浅层岩土热物性参数测试试验与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着常规能源的日益枯竭,可再生能源和新能源的开采逐渐受到人们的重视,地热是一种典型的清洁能源,同时它也被称为“绿色能源”和“可再生能源”。地源热泵技术就是利用浅层地热能作为热源的一种节能、环保的先进技术。其中又以土壤源热泵最为清洁和环保。
     地层热物性参数是影响地源热泵地下换热器设计的关键因素,包括土壤的导热系数、热扩散率和体积比热。地下换热器设计必须事先准确已知反映岩土热反应能力的热物性参数。在一定热负荷下,地下换热器数量和深度很大程度上取决于土壤热物性参数。对于大型的垂直埋管热泵系统,需进行现场地层热物性原位测试,可以得到较准的钻孔的地层平均导热系数和钻孔的热阻。但目前国内专门用于这方面测量的仪器还非常少,至今还没有制定地层热物性原位测试的标准,这在很大程度上影响了土壤源热泵的发展。
     本文在吉林大学绿色能源研究与开发实验室的地源热泵实验平台的基础上,利用地源热泵系统和地层热物性原位测试仪,建立了地源热泵钻孔热反应测试仪系统,开展试验研究。通过运行制冷和制热两种工况,将测量得到的初始温度、瞬时流量、进井温度、出井温度等数据,进行分析整理,利用计算软件和线源模型、柱源模型得到地层平均导热系数和钻孔的热阻。并利用MATLAB-PDETool工具作出了垂直单U型埋管周围不同导热系数土壤的温度场分布图和不同管径埋管换热器周围土壤温度场分布图,进行分析。
     本论文的研究对推广地源热泵工程具有重要的指导意义和实用价值,对进行区域性甚至是全国性的浅层地热资源大调查,对合理利用我国地热资源,减少其它能源消耗,保护环境等具有相当重要的现实意义。?
Energy-saving and environmental protection in relation to the sustainability of the 21st century development of the national economy, two major issues. The whole world is committed to low-power, non-polluting, renewable energy projects of new technology research and application.At present, China is still based on coal-based developing countries, such an unreasonable energy structure has resulted in serious environmental pollution, and impeded the sustainable development of China's national economy. China's total energy consumption is currently building the community a large proportion of total energy consumption, about 1 / 3 the power consumption in commercial buildings and homes on the civilian. The relative shortage of energy in the current, particularly concern the construction of energy-saving technologies. In the field of air-conditioning and heating, as a clean and renewable energy, ground source heat pump system is the world's fastest-growing one of the ways.
     Ground Source Heat Pump (GSHP) for its energy-saving air-conditioning systems, environmental protection and sustainable development of all countries in the world and has been favored .In Europe and the United States have developed more mature in recent years in China's rapid development has been and is receiving increasing attention, both at home and abroad as a research study of workers in the field of eco-energy hot spot. Underground pipe-type ground source heat pump through the vertical or horizontal rock buried in the ground heat exchanger systems of heat exchange. At present the technology needs to be addressed two important issues are: to improve the heat exchange tube and heat transfer between soil, as well as to reduce the working fluid and the temperature difference between the soil, thereby enhancing the heat efficiency and lower initial investment. Reasonable system to pipe heat exchanger is designed to solve the above problems of the major route of transmission. Pipe heat exchanger in the system design process, the underground rock and soil physical properties of the average thermal design data is an important one of the guiding parameters.
     Ground Source Heat Pumps There are different forms and structures. According to the form of heat source can be divided into: ground source heat pump groundwater, surface water source heat pump and ground source heat pump. Geo heat pump in this article refers to ground source heat pump. It in accordance with the level of pipe can be divided into the vertical pipe and pipe-style. Which is the underground pipe heat exchanger can be divided into a single U-tube, multi-U-tube and pipe. Buried in the geothermal heat exchangers in the form of the many arrangements, vertical U-pipe pipe than other forms because of its many advantages have been widely used, is the current ground-source heat pump system, the mainstream form of pipe. In this paper, the object is a single vertical U-tube heat exchanger underground. It consists of four parts: U-tube, recycled water, to fill and the surrounding soil.
     In this paper, Jilin University, green energy research and development of ground-source heat pump laboratory experiment platform based on the combination of heat pump system for ground-source heat pump and thermal reaction tester to connect and establish a ground-source heat pump - thermal response test Instrument systems. The use of thermal reaction tester measurement of drilling were carried out cooling and heating tests of the two conditions.
