番茄Dof基因家族全基因组分析及SlDof22、SlDHAR1和FaGalUR在AsA积累中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-抗坏血酸(AsA, vitamin C),是一种重要的高丰度小分子的水溶性化合物,是植物和动物中重要生物活性的抗氧化剂,在植物和动物的生长发育方面起重要的调控作用。由于人类及其他灵长类中合成AsA的最后一步酶L-古洛糖-1,4-内酯氧化酶突变导致功能丧失不能自主合成AsA,只能从膳食中获得,而新鲜的水果和蔬菜由于富含AsA是人类及其他哺乳动物AsA的主要来源。番茄(Solanum lycopersicum)属于茄科茄属植物在世界各地广泛栽培,是重要的一年生商业化栽培蔬菜。由于番茄中含有丰富的维生素C和A、纤维素以及不含胆固醇,是人类极其重要的营养来源。目前番茄基因组和转录组测序数据的发表为研究番茄基因家族成员提供了很好的基础和技术平台;而番茄完善的遗传转化体系则是研究番茄基因功能的重要手段。
     Dof (DNA-binding with one finger)蛋白是植物特有的一类转录因子,在植物生长发育过程中起着重要的作用。南瓜一个Dof转录因子可以与南瓜抗坏血酸氧化酶启动子结合调控其在生长素诱导下的表达,但是否影响抗坏血酸的含量积累则没有详细研究。有关番茄抗坏血酸的合成D-甘露糖/L-半乳糖途径中的相关基因的功能及对抗坏血酸含量的调控效果已比较清楚,但D-半乳糖醛酸途径与再生代谢途径中的相关基因在抗坏血酸含量积累中的功能作用还没有鉴定。
     本研究首次在全基因组水平筛选鉴定了番茄中的Dof家族成员,并利用生物信息学的方法对该家族成员基因进行了系统的研究;同时鉴定了一个与番茄SlAO基因启动子结合的Dof转录因子,转基因功能验证结合基因芯片技术阐述了Dof转录因子在番茄抗坏血酸含量积累和盐胁迫中的作用机制。另一方面,研究了番茄抗坏血酸再生途径基因SIDHAR1和草莓中抗坏血酸合成重要途径中D-半乳糖醛酸途径中的关键基因FaGalUR在番茄抗坏血酸含量积累及对非生物逆境胁迫抗性中的作用。主要研究结果如下:
     1、番茄Dof基因家族全基因组分析。在番茄中共有34个Dof基因,除在第7和第12上没有分布外,在其他染色体上均有分布,且在第7和第6条染色体上分布最多,分别含有9和7个Dof基因;其中15个Dof基因只含有1个内含子,4个Dof基因含有2个内含子,其他的不具有内含子;系统发生学结果表明番茄中的34个Dof基因可以分为四个亚家族,与双子叶植物拟南芥存在更近的亲缘关系;保守基序分析表明,除了含有Dof保守域外,不同的亚家族中含有其他的保守结构;基因表达谱结果说明Dof基因在转录水平和表达模式上均有各自的表达特性,表明Dof基因存在功能特异性。
     2、番茄SlDof22在AsA含量积累及盐胁迫抗性中的机理解析。通过与已报道的Dof蛋白进行氨基酸序列比对筛选出了一个与南瓜CmAOBP同源性最高的Dof蛋白,SlDof22,同源性为49.47%。利用酵母单杂交方法证明SlDof22蛋白可以和SIAO基因启动子中的CTTT串联重复元件特异性结合,说明SlDof22蛋白编码一个抗坏血酸氧化酶启动子结合蛋白。SlDof22基因为组成型表达,在番茄各个组织中的表达量均较高,但在成熟叶片中表达量最高,幼叶、花和未成熟绿熟期果实中次之;SlDof22基因表达受激素、MV和盐胁迫诱导。干涉SlDof22基因显著下调转基因植株叶片和果实中SlDof22基因的表达量,提高番茄叶片和果实AsA含量。在叶片和果实中AsA含量比对照分别提高33%和64%左右,分别达到72.2mg/100g FW和43.3mg/100g FW。另外转基因植株对200mM NaCl胁迫表现敏感,具体表现为:盐胁迫处理后转基因植株叶绿素含量只有对照的70%,而地上部鲜重和地下部鲜重分别是对照的80%和60%。抗氧化和SOS途径相关基因表达水平分析表明SlDof22可能参与调控SISOS1基因的表达;酵母单杂交结果证明S1Dof22可以和SlSOS1基因启动子结合调控其表达。基因芯片分析结果表明,干涉SlDof22基因转基因植株破色期果实中显著影响与光合有关和糖类代谢有关的代谢途径,同时也影响了与次级代谢、胁迫和激素相关基因的表达。
     3、番茄SlDHAR1在番茄AsA含量积累中的功能分析。利用实验室前期构建的SlDHAR1转化材料研究番茄SlDHAR1基因在AsA含量积累及非生物逆境胁迫抗性中的作用,为番茄品质和抗性育种提供新的育种材料。超量表达SlDHAR1基因显著提高叶片和果实中AsA含量,在叶片和果实中AsA含量最高分别增加了1.5倍和1.3倍左右。并且超量表达SlDHAR1转基因幼苗在盐胁迫处理后维持较高的叶绿素含量和地上部和地下部鲜重;此外,离体叶盘实验也表明超量表达SlDHAR1转基因叶片可以增强对NaCl和MV诱导的盐胁迫和氧化胁迫抗性。
     4、草莓FaGalUR在番茄AsA含量积累中的功能分析。番茄叶片和果实中GalUR酶活性和AsA含量检测分析发现两者之间存在相关性,因此并将草莓FaGalUR基因转入番茄品系AC,转基因番茄叶片和果实中AsA含量均提高了1.5-2.0倍。同时FaGalUR基因通过上调果胶降解途径PE和PG基因的表达增加其合成前体物质,促进AsA合成能力,并增强AsA再生能力抑制AsA的代谢进而增加转基因番茄中AsA的积累。同时,超量表达FaGalUR基因转基因植株也增强了对氧化、盐和冷害等非生物逆境胁迫的抗性。
L-ascorbate (AsA, vitamin C), is a high abundant, small molecular weight and water-soluble antioxidant, and plays very important roles in a range of cellular processes in both plants and animals. However, humans and other primates are unable to synthesize AsA because the terminal enzyme in the animal pathway, L-gulono-1,4-lactone oxidase, has been mutated and non-functional. Accordingly, they depend on dietary intake to cover their requirements and mainly obtain from plant sources. Fruit and vegetables are rich in AsA as an important source of human diets, and the contents of AsA vary with different kinds of fruit and vegetables. Tomato (Solarium lycopersicum) belongs to the family Solanaceae, and is commercially cultivated as an annual crop. Tomato fruit is regarded as a most important vegetable crop due to rich in vitamins C, A and fiber and cholesterol free. To date, completed sequencing and assembly of tomato genome and transcriptomes sequenceing data provides a foundation for further identifiy and analysis of tomato gene families; besides, it is transformable (genetic transformation system) play an important role in study gene function in tomato.
     The Dof (DNA-binding with one finger) domain proteins are plant-specific transcription factors with a highly conserved DNA-binding domain, and play critical roles as transcriptional regulators in plant growth and development. It was report that one of Dof protein involved in regulate the expression of ascorbate oxidase during the auxin treatment in pumpkin, but the functional analysis in ascorbate accumulate was not report. The positively contribution of D-mannose/L-galactose pathway to the accumulation of AsA has beed well clarified, but the function of genes from metabolic pathways and D-galacturonic acid pathways involved in AsA accumulation of still need more evidence in tomato.
