基于热渗耦合作用下的埋管换热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤源热泵是一种节能、环保、高效利用可再生资源的“绿色”空调新技术,在我国建筑空调系统中发挥着越来越重要的作用。垂直U型管换热器由于其占地面积少、可用范围广、恒温效果好、换热效率高、维护费用低等优势,目前已成为应用最广泛的一种埋管方式。垂直U型管换热器主要分为两种:单U型管换热器和双U型管换热器。目前,对于单U型管换热器的研究较多,大多数的土壤源热泵采用的都是单U型管换热器。近年来,双U型管换热器以其钻井利用率高和换热性能好等优点开始被广泛应用。
     本文首先针对热渗耦合作用下的单U型管换热器,建立了换热器周围热渗耦合土壤及管内流体的物理数学模型。将土壤考虑为均匀的、各向同性的多孔介质,地下水为三维渗流,土壤沿深度方向分层,考虑其热物性沿深度方向变化。采用Fluent软件对埋深50m埋管换热器夏季连续运行20天后的土壤温度场进行数值模拟。本文的创新之处在于:①考虑了土壤沿深度方向的热物性变化,使模型更接近实际情况;②将地下水的渗流视为三维渗流,考虑土壤沿深度方向的传热。这与以前的研究者将土壤视为单一的土壤类型,以及只考虑土壤的二维渗流,忽略土壤沿深度方向传热的数学模型相比都有了改进。本文研究了不同回填材料、入口温度及入口流速对土壤温度场及埋地换热器换热性能的影响。针对不同运行参数下的换热进行模拟。研究结果对土壤源热泵运行参数的经济性选择具有一定的参考价值。
     本文采用同样的方法建立了双U型管换热器的三维非稳态传热模型,研究不同回填材料、入口温度及入口流速对土壤温度场及埋地换热器换热性能的影响。并从换热器出口水温,换热器换热率等方面比较了双U型管换热器与单U型管换热器运行特性的不同。结果表明,双管换热器的性能要优于单管换热器,可以提高钻井的利用率。
Ground Source Heat Pump(GSHP) system increasingly applied in architectural air-condition as these systems can make significant contributions to reduction in electrical energy usage,using renewable resource efficiency,and have been recognized as an environmental-friendly alternative to conventional unitary system.Vertical U-tube heat exchanger have been widely used because of many notable advantages it has,such as fewer area requirement,extensive application,running steadily,high performance,lower cost on system maintenance etc.Vertical heat exchanger is mainly divided into single U-tube heat exchanger and double U-tube heat exchanger.At present,single U-tube heat exchanger is widely used and research on heat exchanger is mainly about single U-tube.Recently, application of double U-tube heat exchanger rises for its better heat transfer performance and higher utilization efficiency of borehole.
     In this paper,the model of fluid in the U-tube and underground soil around single U-tube heat exchanger under coupled thermal conduction and groundwater seepage were set up.Soil was considered as the even,isotropy and saturated porous medium,and the seepage of groundwater had three-dimensional characteristic.Soil was layered along the depth direction, and the thermal property change was taken into consideration.The Fluent software was used to carry out the numerical simulation of soil temperature field of ground heat exchanger with burial depth 50m after 20 days continuous operation on summer conditions.The creative points of this paper are:①the thermal property change along the depth direction was taken into consideration,which make the model more close to the reality;②the seepage of groundwater had three-dimensional characteristic,and heat transfer in soil along the depth direction was considered.Compared with the model used by early researchers,in which the soil was considered as single type or the seepage had two-dimensional characteristic,it's an essential progress.In this paper,the soil temperature field and heat transfer performance with different inlet fluid temperatures,backsoil and inlet velocities were studied.The operation with different parameters was studied,that has reference value for chosen of operating parameters of ground-source heat pump.
     The model of fluid in the U-tube and underground soil around double U-tube heat exchanger was constructed in the same way,and the soil temperature field and heat transfer performance with different inlet fluid temperatures,backsoil and inlet velocities were studied. The performance of single U-tube heat exchanger and double U-tube heat exchanger was compared based on temperature difference between inlet and outlet and heat transfer rate.It can be concluded that the double U-tube heat exchanger offered a better performance than single U-tube heat exchanger.