     In this paper, Jilin University, green energy research and development of ground-source heat pump laboratory experiment platform based on the combination of heat pump system for ground-source heat pump and thermal reaction tester to connect and establish a ground-source heat pump - thermal response test Instrument systems. The use of thermal reaction tester measurement of drilling were carried out cooling and heating tests of the two conditions. Using line source model and source model column, combined with matlab software, heat transfer model will be the fluid temperature and the actual measured changes in fluid temperature contrast by adjusting the numerical heat transfer model, the average thermal properties of geotechnical parameters, when calculated temperature changes obtained with the measured temperature error of the hour, adjusting the thermal properties of the average value of parameters that is the result of the request.
     Paper also analyzes the initial ground temperature, ground heat, drilling diameter of the impact of thermal conductivity.Analysis results show that the radius of the initial drilling is to moderate the impact of its calculation of the main factors, the impact of rock and soil specific heat is very small, the basic can be ignored. Thus, in the design of ground source heat pump system, it is necessary to try to choose a good thermal conductivity properties of backfill materials, in order to enhance heat transfer and the surrounding soil;Construction, wherever possible the use of smaller diameter drilling in order to reduce thermal resistance;Cold regions in the north of the transition can be used in summer season or solar energy and other means to compensate for the ground temperature to increase the initial ground temperature, thus reducing the drilling depth, lower project investment.
     Application of thermal properties in geotechnical test drilling can easily determine the average rock and soil around the thermal conductivity and borehole thermal resistance, the parameters to be more in line with engineering practice, to the ground source heat pump system provides the basis for accurate design. In addition the use of movable thermal reaction tester can also be used for nation-wide parameters of the soil thermal properties testing, the establishment of a database of geothermal utilization, rational use of geothermal resources in China to reduce other energy consumption and environmental protection has important practical significance.
引文
[1]庄迎春,王哲,地源热泵技术在建筑节能中的应用,[J]建筑技术,2004(12):909.
    [2]郭文娟,薛惠锋,可再生能源的利用与可持续发展,[J]内蒙古农业科技,2008(4):23-24.
    [3]李良,节能环保的地源热泵,科技视野,2005(5):29.
    [4]吕灿仁,热泵及其在我国应用的前途[J],动力机械,1957,(No.2).
    [5]刘冬生,孙友宏,浅层地能利用新技术—地源热泵技术[J],岩土工程技术, 2003,(1): 57-59.
    [6]李安宁,地热技术经济评价[吉林大学硕士学位论文],2000.7.于明志,方肇洪,现场测试地下岩土平均热物性参数方法,[J]热力动力工程,2002(9),198-192.
    [7]郁永章主编,热泵的原理与应用[M],机械工业出版社,1993.
    [8]李家伟,廉乐明,于立强.土壤源热泵的国内外发展历史与现状[C],1996.
    [9]Ball D A. Design Method for GSHP[J]. ASHRAE Trans, DC-83-03, : 416-440.
    [10]INGERSOLL L. R. , PLASS H. J. Theory of The Ground pipe heat source for the heat pump [J ].Heating,Piping &Air Conditioning , 1948 ,20 (7) :119 122.
    [11]INGERSOLLL.R.,Zobel O.J., INGERSOL A. C. Heat Conduction with Engineering , Geological and Other Applications[M].New York:McGraw-Hill ,1954.
    [12]HART,D.P.,COLLION,R..Earth Coupled Heat Transfer, Publication of the National Water Well Association, 1986.
    [13]International Ground Source Heat Pump Association.Design and installations standards [ S ] . Stilwater ,Oklahoma ,1991.
    [14]高祖锟,用于供暖的土壤-水热泵系统[J],暖通空调,1995,(04).
    [15]吕灿仁,马一太,运用热泵提高低温地热采暖系统能源利用率的分析[J],天津大学学报,1982,(04).
    [16]毕月虹,陈林根,太阳能-土壤热源热泵的性能研究[J],太阳能学报,2000.(02).
    [17]李家伟,对土壤热泵装置的研究[D],1995.
    [18]于立强,青岛东部开发区建设以海水作冷热源大型热泵站可行性分析[C],1996.
    [19]李家伟,廉乐明,于立强,土壤源热泵的国内外发展历史与现状[C],1996.
    [20]于立强,张开黎,李梵,垂直埋管地地源热泵穖实验研究[C],北京:中国建筑工业出版社,2000.
    [21]李梵,垂直埋管土壤源热泵的研究[D],1999.