     In this study, we firstly screening and identified the Dof family genes in tomato (Solarium lycopersicum L.). The systematic overview of SlDof genes in tomato is presented, including the gene structures, chromosome locations, phylogeny, protein motifs, evolution pattern and gene expression analysis. In addition, one of SIDof genes binding to the promoter of SlAO gene was identified and functional anslysis in tomato. On the other side, the function of SIDHAR1and FaGalUR involved in AsA accumulation and abiotic stresses was also analysis in tomato. The main results are presented as following:
     1. Genome wide analysis of tomato Dof genes family. Using bioinformatical analysis,34Dof family genes were identified in tomato (Solanum lycopersicum L.), and a complete overview of SlDof genes in tomato is presented, including the gene structures, chromosome locations, phylogeny, protein motifs, evolution pattern and gene expression analysis. Tomato Dof family genes distributed on11chromosomes except for chromosome7and12, and chromosome2and6had a maximum of nine and seven Dof genes, respectively. The gene structural analyses shown that15SlDof genes contained one intron, four genes contained two introns, and the remained genes were intronless, besides, all the introns were located upstream of the Dof domain. Phylogenetic analysis of34SlDof proteins resulted in four classes constituting six clusters and shown high similarity with Arabidopsis Dof genes. In addition, conserved motif analysis indicated that S1Dof proteins consisted in same group shared similar conserved motifs except for known Dof domain. Furthermore, the SlDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth conditions.
     2. The identification and functional analysis of tomato SlDof22gene in AsA accumulation and salt resistence. One of Dof genes, SlDof22, shown high similar with pumpkin CmAOBP, according to the proteins sequences alignment and phylogenetic analysis of reported Dof proteins, and the SlDof22displayed the highest similarity with CmAOBP, with49.47%identical. Yest one hybrid analyss demonstrated that SlDof22protein could bind to the CTTT elements in promoter of SI A O gene in tomato, suggesting SlDof22encodes an ascorbate oxidase binding protein. The expression of SlDof22was constitutively high expressed in roots, stems, leaves, flowers and different development stages of fruits, whereas the highest expression levels were detected in leaves, followed with in young leaves, flowers and immature fruits, and the expression of SlDof22was induced by hormone, MV and salt treatment. RNA interference of SlDof22gene significant increased AsA contents in leaves and fruits, accompaning with reduced SlDof22gene expression level. The AsA contents of leaves and fruits were enhanced33%and64%in transgenic lines as compared to wild type, up to72.2mg/100g FW and43.3mg/100g FW, respectively. In addition, the transgenic plants displayd susceptibility to200mM NaCl stress. The chlorophll content of transgenic plants was70%of that in wild type, and the fresh weight of aerial part and underground part was80%and60%of that in wild type after NaCl treatment, respectively. The expression level of SISOS1gene was siginificatly down regulated, yeast one hybrid analysis shown SlDof22protein could bind to the promoter of SlSOS1gene. Furthermore, gene chip analysis shown that RNA interference of SlDof22gene significant changed the expression level of genes involved in photosynthetic and carbonhydrate metabolism, and also changed the expression of genes related to secondary metabolism, stresses and hormone.