引文
[1]江亿.我国建筑耗能状况及有效的节能途径.暖通空调.2005,35(5):30-40.
    [2]寿青云,陈汝东.高效节能的空调--地源热泵.节能.2001,(1):41-43.
    [3]时真男,张玉林.绿色空调新技术--地源热泵.环境导报.2003,(8):10-11.
    [4]孔维秀.美国地源热泵技术研究的要点.可再生能源.2003,112:21-23.
    [5]徐伟.向天地要能源--地源热泵、太阳能热泵在建筑物中的应用.建设科技.2002,2:56-58.
    [6]殷平.地源热泵在中国.现代空调-空调热泵设计方法专辑.2001,(3):1-8.
    [7]陈焕新,杨培志.地源热泵.太阳能.2001,(4):10-12
    [8]李斌.热渗共同作用下的地下埋管换热器实验研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [9]张玲.土壤热湿传递与土壤源热泵的理论与实验研究:(博士学位论文).杭州:浙江大学,2006.
    [10]宋春玲,张国强,张泉等.土壤源热泵--一种节能的中央空调系统冷热源.节能.1998,(12):7-10.
    [11]郑江,杨晓梅,杨卫波.高效节能的绿色空调技术--土壤源热泵.节能与环保.2003,(6):45-48.
    [12]Fleming WilliamS.Ground-source Heat Pump Design and Operation-experience within an Asian Country.ASHRAE Transactions.1998:771-775
    [13]刁永飞,张小力,伍贻文.地源热泵的优越性及前景展望.能源研究与信息.2002,18(1):33-37.
    [14]Mahadevan Ramamoorthy,Hui Jin.Optimal Sizing of Hybrid Ground Source Heat Pump Systems that Use a Cooling Pond as a Supplemental Heat Rejecter--A System Simulation Approach.ASHRAE Trans.2001,107(1):26-37.
    [15]Michel Bernier A.Ground-coupled Heat Pump System Simulation.ASHRAE Trans.2001,107(1):605-618.
    [16]Michel Bernier A.Uncertainty in the Design Length Calculation or Vertical Ground Heat Exchangers.ASHRAE Trans.2002,108(i):939-943.
    [17]Yian Gu,Dennis L.O' Neal.Development of an Equivalent Diameter Expression for Vertical U-tube Used in Ground-coupled Heat Pumps.A SHARE Trans.1998,104(2):347-355.
    [18]M.PIECHOWSKI,Heat and Mass Transfer Model of a Ground Heat Exchanger.Theoretical Development,International Journal of Energy Research,1999,(23):571-588.
    [19]Ingersoll,L.R.and H.J.Plass.Theory of the Ground Pipe Heat Source for the Heat Pump.Heating,Piping & Air Conditioning,1948,(6):119-122.
    [20]Hart,D.P.,Couvillion,R..Earth Coupled Heat Transfer.American Water Well Association.1986:1-50.
    [21]Bose,J.E..Closed-loop Ground-coupled Heat Pump Design Manual.Engineering Technology Extension Oklahoma State University, 1984:20-60.
    [22] Deerman, J. D., Kavanaugh, S. P.. Simulation of Vertical U-Tube Ground Coupled Heat Pump Systems Using the Cylindrical Heat Source Solution. ASHRAE.Transactions, 1991,97 (1):287-295.
    [23] Kavanaugh S. P.. Simulation and Experimental Verification of a Vertical Ground-coupled Heat Pump System. Ph.D. Thesis. Oklahoma State University. Stillwater. OK. 1985:15-95.
    [24] Kavanaugh. S. P.. A Design Method for Hybrid Ground-source Heat Pumps. ASHRAE Transactions, 1998,104(2):691-698.
    [25] Mei. V C.. Theoretical Heat Pump Ground Coil Analysis with Variable Ground Far-field Boundary Conditions. AICHE Journal, 1986, 32(7):1211-1215.
    [26] Mei. V. C.. Performance of a Ground-Coupled Heat Pump with Multiple Dissimilar U-Tube Coil in Seriess. ASHRAE Transactions, 1992, (A):30-42.
