地震作用下岩体地下洞室响应及安全评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国西部大开发战略的实施过程中,一大批规模庞大的水电站工程即将在我国西部区域地震活动频繁、地震烈度高的地区营建。由于受当地地形条件限制,水电站的引水发电建物多布置于江河两岸的山体中,从而形成了超大型地下洞室群。因此如何确保地震作用下赋存于岩体中地下洞室的地震安全性是工程中必须解决的关键问题。在此工程背景下,本文结合国家自然科学基金重点项目——地震作用下岩体的力学响应及工程安全,依托溪洛渡水电站工程项目,开展了地震作用下岩体地下洞室响应及安全评价方法的研究工作。
     首先,以无限线弹性介质中圆孔对P波的衍射问题为突破口,通过求解圆孔孔周动应力集中因子这一途径,证明了显式有限差分法分析固体介质中波的衍射问题的可行性,为应用显式有限差分法开展岩体地下洞室的地震反应分析及安全评价方法的研究提供了理论依据。
     其次,建立了溪洛渡地下洞室群的二维和三维数值模型,应用显式有限差分法分析了唐山余震天津医院地震波作用下地下洞室群的地震反应。研究结果表明:可以近似采用二维模型代替三维模型来预测地下洞室洞身部分围岩的力学响应;洞端部分则必须通过建立三维模型来进行分析。由于二维计算模型建模、求解以及数据处理效率远远高于三维模型,而且存储容量也远远小于三维模型,因此,在开展类似溪洛渡水电站这种超大型地下厂房的地震反应分析时,可以首先采用二维模型(而非一开始就建立复杂的三维模型)对洞室洞身部分断面力学响应作出快速的初步估计,了解围岩力学响应特点,然后再开展更具针对性的三维模型的分析与研究。
     随后,考虑到超大型地下厂房轴线长度尺寸较大、地震荷载的空间非一致特征明显的特征,讨论了空间非一致地震动输入对溪洛渡水电站超大型地下洞室群地震响应特征的影响。分析表明:空间非一致地震动输入使得溪洛渡地下洞室围岩地震响应沿轴线长度方向产生相位差,但是对于溪洛渡地下厂房这种轴向长度水平(轴向尺度在300~400m左右)的洞室围岩地震响应幅值影响不大。因此,在进行类似岩体地下洞室的地震安全评价时可以不考虑地震动空间非一致性的影响。这也为Dowding、Rozen与Sharma、Judd仅将PGA作为评价指标提供了合理解释。
     通过分析总结岩体地下洞室地震响应特征,提出了可以合理反映地震荷载作用对于岩体地下洞室围岩所引发的附加动力效应的动应力集中因子代表值的概念,并将动应力集中因子代表值作为描述岩体地下洞室地震响应的关键特征,开展了动应力集中因子代表值影响因素的参数分析。参数分析表明:动应力集中因子代表值与影响岩体地下洞室地震反应的五个关键因素——地震动加速度幅值、洞室埋深、围岩岩体级别、衬砌混凝土厚度、衬砌混凝土标号均近似呈线性关系。同时,在此基础上,给出了有(无)衬砌支护结构两种情况的地震安全评价公式。
     最后,基于地震安全评价公式提出了一种应用简单、工程普适性较强的适用于岩体地下洞室的地震安全评价方法。应用该评价方法对唐山余震天津医院地震作用下溪洛渡水电站超大型地下洞室群的地震安全性进行了评价,所得结果与采用Dowding和Rozen、Sharma和Judd的评价方法结果一致。由此说明了本文提出的地震安全评价方法的合理性。同时,研究还表明:本文提出的地震安全评价方法可以给出偏于安全的地震安全评价结果。
In the strategy of Development of Western Areas in China, a lot of large scale hydraulic power plants will be consctructed in western areas which are seismically active zones with high earthquake intensity. The diversion structures are mainly constructed in the mountains beside the rivers. Therefore, how to evaluate the safety of the underground cavern groups when they are subjected to the earthquake is confronted with the engineerers and should have to be solved properly. Facing these problems, the author combines the key project sponsored by the National Science and Natural Funding, Dynamic response of the rock mass and the safety of the rock engineering under seismic loading, and relies on the the construction project of Xi Luo Du hydraulic power plant to study the seismic response of the underground openings in rock and the safety assessment method subjected to the earthquake.
     First of all, the diffraction of P wave by the circular hole in the infinite elastic medium is stuied. Both analytical and numerical solutions of the dynamic stress concentration fator done by explicit finite difference method are solved. Comparison of two solutions proves the feasibility of the explicit finite difference method to analyze the diffraction of solid waves and accordingly this justifies the application of the explicit finite difference method to study the seismic response of the underground openings in rock and the safety assessment method under seismic loading.