     3. The functional analysis of tomato SlDHAR1in AsA accumulation and abiotic stresses resistence. The SlDHAR1overexpressing lines were isolated and generated by previously study. The transgenic plants exhibited a significant increase in ascorbic acid in functional leaves and red fruits compared with wild-type plants, positively correlated with SlDHAR1expression abundances and DHAR activity. The AsA content improved1.5and1.3fold in leaves and red ripe fruits of transgenic lines, respectively. Furthermore, the seedings of transgenic plants showed enhanced salt stress tolerance with higher chlorophyll content and fresh weight of aerial part and under-ground part than those of WT plants. In addition, the transgenic plants also exhibited considerable tolerance to salt and oxidative damage induced by NaCl and methyl viologen (MV) based on less chlorophyll content loss under methyl viologen (paraquat) and salt treatment with leaves disc.
     4. The functional analysis of strawberry FaGalUR gene in AsA accumulation and abiotic stresses resistence in tomato. The activity of D-galacturonic acid reducta.se was detected parallel to AsA accumulation in crude extract of tomato leaves and fruits. Subsequently, transgenic tomato lines overexpressing strawberry FaGalUR gene were generated. The results showed that introducing a single gene GalUR led to1.5-2.0fold increase in AsA level in tomato leaves and fruits, which correlated positively with GalUR transcriptional abundance and GalUR activity. The expression level of PE and PG genes, which were invovled in degradation of cell wall pectins, was up-regulated in transgenit lines. Furthermore, FaGalUR overepxressing lines showed enhanced tolerance to abiotic stresses induced by oxidization (methyl viologen), salt (NaCl) and cold as compared to the wild-type plants.
引文
1.弓鹏娟.基于潘那利番茄渐渗系发掘干旱胁迫响应基因及功能分析.[博士学位论文].武汉:华中农业大学图书馆,2010
    2.郭安源,朱其慧,陈新,罗静初.GSDS:基因结构显示系统.遗传,2007,29(08):1023-1026
    3.江海洋,骆晨,江腾,程备久,朱苏文.玉米Dof转录因子家族基因的全基因组分析.生物信息学,2010,8(03):198-201
    4.张婵娟.番茄抗坏血酸生物合成途径关键基因的功能分析与调控研究.[博士学位论文].武汉:华中农业大学图书馆,2011
    5. Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol,2003,21(2):177-181
    6. Aoki K, Ogata Y, Igarashi K, Yano K, Nagasaki H, Kaminuma E, Toyoda A. Functional genomics of tomato in a post-genome-sequencing phase. Breed Sci,2013,63(1):14-20
    7. Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv,2009,27(1):84-93
    8. Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M. Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol,2009,50(2):423-428
    9. Badejo AA, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S, Ishikawa T. Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. J Exp Bot,2012,63(1): 229-239
    10. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol,1994,2:28-36
    11. Bartoli CG, Yu J, Gomez F, Fernandez L, McIntosh L, Foyer CH. Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot,2006,57(8):1621-1631
    12. Belmonte MF, Stasolla C. Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiol Biochem,2009,47(10):904-911
    13. Bose J, Xie Y, Shen W, Shabala S. Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. J Exp Bot,2013,64(2):471-481
    14. Bulley SM, Rassam M, Hoser D, Otto W, Schunemann N, Wright M, MacRae E, Gleave A, Laing W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot,2009,60(3):765-778
    15. Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004,4:10
    16. Chen Z, Gallie DR. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol,2005,138(3): 1673-1689
    17. Chen Z, Gallie DR. Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol,2006,142(2):775-787
    18. Chen Z, Young TE, Ling J, Chang SC, Gallie DR. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA,2003,100(6):3525-3530
    19. Cheng NH, Pittman JK, Zhu JK, Hirschi KD. The protein kinase SOS2 activates the Arabidopsis H+Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem,2004, 279(4):2922-2926
    20. Chew O, Whelan J, Millar AH. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem, 2003,278(47):46869-46877
    21. Cominelli E, Galbiati M, Albertini A, Fornara F, Conti L, Coupland G, Tonelli C. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biol,2011, 11:162
    22. Conde A, Chaves MM, Geros H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol,2011,52(9):1583-1602
    23. Conklin PL. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ,2001,24(4):383-394
    24. Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot,2013,64(10):2793-2804
    25. Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem,2006,281(23):15662-15670
    26. Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci U SA,1999,96(7):4198-4203
    27. Conklin PL, Saracco SA, Norris SR, Last RL. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics,2000,154(2):847-856
    28. Conklin PL, Williams EH, Last RL. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A,1996,93(18):9970-9974
    29. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res,1988, 16(22):10881-10890
    30. Cronje C, George GM, Fernie AR, Bekker J, Kossmann J, Bauer R. Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum:elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Planta, 2012, 235(3): 553-564
    31. Davey MW, Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J. Plant L-ascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agr, 2000, 80(7): 825-860
    32. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 2005,17(1):268-281
