刘义明,等。汇集滤白细胞血小板的研制及临床应用[J]。广东医学院学报,2009,27(3):242-244。
    [32] Bertolini F, Rebulla P, Porret ti L, et al. Platelet qualityafter152day storageofPlatelet concentratesprepared from pooled buffycoats and stored in aglucosefree crystalloid medium[J]. Transfusion,1992,32(1):9-16.
    [33] Fijnheer R, Veldman HA, Van den Eertwegh AJ, et al. In vitro evaluation of buffy coat derivedplatelet concent rates stored in a synthetic medium[J]. Vox Sang,1991,60(1):16-22.
    [34] Eriksson L, Hogman CF. Platelet concent rates stored in an additive solution prepared from pooledbuffy coats[J]. Vox Sang,1990,59(3):140-145.
    [35]赵耀,瞿文亮。富血小板血浆促进骨再生与修复的影响因素研究进展[J]。中国修复重建外科杂志,2010,24(8):1004-1008。
    [36] Marx RE. Platelet-Rich Plasma: Evidence to Support Its Use. J Oral Maxillofac Surg,2004,62:489-496.
    [37] Weibrich G, Kleis WK, Hafner G. Growth factor levels in the platelet-rich plasma produced by2different methods: curasan-type PRP kit versus PCCS PRP system. Int J Oral Maxillofac Implants,2002,17:184-90.
    [38] OkudaK,Kawase T, Momose M, et al. Platelet-rich P lasma contains high levelsofPlateletderivedgrowthfactor and transforming growth factor-betaand modulates theProliferationofperiodontallyrelated cells in vitro[J]. JPeriodontol.2003,74(6):849-857.
    [39] JakseN, Tangl S, Chili R, et al. Influence of PRP on autogenoussinus graft:An experimentalstudyonsheep[J]. Clin Oral Implant Res,2003,14(5):578-583.
    [40] Landesberg R, Moses M, Karpatkin M. Risks of using platelet-rich plasma gel. J Oral MaxillofacSurg,1998,56:1116-1117.
    [41] Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today,2003,8:980-989.
    [42] Shen EC, Chou TC, Gau CH, et al. Releasing growth factors from activated human platelets afterchitosan stimulation: a possible bio-material for platelet-rich plasma preparation[J]. Clin Oral ImplantsRes,2006,17(5):572-578.
    [43] Landesberg R, Roy M, Glickman RS, et al. Quantification of Growth Factor Levels Using aSimplifed Method of Platelet-Rich Plasma Gel Preparation. J Oral Maxillofac Suig,2000,58:297-300.
    [44] Landesberg R, Burke A, Pinsky D, et al. Activation of platelet-rich plasma using thrombin receptoragonist peptide[J]. Oral Maxillofac Surg,2005,63(4):529-535.
    [45] Dohan D M, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): a second-generation plateletconcentrate. Part I: technological concepts and evolution [J]. Oral Surg Oral Med Oral Pathol OralRadiol Endod,2006,101(3):37-44.
    [46] Fennis JP, Stoelinga PJ, Jansen JA. Mandibular reconstruction: a histologicalandhistomorphometric studyon the use of autogenous scaffolds, particulate cortico-cancellous bonegraftsandplateletrich plasma in goats. Int J Oral Maxillofac Surg,2004,33:48-55.
    [47] Suba Z, Takacs D, Gyulai-Gaal S, et al. Facilitation of beta-tricalcium phosphate-induced alveolarboneregeneration by platelet-rich plasma inbeagle dogs: a histologic and histomorphometric study. Int JOral Maxillofac Implants,2004,19:832-838.
    [48] Thorwarth M, Rupprecht S, Falk S, et al. Expression of bone matrix proteins duringde novo boneformationusinga bovinecollagen andplatelet-rich plasma (prp)-an immunohistochemical analysis.Biomaterials,2005,26:2575-84.
    [49] Hokugo A, Ozeki M, Kawakami O, et al. Augmented bone regenerationactivityof platelet-richplasma by biodegradable gelatin hydrogel. Tissue Eng,2005,11:1224-1233.