     Secondly, numerical models both in two and three dimensions of Xi Luo Du underground cavern groups are generated and the seismic response of the underground openings under Tianjin hospital seismic wave arising from Tangshan aftershock is analyzed by explicit finite difference method. It is shown that 2D model can be used to approximately predict the mechanical response of sections in the middle of caverns and 3D model has to be used to analyze the response of the sections near cavern portals. 2D model is much more efficient than 3D model in the generation of the numerical models, computation speed and the data processing, and the memory capacity for 2D model is much less than 3D model. Therefore, when the engineers analyze the seismic response of Xi Luo Du-like large scale underground openings, it will be better to generate 2D model instead of complicated 3D model at the very beginning to make rapid approximate prediction of for the sections in the middle of caverns to understand more about the dynamic response of the surrounding rock mass of the underground openings before 3D model is generated to predict more precise mechanical behavior of the underground caverns.
     Subsequently, considering the long length of Xi Luo Du underground openings which might indicate that the spatially non-unform seimic ground motion input should be taken into consideration, the influence of the spatial coherence of the seismic loading on the seismic response of Xi Luo Du underground openings has bee investigated. Research shows that spatially non-uniform sesmic laoding results in the phase difference of seismic response along the axial length of the underground openings and has litte imact on the amplitude of the seismic response of Xi Luo Du-like underground openings whose axial length is at the range of 300m~400m. Thereby, when the seismic response of the similar underground openings is analyzed, the spatial coherence of the seismic loading can be reasonably neglected. This conclusion explains why Dowding, Rozen and Sharma, Judd applied PGA as the only indicator to assess the safety of the underground openings subjected to the earthquake.
     Based on the characteristic of the seismic response of the underground openings in rock, the concept of the representative value of the dynamic stress concentration is proposed which could rationaly reflect the additional dynamic effect on the surrronding rock mass of the underground openings resulting from seismic loading. The representative value is thereby applied as the primary characteristic parameter and the parameter study of the influencing factors on the representative value is carried out. Parameter study shows that representative value appears approximate linear relationship to the accelearton amplitude of the seismic wave, the overburden depth of the underground opeing, rock rate, liner thickness and concrete grade. Based on this understanding, formulas of seismic safety assessment have been developed for both lined and unlined underground openings.
     Finally, according to the seismic safety assessment formulas, a simple seismic safety assessment method with good universality is developed. The proposed assessment method is therewith applied to evaluate the safety of Xi Luo Du underground cavern groups subjected to Tianjin hospital seismic wave arising from Tangshan aftershock. It is demonstrated that the proposed method draws similar conclusions to Dowding-Rozen and Sharma-Judd’s methods. It also reveals that this method gives a relatively conservative assessment results.
引文
[1] 潘家铮. 老生常谈集[M]. 北京:黄河水利出版社,2005.
    [2] 钱七虎. 中国岩石(地下)工程的成就、进展和挑战——“二十一世纪岩石力学的研究在中国”[R],2006.
    [3] 国家电力公司成都勘测设计研究院. 溪洛渡水电站工程地质报告[R]. 成都:国家电力公司成都勘察设计研究院, 2001.
    [4] 李海波,李小军,王明洋. 国家自然科学基金重点项目—地震作用下岩体的力学响应及工程安全[R],2005.
    [5] 林皋,梁青槐. 地下结构的抗震设计[J]. 土木工程学报,1996,29(1):15-24.
    [6] Dowding C. H., Rozen A. Damage to rock tunnels from earthquake shaking[J]. J. Geotech. Eng. Div., ASCE 104 (GT2), 1978: 175-191.
    [7] Pratt H R, Stephenson D E, Zandt G, et al. Earthquake Damage to Underground Facilities[A]. In: Rapid excavation and tunneling conference[C]. CO, USA: Littleton, 1980.
    [8] Sharma S, Judd R. J. Underground opening damage from earthquakes[J]. Engineering Geology, 1991, 30: 263-276.
    [9] Asakura T, Sato Y. Mountain Tunnels Damage in the 1995 HYOGOKEN-NANBU earthquake[A]. Railway Technical Research Institute(RTRI), 1998, 39(1): 9-16.
    [10] 王瑞民,罗奇峰. 阪神地震中地下结构和隧道的破坏现象浅析[J]. 灾害学,1998,13(2):63-66.
    [11] Hashash Y M A, Hook J. J, Schmidt B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, (16): 247-293.