    33. De Paolis A, Sabatini S, De Pascalis L, Costantino P, Capone I. A rolB regulatory factor belongs to a new class of single zinc finger plant proteins. Plant J, 1996,10(2):215-223
    34. de Pinto MC, Tommasi F, De Gara L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol, 2002,130(2):698-708
    35. Di Matteo A, Sacco A, Anacleria M, Pezzotti M, Delledonne M, Ferrarini A, Frusciante L, Barone A. The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol,2010,10:163
    36. Diallinas G, Pateraki I, Sanmartin M, Scossa A, Stilianou E, Panopoulos NJ, Kanellis AK. Melon ascorbate oxidase:cloning of a multigene family, induction during fruit development and repression by wounding. Plant Mol Biol,1997,34(5):759-770
    37. Diaz I, Vicente-Carbajosa J, Abraham Z, Martinez M, Isabel-La Moneda 1, Carbonero P. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J,2002,29(4):453-464
    38. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J,2007,52(4):673-689
    39. Duan J, Zhang M, Zhang H, Xiong H, Liu P, Ali J, Li J, Li Z. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci,2012a,196:143-151
    40. Duan M, Feng HL, Wang LY, Li D, Meng QW. Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J Plant Physiol,2012b, 169(9):867-877
    41. Duan M, Ma NN, Li D, Deng YS, Kong FY, Lv W, Meng QW. Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem,2012c,58:37-45
    42. Dumas Y, Dadomo M, Di Lucca G, Grolier P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agr, 2003,83(5):369-382
    43. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K. Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant,2006,127(1):57-65
    44. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta,2007,225(5):1255-1264
    45. Eltayeb AE, Yamamoto S, Habora MEE, Yin LN, Tsujimoto H, Tanaka K. Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed Sci,2011,61(1):3-10
    46. Endres S, Tenhaken R. Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol,2009,149(2):1042-1049
    47. Esaka M, Fujisawa K, Goto M, Kisu Y. Regulation of ascorbate oxidase expression in pumpkin by auxin and copper. Plant Physiol,1992,100(1):231-237
    48. Esaka M, Uchida M, Fukui H, Kubota K, Suzuki K. Marked increase in ascorbate oxidase protein in pumpkin callus by adding copper. Plant Physiol,1988,88(3):656-660
    49. Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK. Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot, 2008,59(4):729-737
    50. Fotopoulos V, Sanmartin M, Kanellis AK. Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J Exp Bot, 2006,57(14):3933-3943
    51. Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR. Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J,2003,33(4):691-705
    52. Gallie DR. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot,2012,64(2):433-443
    53. Gallie DR. L-ascorbic acid:a multifunctional molecule supporting plant growth and development. Scientifica,2013,2013:1-24
    54. Gao C, Ju Z, Li S, Zuo J, Fu D, Tian H, Luo Y, Zhu B. Deciphering ascorbic acid regulatory pathways in ripening tomato fruit using a weighted gene correlation network analysis approach. J Integr Plant Biol, 2013,55(11):1080-1091
    55. Garchery C, Gest N, Do PT, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J, Fernie AR, Stevens R. A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. Plant Cell Environ, 2013,36(1): 159-175
    56. Gest N, Gautier H, Stevens R. Ascorbate as seen through plant evolution:the rise of a successful molecule? J Exp Bot,2013,64(1):33-53
    57. Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P. GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J,2009,60(3):499-508
    58. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem,2010,48(12):909-930
    59. Goggin FL, Avila CA, Lorence A. Vitamin C content in plants is modified by insects and influences susceptibility to herbivory. BioEssays,2010,32(9):777-790
    60. Gong D, Guo Y, Jagendorf AT, Zhu JK. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol,2002,130(1):256-264
    61. Goo YM, Chun HJ, Kim TW, Lee CH, Ahn MJ, Bae SC, Cho KJ, Chun JA, Chung CH, Lee SW. Expressional characterization of dehydroascorbate reductase cDNA in transgenic potato plants. J Plant Biol,2008,51 (1):35-41
    62. Gupta N, Gupta AK, Kumar A. Spatial distribution pattern analysis of Dofl transcription factor in different tissues of three Eleusine coracana genotypes differing in their grain colour, yield and photosynthetic efficiency. Mol Biol Rep,2012,39(3):2089-2095
    63. Gupta S, Shi X, Lindquist IE, Devitt N, Mudge J, Rashotte AM. Transcriptome profiling of cytokinin and auxin regulation in tomato root. J Exp Bot,2013,64(2):695-704
    64. Hemavathi, Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, Park SW. Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett,2010,32(2):321-330
    65. Hemavathi, Upadhyaya CP, Young KE, Akula N, Kim HS, Heung JJ, Oh OM, Aswath CR, Chun SC, Kim DH, Park SW. Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci,2009, 177(6):659-667
    66. Hirooka S, Misumi O, Yoshida M, Mori T, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Kuroiwa H, Kuroiwa T. Expression of the Cyanidioschyzon merolae stromal ascorbate peroxidase in Arabidopsis thaliana enhances thermotolerance. Plant Cell Rep,2009,28(12): 1881-1893
    67. Huang C, He W, Guo J, Chang X, Su P, Zhang L. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot,2005,56(422):3041-3049
