井下热环境数字计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在开采地下矿的时候,矿下会产生很多热而形成井下热环境,这些热对人体健康会产生一定的危害,也会影响生产效率。之前,学者们也对其进行了很多的研究,取得了一定的成果。但是,他们的研究中也存在着一些问题。为了对井下热环境有更深的了解,对其进行有效的防治,本文将试着采用一种新的数字计算方法——格子Boltzmann方法(LBM)对其进行仿真模拟研究。本文将尽量吸取前人的可取之处,改正存在的不足之处。
     本文首先深入地分析了LBM原理和方法,然后对比了这种方法中几种主要的LBM模型,得出D2G9模型具有较好的计算精度和收敛速度,采用此模型可以得到很好的模拟效果。因此,本文建立了适合本文研究的D2G9模型。另外,本文还重点分析了影响LBM仿真模拟的一些因素,指出在确定这些因素的时候应该注意的问题。
     在进行基础理论研究之后,本文主要进行了应用研究。首先采用所建立的D2G9模型对井下直巷道中的热环境进行了模拟仿真。仿真模拟中,设定了所需要的一些参数值,计算了相对应的岩壁温度和相似准数。然后分析了仿真的结果,分析了影响热流流动的各种因素,也分析了速度和温度的变化规律。经过分析发现,这些模拟结果和实际情况是相符合的。这为研究更复杂的情况奠定了一定的基础。在此基础上,分析了要模拟复杂巷道中所要考虑的多种因素。
     对简单情况进行仿真模拟之后,本文采用所建立的适合复杂情况的D2G9模型对井下复杂巷道中的热流进行了模拟仿真。在模拟过程中,分析了复杂巷道中更为复杂的情况,加入了更多的因素,使得模拟结果更加真实。进行模拟仿真之后,分析了一下仿真结果,分析了直巷道和复杂巷道中热流流动的区别和联系。经过分析发现,所模拟的结果也是和实际情况相符合的。
     通过分析和研究之后,发现LBM方法是一种仿真模拟流体流动的有效的方法,这种方法有着很大的发展潜力。在以后的研究中,这种方法会成为一种研究流体流动重要的方法。通过研究分析之后,也得出了井下热环境中热流流动的符合实际情况的结果,为防治热环境对人体伤害提供了很好的参考意见。
More thermal flow will be produced during the tunnel when mining the ore under the mine. And the thermal flow will be formed thermal environment which is harmful to the helath and can reduce the productivity. Many researchers have done more research in this field and gain achievements. However, some insufficiency is still in their research. To get deeper understand for the underground thermal environment, to get more effective prevention for the thermal environment harm, this paper will try to adopt a new digital computing method----Lattice Boltzmann Method (LBM) to research this simulation. This paper will the learn the advantages and give up disadvantages during the previos research.
     This paper first analyzes the theory and method of the a LBM, then compares some important models of the LBM. After the comparison, find the accuracy and the convergence rate of the D2G9 model is better than others. So during the reaserch this paper will adopt this model. Beyond, this paper analyze the factor which will affect the result of the simulation.
     After the research of the basic theory, this paper mainly use this metod to do some applied research. This paper first establish the appropriative model for this research. During the simulation this paper find out some parameters which will be used. This paper calculate the temperature and the similarity criteria which is too important for the research. Then this paper simulate the thermal flow and analyze the result of the simulation. And this paper find the result is corresponded with the fact. This research can be looked as the basic of the complex situation. Then this paper analyze the factors during the research of the complex situation.
     After the research on the simple situation, this paper adopts the complex D2G9 model to simulate the complex thermal flow. During the research the complex is considered and some more factors is added to the simulation. On the basic of this work, the result will be more corresponded with the fact. After analyzing the result, the difference and contact during the simple and complex situation is be analyzed. During this analys this paper finds that this result is corresponded with the fact.
     After the research and analys, this paper finds that the LBM is a useful method for the simulation of the fluid flow, and this method has great potential. This method will be seen as one important method during the future research. This paper also give some useful reference comments to the managers in the prevention for the thermal environment harm.
引文
[l]郭照立,郑楚光,李青,王能超.流体动力学的格子Boltzmann方法.湖北科学技术出版社,2002.
    [2]王广超.流体流动的格子Boltzmann方法.华中科技大学,2004.
    [3]王勇,何雅玲,唐桂华,陶文铨.二维管道内交变流动的格子-Boltzmann方法模拟研究.西安交通大学学报,2006,40(1):14-17.
    [4]张华,许桂生.二维分层流的格子Boltzmann数值模拟.水利学报,2006,37(11):1367-13741.