    [27] Eskilson, P. D.. Thermal Analysis of Heat Extraction Boreholes. Doctoral Thesis. Universityof Lund, Department of Mathematical Physics. Lund, Sweden, 1987:20-100.
    [28] Yavuzturk, C., Splitler J.D., S. J.Rees.. A Transient Two-dimensional Finite Volume Model for the Simulation of Vertical U-tube Ground Heat Exch ASHRAE Transactions, 1999,105(2) : 465-474.
    [29] Yavuzturk, C. Modeling of Vertical Ground Loop Heat Exchangers for Ground Source Heat Pump Systems. Ph. D. Thesis, School of Mechanical and Aerospace Engineering. Oklahoma State University, 1999:8-100.
    [30] Rottmayer, S. P., W. A. Beckman, and J. W. Mitchell. Simulation of a Single Vertical U-Tube Ground Heat exchanger in an Infinite Medium. ASHRAE Transactions, 1997,103(2) :651-659.
    [31] Fujii,H. Optimizing the Design of Large-Scale Ground-Coupled Heat Pump Systems Using Groundwater and Heat Transport Modeling, 2005(34): 347-364.
    [32] Gehlin, S.E.A., Hellstrom, G. Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renewable Energy (28) , 2221-2238.
    [33] Chiasson A. D, Spitler J. D, A Preliminary Assessment of the Effects of Groundwater Flow on Closed-loop Ground-Source Heat Pump Systems. ASHRAE Trans 2000,106 (1) : 380-93.
    [34] Carslaw H. S and Jaeger J. C, Conduction of Heat in Solids, 2nd Edition, Oxford University Press, London, 1959: 266-267.
    [35] Hailey, S.M, Kast, T. P, Drown, D. C.. Thermal Conductivity and Soil Conditions Heat Transfer Effects on Ground Source Heat Pumps. Proceedings of the 16th Annual Conference of Solar Energy Society of Canada. Halifax, Nova Scotia, 1990(6): 317-322.
    [36] Drown, D. C., Den Braven, K. R.. Effect of Soil Conductions and Thermal Conductivity on Heat Transfer in Ground Source Heat Pumps. Proceedings of the ASME JSES KSES International Solar Energy Conference. Maui Hawaii, 1992(4)::5-9.
    [37]Deng,Y,Fedler,C.B.Multi-layered Soil Effects on Vertical Ground-coupled Heat Pump Design.ASHRAE Transactions,1992,35(2):687-694.
    [38]W.H.Leong,V.R.Tarnawski and A.Aittomaki.Effect of Soil Type and Moisture Content on Ground Heat Pump Performance.Int J.Refig.,1998,21(8):595-609.
    [39]李道强.地源热泵空调系统的技术经济评价及地热换热器优化研究:(硕士研究论文).西安建筑科技大学,2004.
    [40]魏唐棣,胡鸣明,丁勇等.地源热泵冬季供暖测试及传热模型.暖通空调,2000,30(1):12-14.
    [41]刘宪英,丁勇,胡鸣明.浅埋竖管换热器地热源热泵夏季供冷试验研究.暖通空调,2000,20(4):1-4.
    [42]付样钊,王勇,朱照华等.两种地质气候条件对岩土换热器的影响.暖通空调,2002,32(3):106-109.
    [43]曾和义,方肇洪.U型管地热换热器中介质轴向温度的数学模型.山东建筑工程学院学报,2002,17(1):7-11.
    [44]曾和义,方肇洪.双U型埋管地热换热器的传热模型.山东建筑工程学院学报,2003,18(1):11-17.
    [45]刁乃仁,方肇洪.地热换热器U型埋管的传热模型及热阻计算.暖通空调,2003,33(6):108-110.
    [46]张旭,高晓兵.土壤源热泵的实验及相关墓础理论研究.现代空调第三辑,2001,(8):82-84.
    [47]李元旦,张旭.土壤源热泵冬季工况启动特性的实验研究.暖通空调,2001,31(1):17-19.
    [48]余延顺、马最良.土壤耦合热泵系统夏季运行工况的传热传湿数学模型的探讨.制冷空调与电力机械,专题.