    68. Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genomics,2013,288(3-4):111-129
    69. Huertas R, Olias R, Eljakaoui Z, Galvez FJ, Li J, De Morales PA, Belver A, Rodriguez-Rosales MP. Overexpression of SISOS2 (SICIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ,2012,35(8):1467-1482
    70. Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot,2009,60(2):663-678
    71. Isabel-LaMoneda I, Diaz I, Martinez M, Mena M, Carbonero P. SAD:a new DOF protein from barley that activates transcription of a cathepsin B-like thiol protease gene in the aleurone of germinating seeds. Plant J,2003,33(2):329-340
    72. Ishikawa T, Dowdle J, Smirnoff N. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant,2006,126(3):343-355
    73. Ishikawa T, Shigeoka S. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem, 2008,72(5):1143-1154
    74. Jain AK, Nessler CL. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed,2000,6(1):73-78
    75. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X. The Salt Overly Sensitive (SOS) pathway:established and emerging roles. Mol Plant,2013,6(2):275-286
    76. Jiang Y, Deyholos MK. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol,2009,69(1-2):91-105
    77. Jiang YC, Huang CY, Wen L, Lin CT. Dehydroascorbate reductase cDNA from sweet potato (Lpomoea batatas [L.] Lam):expression, enzyme properties, and kinetic studies. J Agric Food Chem,2008,56(10):3623-3627
    78. Kamei A, Seki M, Umezawa T, Ishida J, Satou M, Akiyama K, Zhu JK, Shinozaki K. Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2-1 and sos3-1. Plant Cell Environ,2005,28(10):1267-1275
    79. Kato N, Esaka M. cDNA cloning and gene expression of ascorbate oxidase in tobacco. Plant Mol Biol,1996,30(4):833-837
    80. Kim HS, Kim SJ, Abbasi N, Bressan RA, Yun DJ, Yoo SD, Kwon SY, Choi SB. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis. Plant J,2010,64(3):524-535
    81. Kisu Y, Ono T, Shimofurutani N, Suzuki M, Esaka M. Characterization and expression of a new class of zinc finger protein that binds to silencer region of ascorbate oxidase gene. Plant Cell Physiol, 1998, 39(10):1054-1064
    82. Klein P, Seidel T, Stocker B, Dietz KJ. The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase gene expression. Front Plant Sci,2012,3:247
    83. Koenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, Covington MF, Devisetty UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady SM, Pauly M, Weigel D et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A,2013, 110(28):E2655-2662
    84. Kushwaha H, Gupta S, Singh VK, Rastogi S, Yadav D. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Mol Biol Rep,2011,38(8):5037-5053
    85. Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS. Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol,2003,160(4):347-353
    86. Lazzarotto F, Teixeira FK, Rosa SB, Dunand C, Fernandes CL, Fontenele Ade V, Silveira JA, Verli H, Margis R, Margis-Pinheiro M. Ascorbate peroxidase-related (APx-R) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytol,2011,191(1):234-250
    87. Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW. Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant,2010,139(4):421-434
    88. Li QZ, Li YS, Li CH, Yu XC. Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato. Czech J Genet Plant 2012,48(2):74-86
    89. Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol,2003,3:17
    90. Lim M, Pulla R, Park J, Harn C, Jeong B. Over-expression of 1-gulono-y-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced abiotic stress tolerance in tomato. In Vitro Cell Dev Biol Plant,2012,48(5):453-461
    91. Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell,2009, 21(5):1607-1619
    92. Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG. Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem,2007,282(26):18879-18885
    93. Locato V, Balestrazzi A, De Gara L, Carbonera D. Reduced expression of topibeta gene induces programmed cell death and alters ascorbate metabolism in Daucus carota cultured cells. J Exp Bot,2006,57(8):1667-1676
    94. Lopez-Casado G, Covey PA, Bedinger PA, Mueller LA, Thannhauser TW, Zhang S, Fei Z, Giovannoni JJ, Rose JK. Enabling proteomic studies with RNA-Seq:The proteome of tomato pollen as a test case. Proteomics,2012,12(6):761-774
    95. Lorence A, Chevone BI, Mendes P, Nessler CL. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol,2004,134(3):1200-1205
    96. Mahajan S, Pandey GK, Tuteja N. Calcium-and salt-stress signaling in plants:shedding light on SOS pathway. Arch Biochem Biophys,2008,471(2):146-158
    97. Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T, Shigeoka S. The contribution of Arabidopsis homologs of L-gulono-1,4-lactone oxidase to the biosynthesis of ascorbic acid. Biosci Biotechnol Biochem,2010a,74(7):1494-1497
    98. Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S. Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol,2010b,51 (2):190-200
    99. Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S. Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem,2008,283(43):28842-28851
    100. Massot C, Stevens R, Genard M, Longuenesse JJ, Gautier H. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta,2012,235(1): 153-163
    101. Matas AJ, Yeats TH, Buda GJ, Zheng Y, Chatterjee S, Tohge T, Ponnala L, Adato A, Aharoni A, Stark R, Fernie AR, Fei Z, Giovannoni JJ, Rose JK. Tissue-and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation. Plant Cell,2011,23(11):3893-3910