    [5]彭伟.格子Boltzmann方法基本模型比较及应用.华中科技大学,2004.
    [6]唐桂华,何雅玲,伍华荣,陶文铨.二维平板通道中流动与传热的格子-Boltzmann模拟.工程热物理学报,2003,24(6):995-997.
    [7]宣益民,叶萌,李强.磁流体结构的Lattice-Boltzmann方法模拟.工程热物理学报,2005,26(2):301-303.
    [8]张武生,杨燕华,徐济.格子波尔兹曼方法及其应用.现代机械,2003(4):4-6.
    [9]程雪玲,胡非,赵松年,姜金华.格子玻尔兹曼方法及其在大气湍流研究中的应用.地球科学进展,2007,22(3):249-260.
    [10]王兴勇.Lattice Boltzmann方法的理论及其在水力计算中应用的研究.河海大学,2003.
    [11]宣益民,李强,叶萌.磁流体流动与传热的格子Boltzmann模拟.工程热物理学报,2006,27(6):1020-1022.
    [12]彭伟,陈胜,郑楚光.格子Boltzmann方法模拟气固两相流.华中科技大学学报(自然科学版),2004,32(8):45-46.
    [13]徐辉,阮剑,李永平,郑楚光.二维卡门涡街的格子Boltzmann仿真.工程热物理学报1997,18(3):380-384.
    [14]邓敏艺,刘慕仁,孔令江.二维对流扩散方程的格子Boltzmann方法模拟.广西师范大学学报(自然科学版),199,17(3):1-5.
    [15]刘慕仁,陈若航,李华兵,孔令江.二维对流扩散方程的格子Boltzmann方法.物理学报,1999,48(10):1800-1803.
    [16]唐国宁,陈若航,何云,刘慕仁,孔令江.二维Burgers方程的格子Boltzmann模型.广西师范大学学报(自然科学版),1999,17(2):8-11.
    [17]闫广武.二维剪切流的格子Boltzmann模拟.水动力学研究与进展,2003,18(5):521-525.
    [18]陈若航,孔令江,何云,李华兵,刘慕仁.二维空腔黏性流的格子Boltzmann方法模拟.物理学报,2000,49(4):631-635.
    [19]薛鹏翔.基于Boltzmann退火遗传算法的光流场计算.高校理科研究,科技信息:82-83.
    [20]李淑英,周允基,刘顺隆.格子Boltzmann方法模拟湍流流动.热科学与技术,2004,3(3):189-195.
    [21]邓敏艺,刘慕仁,孔令江.二维反应扩散方程的格子Boltzmann方法模拟.广西师范大学学报(自然科学版),2001,19(1):1-6.
    [22]Higuere F, Succi S, Benzi R.Lattice gas dynamics with enhanced collisions, Europhys.Lett.,9,345-349 (1989).
    [23]Chen S., Chen H., Marinez D. and Matthaeus W., Lattice Boltzmann Model for Simulation of Magnetohydrodynamics, Phys. Rev. Lett.,67:3776 (1991).
    [24]Chen H., Chen S. and Matthaeus W. H., Recovery of the Navier-Stokes Equations using a Lattice Gas Boltzmann Method, Phys. Rev. A.,45:5339(1992).
    [25]Qian Y. H., d'Humeres D. and Lallemand P., Lattice BGK Models for Navier-Stokes Equation, Europhys. Lett.,17(6):479 (1992).
    [26]Koelman J. M. V. A., A Simple Lattice Boltzman Scheme for Navier-Stokes Fluid Flow, Europhys, Lett.,15(6),603 (1991).
    [27]李元香,康立山,陈毓屏.格子气自动机.清华大学出版社,1984.
    [28]Cornubert R., d'Humieres D., Levermore D., A Knudsen layer theory for lattice gaser, Phys. D.,47:241-259 (1991).
    [29]Ziegler D., Boundary conditions for lattice Boltzmann simulations, J. Stat. Phys., 71:1171-1177 (1993).
    [30]He X., Zou Q., Luo L. S., Dembo M., Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys.,87:115-36 (1997).
    [31]Qian Y., d'Humieres D., Lallemand P., Lattice BGK models for Navier-Stokes equations, Europhys. Lett.,17,479-484 (1992).
    [32]Zou Q., Hou S., Chen S., Doolen G. D., An improved incompressible lattice Boltzmann model for time-independent, J. Stat. Phys.,81:35-48 (1995).
    [33]Chen Y., Ohashi H., Lattice-BGK methods for simulating incompressible fluid flows, Int. J. Mod. Phys. C.,8:793-803 (1997).