    [12] 李海波,蒋会军,赵坚等. 动荷载作用下岩体工程安全的几个问题[J]. 岩石力学与工程学报,2003,22(11):1887-1891.
    [13] Mohammad C, Pakbaz, Yareevand A. 2–D analysis of circular tunnel against earthquake loading[J]. Tunnelling and Underground Space Technology, 2005, 20: 411-417.
    [14] 潘昌实. 隧道及地下结构物抗震问题的研究概况[J]. 世界隧道,1996,(5):7-16.
    [15] Duke,C.M. and Leeds, D.J. Effects of Earthquake on Tunnels[A], Protective Construction in A Nuclear Age, Proceeding of the Second Protective Construction Symposium, 1959, 1: 303-328.
    [16] 潘昌实. 隧道地震灾害综述[J]. 隧道及地下工程,1990,11(2):1-9.
    [17] Shunzo Okamoto, Introduction to Earthquake Engineering[M]2nd Edition, Tokyo: Universityof Tokyo Press, 1984.
    [18] Nakamura, S., Yoshida, N., Iwatate, T. Damage to Daikai Subway Station During the 1995 Hyogoken-Nambu Earthquake and Its Investigation[J]. Japan Society of Civil Engineers, Committee of Earthquake Engineering, 1996, 287-295.
    [19] 陶连金,张倬元,姜德义. 复杂工程岩体稳定性评价[M]. 成都:成都科技大学出版社,1998.
    [20] 卢慈荣,蒋建群. 地下隧道结构抗震分析综述[A]. 见:史佩栋编.《地下工程进展 2003》[C]. 浙江省建筑业行业协会地下工程分会,2003.
    [21] St John C. M., Zahrah T. F. Aseismic Design of Underground Structures[J]. Tunnelling and Underground Space Technology, 1987, 2(2): 165-197.
    [22] 胡聿贤. 地震工程学[M]. 北京:地震出版社,1988.
    [23] Murano T, Takewaki N. On earthquake resistance of rock caverns[R]. A report prepared for the NEA Coordinating Group on Geological Disposal OECD/NEA, 1984.
    [24] Carpenter D W, Chung D. C. Effects of earthquakes on underground facilities[R]. NUREG/CR-4609, Lawrence Livermore National Lab, 1986.1-52.
    [25] 于翔,陈启亮,赵跃堂等. 地下结构抗震研究方法及其现状[J]. 解放军理工大学学报,2000,1(5):63-69.
    [26] 常虹,尹新生,尹春超. 地下建筑结构抗震设计的几个问题[J]. 吉林建筑工程学院学报,2005,22(1):21-23.
    [27] 边金. 地铁地下结构的地震动力响应研究[博士学位论文][D]. 北京:北京工业大学,2006.
    [28] Shunzo Okamoto, Introduction to Earthquake Engineering[M]. Tokyo: University of Tokyo Press, 1984.
    [29] Phillips, J.S. and Luke, B. A., Tunnel damage resulting from seismic loading[A]. Proceedings of 2nd International conference on Rec Adv, in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, St. Louis, Missouri, 1991, 207-201.
    [30] Shunzo Okamoto and Choshiro Tamura, Behavior of subaqueous tunnels during earthquakes, Earthquake Engineering and Structural Dynamics, 1973, 1: 253-266.
    [31] Yakovlevich, D. I. and Borisovna, M. J., Behavior of tunnel liner model on seismic platform, Symposium on earthquake engineering, University of Roorkee. Oct. 5-7, 1978, 1:379-382.
    [32] 王志杰,高波,关宝树. 围岩-隧道衬砌结构体系的减震研究[J]. 西南交通大学学报,1996,31(6):590-594.
    [33] 赵大鹏,宫必宁,晏成明. 大跨度地下结构振动性态试验研究[J]. 重庆建筑大学学报,2002,24(5):52-56.
    [34] 宫必宁,赵大鹏. 地下结构与土动力相互作用试验研究[J]. 地下空间,2002,22(4):320-324.
    [35] 周林聪,陈龙珠,宫必宁. 地下结构地震模拟振动台试验研究[J]. 地下空间与工程学报,2005,1(2):182–213.
    [36] Pao Yih-Hsing, Mao Chao-Chow. Diffraction of Elastic waves and Dynamic Stress Concentrations[M]. Crane, Russak &Company Inc. New York, U.S.A, 1972.
    [37] 林皋. 地下结构抗震分析综述(上)[J]. 世界地震工程,1990,(2):1–10.