    102. Matsukura C, Aoki K, Fukuda N, Mizoguchi T, Asamizu E, Saito T, Shibata D, Ezura H. Comprehensive resources for tomato functional genomics based on the miniature model tomato micro-tom. Curr Genomics,2008,9(7):436-443
    103. Melino VJ, Soole K.L, Ford CM. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol,2009,9:145
    104. Moreno-Risueno MA, Martinez M, Vicente-Carbajosa J, Carbonero P. The family of DOF transcription factors:from green unicellular algae to vascular plants. Mol Genet Genomics,2007, 277(4):379-390
    105. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol,2008,59:651-681
    106. Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M. Ascorbate peroxidase gene family in tomato:its identification and characterization. Mol Genet Genomics,2008,279(2): 171-182
    107. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J,2006,48(4):535-547
    108. Noguero M, Atif RM, Ochatt S, Thompson RD. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci,2013,209:32-45
    109. Obinger C, Regelsberger G, Pircher A, Strasser G, Peschek GA. Scavenging of superoxide and hydrogen peroxide in blue-green algae (cyanobacteria). Physiol Plant,1998,104(4):693-698
    110. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D'Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ. Loss of halophytism by interference with SOS1 expression. Plant Physiol,2009,151(1):210-222
    111. Ohkawa J, Okada N, Shinmyo A, Takano M. Primary structure of cucumber(Cucumis sativus) ascorbate oxidase deduced from cDNA sequence:homology with blue copper proteins and tissue-specific expression. Proc Natl Acad Sci USA,1989,86(4):1239-1243
    112. Olias R, Eljakaoui Z, Li J, De Morales PA, Marin-Manzano MC, Pardo JM, Belver A. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ,2009,32(7):904-916
    113. Oller ALW, Agostini E, Milrad SR, Medina MI. In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots:A precursor feeding study. Plant Sci,2009,177(1): 28-34
    114. Panchuk, II, Zentgraf U, Volkov RA. Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta,2005,222(5):926-932
    115. Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH. Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol,2005,139(3):1291-1303
    116. Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH. The function of ascorbate oxidase in tobacco. Plant Physiol,2003,132(3):1631-1641
    117. Pignocchi C, Kiddle G, Hernandez I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol,2006,141(2):423-435
    118. Plesch G, Ehrhardt T, Mueller-Roeber B. Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J,2001,28(4):455-464
    119. Potters G, De Gara L, Asard H, Horemans N. Ascorbate and glutathione:guardians of the cell cycle, partners in crime? Plant Physiol Biochem,2002,40(6-8):537-548
    120. Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, Wang D. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J,2007, 49(3):399-413
    121. Qin A, Shi Q, Yu X. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep,2011,38(3):1557-1566
    122. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. Regulation of SOS 1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA,2002, 99(12):8436-8441
    123. Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell,2007,19(4):1415-1431
    124. Radzio JA, Lorence A, Chevone BI, Nessler CL. L-Gulono-1,4-Iactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol,2003,53(6):837-844
    125. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science, 2000,290(5499):2105-2110
    126. Rizhsky L, Davletova S, Liang H, Mittler R. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem, 2004,279(12):11736-11743
    127. Rueda-Lopez M, Crespillo R, Canovas FM, Avila C. Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. Plant J,2008,56(1):73-85
    128. Rueda-Romero P, Barrero-Sicilia C, Gomez-Cadenas A, Carbonero P, Onate-Sanchez L. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. J Exp Bot,2012,63(5):1937-1949
    129. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM. AtHKTl is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A,2001,98(24):14150-14155
    130. Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4(4):406-425
    131. Sanmartin M, Drogoudi PA, Lyons T, Pateraki I, Barnes J, Kanellis AK. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta,2003,216(6):918-928
    132. Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK. Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta,2007, 225(4):873-885
    133. Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J,2005,44(4):653-668
    134. Seki H, Nakamura N, Marutani M, Okabe T, Sanematsu S, Inagaki Y, Toyoda K, Shiraishi T, Yamada T, Ichinose Y. Molecular cloning of cDNA for a novel pea Dof protein, PsDofl, and its DNA-binding activity to the promoter of PsDofl gene. Plant Biotechnol,2002,19(4):251-260
    135. Shan C, Liang Z, Sun Y, Hao W, Han R. The protein kinase MEK1/2 participates in the regulation of ascorbate and glutathione content by jasmonic acid in Agropyron cristatum leaves. J Plant Physiol,2011,168(5):514-518
    136. Shan CJ, Liang ZS. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci,2010,178(2):130-139
    137. Shaw LM, McIntyre CL, Gresshoff PM, Xue GP. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomic, 2009,9(4):485-498