    [22]高祖锟,刘鹏建,土壤热源热泵用于夏季空调的研究[C],浙江大学出版社,1992;
    [23]赵军,涂锋华,朱强,李新国,利用井下换热器(DHEs)开发地热资源[J],北京节能,2000,(4):11-13.
    [24]赵军.,竖直埋管型地源热泵地下传热及热力性能的研究[D],天津大学,2002.
    [25]王景刚,自然工质热泵循环和地源热泵运行特性研究[D],天津大学,2002.
    [26]周倩,埋地换热器内热源理论模型与实验研究[D],天津大学,2003.
    [27]张昆峰,马芳梅等,土壤热源与热泵联接运行冬季工况的试验研究[J],华中理工大学学报,1996,(1):23-26.
    [28]李元旦,魏先勋,水平埋地管埋地换热器夏季瞬态工况的实验及数值模拟[J],湖南大学学报(研究生专刊)1999,26(2).
    [29]王勇,地源热泵研究(I)[D],重庆建筑大学,1998.
    [30]陈洪泳,殷琨,庄迎春,地源热泵技术简介[J],世界地质,2002,(2).
    [31]孙友宏,胡克,庄迎春等,岩土钻掘工程应用新领域―地源热泵技术[J],岩土钻掘工程,2002.
    [32]张玉敏,地源热泵同轴换热器温度场数值模拟与实验研究[D],吉林大学,2004.
    [33]庄迎春,孙友宏,谢康和,直埋闭式地源热泵回填土性能研究[J],太阳能学报,2004,(02).
    [34]余延顺,廉乐明,寒冷地区太阳能—土壤源热泵系统运行方式的探讨[J],太阳能学报,2003,(01).
    [35]李晓东,于明志,等基于地源热泵的便携式岩土热物性测试仪的研制与应用[J],自动化与仪器仪表,2004(5),28-29.
    [36]孙友宏,王庆华,陈昌富,吴晓寒,地层热物性原位测试方法及仪器[J]中国建设信息供热制冷2008,(11),31-33.
    [37]马志同.浅层岩土热物性参数测量仪的研制[D].北京:中国地质大学,2006.
    [38]马新,地源热泵技术研究,[吉林大学硕士学位论文],2000.12.
    [39]HELLSTROM, G. Duct Ground Heat Storage Model. Manual for Computer Code[D]. Lund: University of Lund, 1989.
    [40]CENK YAVUZTURK.Modeling of Vertical Ground Loop Heat Exchange For Ground Source Heat Pump Sysyems[D].Oklahoma :Oklahoma State University, 1999.
    [41]KAVANAUGH,S.P..Simulation and experimental verification of vertical groundcoupled heat pump systems[D]. Oklahoma: Oklahoma State University, 1985.
    [42]ESKILSON P.T.Thermal Analysis of Heat Extraction Boreholes.[D]. Lund:University of Lund , 1987.
    [43]HELLSTROM , G. Duct Ground Heat Storage Model. Manual for Computer Code[D]. Lund: University of Lund, 1989.
    [44]CENK YAVUZTURK. Modeling of Vertical Ground Loop Heat Exchange For Ground Source Heat Pump Sysyems[D]. Oklahoma :Oklahoma State University, 1999.
    [45]S.P.Kavanaugh, K.Rafferty.Ground Source Heat Pump Design of Geothermal System for Commercial and Institutional Buildings.ASHRAE,Atlanta,Ca,1997.
    [46]ESKILSON P. T. Thermal Analysis of Heat Extraction Boreholes. [D] . Lund : University of Lund , 1987.
    [47]D.A.Ball,R.D.Fischer,etc.Design Methods for ground-source heat pumps, ASHRAE Trans,1983,Pt.2B.416-440.
    [48]O.J.Svec,L.E.Goodrich and J.H.L.Palmer.Heat transfer characteristics of in-ground heat exchangers.Energy Research.1983.VOL.7:265-278.
    [49]Ambrose,E.R.Heat pump and electric heating.Wiley,New York.1966.
    [50]Westh,O.G.Heat pumps for space heating-results and conclusions. Report No.6 Teknologisk institutes Forlag, Copenhagen.1977.
    [51]MURAYA, N. K. Numerical Modeling of the transient thermal interference of vertical U-tube heat exchangers[D]. Texas: Texas A&M University, College Station, TX,1995.
    [52]MURAYA, N. K., O’NEAL D.L.,HEFFINGTON, W. M. Thermal Interference of Adjacent Legs in a Vertical U-Tube Heat Exchanger for a Ground-Coupled Heat Pump[J]. ASHRAE Transactions, 1996, 102(2):12-21.