    [38] AFPS/AFTES. Guidelines on Earthquake Design and Protection of Underground Structures, 2001.
    [39] Wang J. N. Seismic Design of Tunnels: A State-of-the-Art Approach[M]. New York:Parsons, Brinckerhoff, Ouade and Douglas Inc, 1993.
    [40] 阳波,顾红军. 大跨度地下结构中柱抗震研究[J]. 建筑技术开发,2004,31(8):36-38.
    [41] 严松宏,高峰,李德武等. 沉管隧道地震响应分析若干问题的研究[J]. 岩石力学与工程学报,2004,23(5):846-850.
    [42] 黄润秋,王贤能,唐胜传. 深埋隧道地震动力响应的复反应分析[J]. 工程地质学报,1997,5(1):1-7.
    [43] 刘晶波,李彬,谷音. 地铁盾构隧道地震反应分析[J]. 清华大学学报(自然科学版),2005,45(6):757–760.
    [44] 林皋. 地下结构抗震分析综述(下)[J]. 世界地震工程,1990,(3):1–10.
    [45] 陈健云,胡志强,林皋. 超大型地下洞室群的三维地震响应分析[J]. 岩土工程学报,2001,23(4):494-498.
    [46] 韦敏才. 地下结构的动力特性及地震反应分析[J]. 昆明理工大学学报,1996,21(3):60-63.
    [47] 于新杰,张鸿儒,王逢朝. 南京长江沉管隧道竖井地震反应分析[J]. 北方交通大学学报,1998,23(4):61-64.
    [48] 陈健云,胡志强,林皋. 超大型地下洞室群的随机地震响应分析[J]. 水利学报,2002,1:71-75.
    [49] 陈健云,胡志强,林皋. 大型地下结构三维地震响应特点研究[J]. 大连理工大学学报,2003,43(3):344-348.
    [50] 张玉娥,白宝鸿,张耀辉等. 地铁区间隧道震害特点、震害分析方法及减震措施的探讨[J]. 振动与冲击,2003,22(1):70-74.
    [51] 刘志贵. 影响地下结构地震响应的若干因素探讨[J]. 岩土工程界,2004,7(2):44-49.
    [52] 高峰,石玉成,严松宏等. 隧道的两种减震措施研究[J]. 岩石力学与工程学报,2005,24(2):222-229.
    [53] 杨超,杨林德,季倩倩. 软土地铁车站地震响应数值计算方法的研究[J]. 地下空间与工程学报,2006,2(1):87-95.
    [54] 杨林德,杨超,季倩倩等. 地铁车站的振动台试验与地震响应的计算方法[J]. 同济大学学报,2003,31(10):1135-1140.
    [55] 吕涛. 地下水与地震作用下节理岩体地下洞室围岩力学响应研究[硕士学位论文][D]. 北京:北京工业大学,2005.
    [56] 张丽华,陶连金,李晓霖. 节理岩体地下洞室群的地震动力响应分析[J]. 世界地震工程. 2002,18(2):158-162.
    [57] 陶连金,张倬元,傅小敏. 在地震载荷作用下的节理岩体地下洞室围岩稳定性分析[J]. 中国地质灾害与防治学报. 1998,9(1):32-40.
    [58] 陶连金,常春. 节理岩体的动力响应分析及工程应用. 黑龙江矿业学院学报,2000,10(4):6-10.
    [59] 杨小礼,李亮. 层状地基中交通隧道地震反应分析[J]. 长沙铁道学院学报,2000,18(4):15-19.
    [60] 尚昊,郭志昆,张武刚. 大断面地下结构抗震模型试验[J]. 岩土工程界,2002,5(10):60-64.
    [61] Owen G. N., Scholl R. E. Earthquake engineering of large underground structures[R]. FHWA/RD-80/195. Federal Highway Administration and National Science Foundation, 1981.
    [62] 郑永来,杨林德. 地下结构震害与抗震对策[J]. 工程抗震,1999,(4):23-28.
    [63] McClure,Cole R. Damage to underground structures during earthquakes[A]. In: Workshop on Seismic Performance of Underground Facilities. Augusta Ga USA. 1981. 75-106.
    [64] Wang W. L., Wang T. T., Su J. J., et al. Assessment of damage in mountain tunnels due to Taiwan Chi-Chi Earthquake[J]. Tunnelling and Underground Space Technology, 2001: 133-150.
    [65] Wang J. M. The Distribution of Earthquake Damage to Underground Facilities during the 1976 Tangshan Earthquake[J], Earthquake Spectra,1985, 1(4).