    138. Shen CH, Yeh KW. Hydrogen peroxide mediates the expression of ascorbate-related genes in response to methanol stimulation in Oncidium. J Plant Physiol,2010,167(5):400-407
    139. Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H. ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis. Plant Cell, 2010, 22(3): 811-831
    140. Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A,2000,97(12):6896-6901
    141. Shi H, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell,2002,14(2):465-477
    142. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot,2002,53(372):1305-1319
    143. Shigyo M, Tabei N, Yoneyama T, Yanagisawa S. Evolutionary processes during the formation of the plant-specific Dof transcription factor family. Plant Cell Physiol,2007,48(1):179-185
    144. Shimaoka T, Yokota A, Miyake C. Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol,2000,41 (10):1110-1118
    145. Shimofurutani N, Kisu Y, Suzuki M, Esaka M. Functional analyses of the Dof domain, a zinc finger DNA-binding domain, in a pumpkin DNA-binding protein AOBP. FEBS Lett,1998, 430(3):251-256
    146. Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I. DOF transcription factor AtDofl.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J,2006, 47(1):10-24
    147. Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann Bot,1996,78(6): 661-669
    148. Smirnoff N. Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond B Biol Sci,2000a,355(1402):1455-1464
    149. Smirnoff N. Ascorbic acid:metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol,2000b,3(3):229-235
    150. Smirnoff N, Wheeler GL. Ascorbic acid in plants:biosynthesis and function. Crit Rev Biochem Mol Biol,2000,35(4):291-314
    151. Song C, Guo J, Sun W, Wang Y. Whole genome duplication of intra-and inter-chromosomes in the tomato genome. J Genet Genomics,2012,39(7):361-368
    152. Soni P, Kumar G, Soda N, Singla-Pareek SL, Pareek A. Salt Overly Sensitive pathway members are influenced by diurnal rhythm in rice. Plant Signal Behav,2013,8(7):e24738
    153. Stasolla C, Yeung EC. Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiol Plant,2001,111(2):196-205
    154. Stasolla C, Yeung EC. Endogenous ascorbic acid modulates meristem reactivation in white spruce somatic embryos and affects thymidine and uridine metabolism. Tree Physiol,2006, 26(9):1197-1206
    155. Sun X, Li Y, Cai H, Bai X, Ji W, Ding X, Zhu Y. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses. J Plant Res,2012, 125(3):429-438
    156. Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24(8):1596-1599
    157. Tanaka M, Takahata Y, Nakayama H, Nakatani M, Tahara M. Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the SRF1 gene, which encodes a Dof zinc finger transcription factor. Planta,2009,230(4):737-746
    158. Tang RJ, Yang Y, Yang L, Liu H, Wang CT, Yu MM, Gao XS, Zhang HX. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane. Plant Cell Environ,2013a:37(3):573-588
    159. Tang X, Tang Z, Huang S, Liu J, Shi W, Tian X, Li Y, Zhang D, Yang J, Gao Y, Zeng D, Hou P, Niu X, Cao Y, Li G, Li X, Xiao F, Liu Y. Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development. Planta,2013b,238(5):923-936
    160. Tang ZX, Yang HL. Functional divergence and catalytic properties of dehydroascorbate reductase family proteins from Populus tomentosa. Mol Biol Rep,2013,40(8):5105-5114
    161. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science,1997, 278(5338):631-637
    162. Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta,2006,224(2):300-314
    163. Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family:inferences from the rice genome. J Mol Evol,2004,59(6):761-770
    164. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot,2003,91(5): 503-527
    165. The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature,2012,485(7400):635-641
    166. Thornton JW, DeSalle R. Gene family evolution and homology:genomics meets phylogenetics. Annu Rev Genomics Hum Genet,2000,1:41-73
    167. Undurraga SF, Santos MP, Paez-Valencia J, Yang H, Hepler PK, Facanha AR, Hirschi KD, Gaxiola RA. Arabidopsis sodium dependent and independent phenotypes triggered by H+-PPase up-regulation are SOS1 dependent. Plant Sci,2012,183:96-105
    168. Urano J, Nakagawa T, Maki Y, Masumura T, Tanaka K, Murata N, Ushimaru T. Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett,2000,466(1): 107-111
    169. Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol,2006,163(11):1179-1184
    170. Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol,2004,134(3):1100-1112
    171. Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M. Genome-wide analysis of the grapevine stilbene synthase multigenic family:genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol,2012,12:130
    172. Voxeur A, Gilbert L, Rihouey C, Driouich A, Rothan C, Baldet P, Lerouge P. Silencing of the GDP-D-mannose 3,5-epimerase affects the structure and cross-linking of the pectic polysaccharide rhamnogalacturonan II and plant growth in tomato. J Biol Chem,2011,286(10): 8014-8020
    173. Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, Zhang JS, Chen SY. The soybean Dof-type transcription factor genes, GmDof4 and GmDofll, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J,2007,52(4):716-729
    174. Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma L, Deng XW, Huang R. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell,2013,25(2):625-636