    [53]ROTTMAYER, S. P, W. A.BECKMAN, J.W.MITCHELL.Simulation of a Single Vertical U-Tube Ground Heat Exchanger in an Infinite Medium[J].ASHRAETransactions ,1997 ,103(2): 651-659.
    [51]郑秀华,程金霞,郑伟龙,地源热泵技术应用及施工方法的研究[J],探矿工程,2004(3)42-45.
    [52]陆耀庆主编,实验供热空调手册,中国建筑工业出版社,1994.7.
    [53]中华人民共和国国家标准,采暖通风与空气调节设计规范,GBJ19-872001年版,北京.
    [54]余传辉,地下土壤导热系数计算方法及结果分析,[吉林大学硕士学位论文].
    [55]中华人民共和国国家标准,采暖通风与空气调节设计规范,GBJ19-87 2001年版,北京.
    [56]陆耀庆主编,实验供热空调手册,中国建筑工业出版社,1994.7.
    [57]刘东生,地源热泵实验台及同轴套管地下换热器传热模型研究,[吉林大学博士学位论文].
    [58]郭威,天然气水合物孔底冷冻取样方法的室内试验及传热数值模拟研究[D].长春:吉林大学,2007.
    [59]高青,余传辉,马纯强,于鸣,玄哲浩,地下土壤导热系数确定中影响因素分析[J]太阳能学报,2008(5)581-585.
    [60]章熙民等编,高等学校试用教材,传热学,中国建筑工业出版社,1984
    [61]陈启高,建筑热物理基础,西安交通大学出版社,1991.6.
    [62]中国地温资料,中华人民共和国中央气象局编印,北京.
    [63]SKOUBY,A Thermal Conductivity Testing.-in:SKOUBY,A., Proper Engineering and Thermally Enhanced Grouts :GeoExchange Savings[J].The Source, 98,11(12):5, Stillwater, Oklahoma.
    [64]Eskilson P. Thermal analysis of heat extraction boreholes[D]. Sweden: University of Lund, 1987.
    [65]于明志,彭晓峰,方肇洪等.基于线热源模型的地下岩土热物性测试方法[J].太阳能学报,2006,27(3):279-283.
    [66]赵军,段征强,宋著坤等,基于圆柱热源模型的现场测量地下岩土热物性方法[J].太阳能学报.2006,27(9):934-936.
    [67]刘敏,魏玲,matlab通信仿真与应用,国防工业出版社,1-4.
    [68]Caslaw and Jaeger,1959, Conduction of heat in solids, Oxford UniversityPress,London.260-263.
    [69]J.D.Parker,J.E.Bose and F.C.Mc Quiston, The ASHRAE design/data manual for ground-coupled heat pumps. ASHRAE Trans,1985.Vol.91.Pt.2B:1169-1183.
    [70]Leong,Tarnawski and Aittomaki, Effect of soil type and moisture content on ground heat pump performance,Int.J.Refrig,Vol.21,No.8,595-606,1998.
    [71]余传辉,地下土壤导热系数计算方法及结果分析,[吉林大学硕士学位论文].
    [72]ISBN 1-28-0290-9,Hellsllrom.G,Ground Heat Storage-Thermal Analysis of Duct Storage Systems.Paet Theory.University of lund,Department of Mathematical Physics .Lund,Sweden,1991.
    [72]ISBN 7-04-006693-9/TK.123,杨世铭,陶文铨,传热学,高等教育出版社,1998.12,第三版,P:158-170.
    [73]Edward B.Magrab.MATLAB原理与工程应用.北京:电子工业出版社,2002
    [74]Partial Differential Equation Toolbox User′Guide,MathWorks,1997
    [75]彭芳麟,数学物理方程的MATLAB解法与可视化.北京:清华大学出版社,2004
    [76]程国强,地源热泵换热器的分析与设计.浙江大学硕士学位论文.2005
    [77]陆君安,尚涛,谢进,偏微分方程的matlab解法,武汉大学出版社.2001,P:1-3,61-63
    [78]pump.Doctor Dissertation of Texas A&M University,1995
    [79]BernierMA.Ground-coupledheatpumpsystemsimulation.ASHRAETans,2001,1071):605-61
    [80]曾宪斌,地源热泵垂直U型埋管换热器周围土壤温度场的数值模拟,重庆大学硕士学位论文,2007,p:40-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700