    [34]He X., Luo L. S., Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys.,88:927-44 (1997).
    [35]Guo Z. L., Shi B. C., Wang N. C., Lattice BGK model for incompressible Navier-Stokes equation, J. Comput. Phys.,165:288-306 (2000).
    [36]胡心膂,郭照立,郑楚光.格子Boltzmann模型的边界条件分析.水动力学研究与进展,3:(2003).
    [37]Hou S., Zou Q., Chen S., Doolen G. D., Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys.,118:329-47 (1995)
    [38]Ghia U., Ghia K. N., Shin C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys.,1982.
    [39]Zou Q, He X, On pressure and boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids,1997,9.
    [40]Noble D R, Georgialdis J G, Buckius R O, Compaison of accuracy and performance for lattice Boltzmann and finite difference simulation of steady viscous flow, Int. J, Numer. Meth. Fluids,1996,23.
    [41]He X, Zou Q, Dembo M, Analytic solutions of simple flow and analysis of non-slip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys.,1997.
    [42]Dupius A. From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river PHD thesis. University of Geneva.2002.
    [43]Yongguang C, Jiandong Y, Lisheng S, A general boundary condition for the lattice Boltzmann method, The Proceedings of the Fourth International Conference on Hydrodynamics, Yokohama, Japan,2000,9.
    [44]邓敏艺,刘慕仁,孔令江.二维Selkov反应扩散模型的格子Boltzmann方法模拟.广西师范大学学报(自然科学版),2004,22(3):14.
    [45]王勇,何雅玲,童长青,刘迎文.二维Rayleigh-Benard对流的插值格子-Boltzmann方法模拟研究.工程热物理学报,2007,28(2):313-315.
    [46]彭伟,郑楚光.LBM基本模型比较及应用.华中科技大学学报,2004.
    [47]王广超,施保昌.流体流动的LBM.华中科技大学学报,004.
    [48]姚正平,宣益民.基于LBM的纳米流体流动与能量传递机理研究.南京理工大学学报,2003.
    [49]Frisch U,Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equation.Phys.Rev.Lett.,1986,56:1505-1508.
    [50]Walfram S.Cellular automata fluids.J.Stat.Phys.,1986,45:471-529.
    [51]Bhatnagar PL, Gross EP,Krook M.A model for collision processes in gases I:small complitude processes in charged and neutral one-component system.Phys.Rev.,1954, 94:511-525.
    [52]Zou Q,Hou S,Doolen GD.Analytical solutions of the lattice Boltzmann BGK model.J.Stat.Phys.,1995,81:319.
    [53]He X, Zou Q, Luo LS, Dembo M.Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann model.J.Stat.Phys.,1997,87:115-136
    [54]He X, Luo LS. Lattice Boltzmann model for the incompressible Navier-Stokes equation.J.Comp.Phys.,1997,88:927-944.
    [55]Guo Z, Shi B, Wang N.Lattice BGK model for incompressible Navier-Stokes equation.J.Comp.Phys.,2000,165:288-306.
    [56]Fang H,Wan R,Lin Z.Lattice Boltzmann model with nearly constant density.Phys.Rev.E,2002,66:036314.
    [57]Qian Y., d'Humieres D., Lallemand P., Lattice BGK models for Navier-Stokes equations, Europhys. Lett.,17,479-484 (1992).
    [58]Zou Q., Hou S., Chen S., Doolen G. D., An improved incompressible lattice Boltzmann model for time-independent, J. Stat. Phys.,81:35-48 (1995).
    [59]Chen Y., Ohashi H., Lattice-BGK methods for simulating incompressible fluid flows, Int. J. Mod. Phys. C.,8:793-803 (1997)
    [60]Guo Z. L., Shi B. C., Wang N. C.. Lattice BGK model for incompressible Navier-Stokes equation. J. Comput. Phys.,165:288-306 (2000).
    [61]Noble DR, Chen S. Georgiadis JG, R. O. Buckius. A consistant hydrodynamic boundary condition for the lattice Boltzmann method. Phys.Fluids.,1995,7:203-209.
    [62]Chen S, Martinez D, Mei R. On boundary conditions in lattice Boltzmann methods.Phys.Fluids.1996,8:2527-2536.
    [63]Inamouro T, Yoshino M, Ogino F. A non-slip boundary condition for lattice Boltzmann Simulations.Phys.Fluids.1995,7:2928-2930.
    [64]Dupius A. From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river PHD thesis. University of Geneva.2002.
    [65]Guo Z, Zheng C, Shi B. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin.Phys.,2002, 11:366-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700