    [50] Papli R, Chen S. Surgical treatment of infrabony defects with autologous platelet concentrate orbioabsorbable barrier membrane: A prospective case series. J Periodontol,2007,78:185-193.
    [51] Dori F, Huszar T, Nikolidakis D, et al. Effect of platelet-rich plasma on the healing of intra-bonydefects treated with a natural bone mineral and a collagen membrane. J Clin Periodontol,2007,34:254-261.
    [52] Yassibag-Berkman Z, Tuncer O, Subasioglu T, et al. Combined use of platelet-rich plasma andbone grafting with or without guided tissue regeneration in the treatment of anterior interproximaldefects. J Periodontol,2007,78:801-809.
    [53] Ilgenli T, Dundar N, Kal BI. Demineralized freeze-dried bone allograft and platelet-rich plasma vsplatelet-rich plasma alone in infrabony defects: a clinical andradiographic evaluation. Clin Oral Investig,2007,11:51-59.
    [54] Demir B, Sengun D, Berberoglu A. Clinical evaluation of platelet-rich plasma and bioactive glassin the treatment of intra-bony defects. J Clin Periodontol,2007,34:709-715.
    [55] Keles GC, Cetinkaya BO, Albayrak D, et al. Comparison of platelet pellet and bioactive glass inperiodontal regenerative therapy. Acta Odontol Scand,2006,64:327-333.
    [56] Christgau M, Moder D, Wagner J, et al. Influence of autologous platelet concentrate on healing inintra-bony defects following guided tissue regeneration therapy: A randomized prospective clinicalsplit-mouth study. J Clin Periodontol,2006,33:908-921.
    [57] Czuryszkiewicz-Cyrana J, Banach J. Autogenous bone and platelet-rich plasma (PRP) in thetreatment of intrabony defects. Adv Med Sci,2006,51(suppl1):26-30.
    [58] Mannai C. Early implant loading in severely resorbed maxilla using xenograft, autograft, andplatelet-rich plasma in97patients. J Oral Maxillofac Surg,2006,64:1420-1426.
    [59] Hartwig D, Harloff S, Liu L, et al. Epitheliotrophic capacity of a growth factor preparationproduced from platelet concentrates on corneal epithelial cells: a potential agent for the treatment ofocular surface defects? Transfusion,2004,44:1724-1731.
    [60] Crovetti G, Martinelli G, Issi M, et al. Platelet gel for healing cutaneous chronic wounds. TransfusApher Sci,2004,30:145-151.
    [61] Caloprisco G, Borean A. Chronic skin ulcers: A regenerative simulation by topical hemotherapy. IntJ Artif Organs,2004,27:816-817.
    [62] Pryor ME, Yang J, Polimeni G, et al. Analysis of rat calvada defects implanted with a platelet-richplasma preparation: radiographic observations[J]. Pefiodontol,2005,76(8):1287-1292.
    [63] Aghaloo TL, Moy PK, Freymiller EG. Investigation of platelet-rich plasmain rabbit cranial defects:A pilot study[J]. Oral Maxillofac Surg,2002,60(10):1176-1181.
    [64] Choi BH, Im CJ, Huh JY, et al. Effect ofplatelet-rieh plasma on boneregeneration in autogenousbone graft[J]. Oral Maxillofac Surg,2004,33(1):56-59.
    [65] Butterfield KJ, Bennett J, Oronowicz G, et al. Effect of platelet-rich plasma with autogenous bonegraft for maxillarysinus augmentation in a rabbit model[J]. Oral Maxillofac Surg,2005,63(3):370-376.
    [66] Arpommaeklong P, Kochel M, Depprich K et al. Influence of platelet-rich plasma (PRP)onosteogenic differentiation of rat bone marrow stromal cells. An in vitro study. IntJ Oral Maxillofac Surg,2004,33:60-70.
    [67] Ranly DM, Lohmann CH, Domenico Andreacchio, et al. Platelet-Rich Plasma InhibitsDemineralized Bone Matrix-Induced Bone Formation in Nude Mice[J]. The Journal of Bone and JointSurgery(American),2007,89:139-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700