    175. Wang LY, Li D, Deng YS, Lv W, Meng QW. Antisense-mediated depletion of tomato GDP-1-galactose phosphorylase increases susceptibility to chilling stress. J Plant Physiol,2013: 170(3):303-314
    176. Wang Z, Xiao Y, Chen W, Tang K, Zhang L. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol,2010,52(4):400-409
    177. Ward JM, Hirschi KD, Sze H. Plants pass the salt. Trends Plant Sci,2003,8(5):200-201
    178. Wei PC, Tan F, Gao XQ, Zhang XQ, Wang GQ, Xu H, Li LJ, Chen J, Wang XC. Overexpression of AtDOF4.7, an Arabidopsis DOF family transcription factor, induces floral organ abscission deficiency in Arabidopsis. Plant Physiol,2010,153(3):1031-1045
    179. Wheeler GL, Jones MA, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature,1998,393(6683):365-369
    180. Wolucka BA, Goossens A, Inze D. Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot,2005,56(419):2527-2538
    181. Wolucka BA, Van Montagu M. GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem,2003,278(48): 47483-47490
    182. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA. The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol,2003,20(9):1377-1419
    183. Xiong LM, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell,2002,14:S165-S183
    184. Xu WF, Shi WM, Liu F, Ueda A, Takabe T. Enhanced zinc and cadmium tolerance and accumulation in transgenic Arabidopsis plants constitutively overexpressing a barley gene (HvAPX1) that encodes a peroxisomal ascorbate peroxidase. Botany,2008a,86(6):567-575
    185. Xu WF, Shi WM, Ueda A, Takabe T. Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere,2008b, 18(4):486-495
    186. Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot,2007,58(10): 2661-2671
    187. Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot,2005,56(417):1785-1796
    188. Yan H, Huang J, Liao B, Lan X, Luo Q, Tang J. DOF transcription factors in developing peanut (Arachis hypogaea) seeds. Am J Mol Biol,2012,2:60-71
    189. Yanagisawa S. A novel DNA-binding domain that may form a single zinc finger motif. Nucleic Acids Res,1995,23(17):3403-3410
    190. Yanagisawa S. The Dof family of plant transcription factors. Trends Plant Sci,2002,7(12): 555-560
    191. Yanagisawa S. Dof domain proteins:plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol,2004,45(4):386-391
    192. Yanagisawa S, Izui K. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. J Biol Chem,1993,268(21): 16028
    193. Yanagisawa S, Schmidt RJ. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J,1999,17(2):209-214
    194. Yang O, Popova OV, Suthoff U, Luking I, Dietz KJ, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene,2009,436(1-2):45-55
    195. Yang R, Deng C, Ouyang B, Ye Z. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep, 2011,38(2):857-863
    196. Yang X, Tuskan GA, Cheng MZ. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol,2006, 142(3):820-830
    197. Ye J, Zhang W, Guo Y. Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. Plant Cell Rep,2013,32(1):139-148
    198. Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta,2010,231(3):609-621
    199. Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H. Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol,2006,47(2):304-308
    200. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol,2010, 188(3):762-773
    201. Yue Y, Zhang M, Zhang J, Duan L, Li Z. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol,2012,169(3):255-261
    202. Zechmann B, Stumpe M, Mauch F. Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta,2011,233(1):1-12
    203. Zhang B, Chen W, Foley R, Buttner M, Singh K. Interactions between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell,1995,7(12): 2241-2252
    204. Zhang CJ, Liu JX, Zhang YY, Cai XF, Gong PJ, Zhang JH, Wang TT, Li HX, Ye ZB. Overexpression of SIGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep,2011a,30(3):389-398
    205. Zhang CJ, Ouyang B, Yang CX, Zhang XH, Liu H, Zhang YY, Zhang JH, Li HX, Ye ZB. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant. PLoS One,2013a,8(4): e61987
    206. Zhang L, Li Z, Li J, Wang A. Ectopic overexpression of SsCBF1, a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis. PLoS One,2013b,8(6):e61810
    207. Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL. AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/1-galactose ascorbic acid biosynthetic pathway. Plant Physiol,2009,150(2):942-950
    208. Zhang YY, Li HX, Shu WB, Zhang CJ, Zhang W, Ye ZB. Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Mol Biol Report,2011b, 29(3):638-645
    209. Zhang Z, Wang J, Zhang R, Huang R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J, 2012,71(2):273-287
    210. Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One,2013c,8(2):e57472
    211. Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun,2009,379(4):985-989
    212. Zhu JK. Plant salt tolerance. Trends Plant Sci,2001,6(2):66-71
    213. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273
    214. Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis:evidence for a critical role of potassium nutrition. Plant Cell,1998,10(7):1181-1191
    215. Zou LP, Li HX, Ouyang B, Zhang JH, Ye ZB. Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci, 2006, 170(1): 120-127
    216. Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu JK. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol,2007,27(22):7781-7790

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700