    [66] FLAC(Fast Lagrangian Analysis of Continua) User's Guide, Version 5.0. Itasca Consulting Group, Inc., 2005.
    [67] FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions) OPTIONAL FEATURES, Version 3.0. Itasca Consulting Group, Inc., 2005.
    [68] 廖振鹏. 工程波动理论导论(第二版)[M]. 北京:科学出版社,2002.
    [69] R. W. Clough, J. Penzien. Dynamics of structures. McGraw-Hill, 1995.
    [70] A. Cemal Eringen, Erdo?an S. ?uhubi. ElastoDynamics Volume II Linear Theory[M], New York: Academic Press, 1975.
    [71] 郭敦仁. 数学物理方法[M]. 北京:人民教育出版社,1979.
    [72] 杨桂通,张善元. 弹性动力学[M]. 中国铁道出版社,1988.
    [73] 徐芝纶. 弹性力学力学简明教程[M]. 北京:高等教育出版社,1980.
    [74] 李仲奎,戴荣,姜逸明. FLAC3D 分析中的初始应力场生成及在大型地下洞室群计算中的应用[J]. 岩石力学与工程学报,2002,21(增 2):2387-2392.
    [75] 李海波. 花岗岩材料在动态压应力作用下力学特性的实验和模型研究[D]. 武汉:中国科学院武汉岩土力学研究所,1999.
    [76] 夏祥,李俊如,李海波等. 爆破荷载作用下岩体振动特征的数值模拟[J]. 岩土力学,2005,26(1):50-56.
    [77] 高谦,乔兰,吴顺川等. 地下工程系统分析与设计[M]. 北京:中国建材工业出版社,2005.
    [78] 潘旦光,楼梦麟,范立础. 多点输入下大跨度结构地震反应分析研究现状[J]. 同济大学学报,2001,29(10):1213-1219.
    [79] 董汝博,周晶,冯新. 非平稳空间相关多点地震动合成方法研究[J]. 地震工程与工程振动,2007,27(3):10-14.
    [80] 楼梦麟,林皋. 地震动空间相关性对水坝地震反应的影响[J]. 水力发电学报,1984,(2):36-46.
    [81] 屈铁军,王前信. 地下管线多点地震激励纵向振动的级数解[J]. 地震工程与工程振动,1993,13(4):39-46.
    [82] 李正农,楼梦麟. 大跨度桥梁结构地震动输入问题的研究现状[J]. 同济大学学报,1999,27(5):592-597.
    [83] 梁嘉庆. 大跨空间结构在非一致地震输入下的弹性响应分析[D]. 东南大学硕士学位论文,2004.
    [84] 韩大建,唐增洪. 珠江水下沉管隧道的抗震分析与设计(II)——行波法[J]. 华南理工大学学报(自然科学版),1999,27(11):122-130.
    [85] 屈铁军,王前信. 空间相关的多点地震动合成(I)基本公式[J]. 地震工程与工程振动,1998,18(1):8-15.
    [86] 屈铁军,王前信. 空间相关的多点地震动合成(II)合成实例[J]. 地震工程与工程振动,1998,18(2):25-32.
    [87] 杨自强,魏公毅. 综述:产生伪随机数的若干新方法[J]. 数值计算与计算机应用,2001,(3):201-216.
    [88] 盛骤,谢式千,潘承毅. 概率论与数理统计(第三版)[M]. 北京:高等教育出版社,2001.
    [89] 大崎顺彦[著],吕敏申、谢礼立[译]. 地震动的谱分析入门[M]. 北京:地震出版社,1980.
    [90] 屈铁军,王君杰,王前信. 空间变化的地震动功率谱的实用模型[J] 地震学报,1996,18(1):55-62.
    [91] Yang J., Li J. B., Lin G. A simple approach to integration of acceleration data for dynamic soil-structure interaction analysis[J]. Soil Dynamics and Earthquake Engineering, 2005, 1-10.
    [92] 刘佑荣,唐辉明. 岩体力学[M]. 北京:中国地质大学出版社,1999.
    [93] GB 50218-94,工程岩体分级标准[S],1994.
    [94] GB 50010-2002,混凝土结构设计规范[S],2002.
    [95] 徐干成,白洪才,郑颖人等. 地下工程支护结构[M]. 北京:中国水利水电出版社,2002.
    [96] 薛亚东,张世平,康天合. 回采巷道锚杆动载响应的数值分析[J]. 岩石力学与工程学报,2003,22(11):1903-1906.
    [97] 韦凯,高峰,石玉成等. 石窟地震反应分析[J]. 兰州交通大学学报(自然科学版),2005,24(6):46-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700