    [49]余延顺、马最良.土壤蓄冷与土壤耦合热泵集成系统.暖通空调,2005,35(12):24-30.
    [50]赵军,袁伟峰.地源热泵的套管式地下换热器传热研究.天津大学学报,2002,35(3):345-347.
    [51]李新国,赵军.埋地换热器理论模型与周围土壤温度数值模拟.太阳能学报,2004,25(4):492-496.
    [52]李新国,赵军,朱强.垂直螺旋盘管地源热泵供暖制冷实验研究.太阳能学报,2002,23(6):684-686.
    [53]史新慧.地源热泵地下换热器计算模拟及地上机组节能研究(硕士学位论文).大连:大连理工大学,2004.
    [54]吕丽霞.地源热泵地下换热埋管传热特性研究:(硕士学位论文).大连:大连理工大学,2005.
    [55]王金香,李素芬,尚妍,东明,王正.地下含湿岩土热渗耦合模型及换热埋管周围土壤温度场数值模拟.太阳能学报,2008,7(7):837-842.
    [56]张旭.土壤极其与黄沙混合物导热系数的实验研究.全国暖通空调制冷学术年会论文集,2000:478-482
    [57]李元旦,张旭,周亚素.土壤源热泵冬季工况启动特性的实验研究.暖通空调,2001,31(1):17-20
    [58]张旭.土壤源热泵的实验及其相关基础理论研究.现代空调3.中国建筑工业出版社(北京),2001:75-87.
    [59]王勇.地源热泵地下管群换热器设计施工问题.建筑热能通风空调,2000,(1):59-62.
    [60]刘宪英,王勇.地源热泵地下垂直埋管换热器的试验研究.重庆建筑大学学报,1999,21(5):21-26.
    [61]刘宪英,张素云,胡鸣明.地热源热泵冬夏暖冷联供试验研究.水利电力施工机械,2002,21(1):14-22.
    [62]付样钊,王勇,朱照华.两种地质气候条件对岩土换热器的影响.暖通空调,2002,32(3):106-109.
    [63]高青.地温规律及其可恢复特性增强传热研究.制冷学报,2003(1):1-4
    [64]Metz P.D.A Simple Computer Program to Model Three-dimension Underground Heat Flow with Realistic Boundary Conditions[J].Journal of Solar Energy Engineering,1983,105:42-49.
    [65]Rose J.E,Parker J.D.Ground-coupled Heat Pump Research[J].ASHARE Trans,1983,89(2):375-390.
    [66]王福军.计算流体动力学分析--CFD软件原理与应用.清华大学出版社,2004.
    [67]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.科学出版社,2005.
    [68]Wu-Shung Fu,Hsin-Chien Huang.Efects of a random porosity model on heat transfer performance of porous media.Int.J.Heat and Mass transfer,1992,42:13-25.
    [69]李新国.埋地换热器内热源理论与地源热泵运行特性研究,硕士学位论文,天津大学,2004.
    [70]张也影.流体力学.高等教育出版社,1986:258-260.
    [71]Marita L.Allan.Materials characterization of superplasticized cement-sand grout.Cement and Concrete Research.2000(30):987-942.
    [72]郑秀花,司刚平,周复宗,徐光途.地源热泵换热孔灌浆材料导热l生能实验研究.水文地质工程地质,2006(6):101-103.
    [73]Cenk Yavuzturk,Andrew D.Chiasson.Performance Analysis of U-tube,Concentric Tube,and Standing Column Well Ground Heat Exchangers Using a System Simulation Approach.ASHRAE Trans,2002:925-938.
    [74]李新国,薛玉伟,赵军.不同方式地下埋管换热器的实验研究.制冷学报,2004(2):39-42.
    [75]王晓涛,唐志伟,马重芳.三种垂直埋管土壤热交换器冬季供暖的实验对比研究.工程热物理学报,2006(7):85-88.
    [76]包强.土壤耦合热泵u型管换热器数值模拟:(硕士学位论文).中南大学,2007
    [77]高青,于鸣,乔广,李明,白金玉.地热利用中的地温可恢复特性及其传热的增强.吉林大学学报(工学版),2004,1(32):107-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700