有无断流水力过渡计算模型在大管径长距离平坦输水管道水力计算结果中比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的发展和人民生活水平的提高,我国长距离输水工程建设发展迅速,但是如何保证长距离输水管道运行安全的问题,在工程技术界引起人们的高度重视。长距离输水管道易发生水柱分离和断流弥合水锤,从而造成严重的水锤危害。故在长距离输水工程中最常见且最突出的问题也就是断流水锤的计算及防护问题。
     本文在前人的基础上对长距离输水管道中的各种水力流态及各种流态间的相互转化进行了阐述。分析了有压输水管道气囊运动特点,气囊升压危害及管道最佳排气方式,对断流水锤的形成过程进行了深一步的探讨。文中主要阐述了水力过渡过程中常用的特征线法,和发生断流时空腔的类型以及不同类型空腔的计算方法及不同的边界条件进行计算。结合各类边界条件建立了水锤计算的基本数学模型,应用计算机语言编制水锤防护计算的可视化程序,利用计算机进行模拟计算。
     本文主要以长距离大管径较平坦管线的有无断流水锤计算的结果比较为研究方向。主要通过两种不同的数学计算模型对停泵断流弥合水锤进行计算,进行结果比较。模型一:无论计算管道在水力过渡过程中是否发生水柱分离现象,水锤计算均按不发生断流或者某些边界点发生断流进行计算,即无断流水锤计算模型;模型二,在管道水力过渡过程中,无论任何点发生水柱中断,都按水柱分离水锤模型计算,即断流水锤计算数学模型。通过两种模型在各种相同的条件下的计算结果,进行比较分析不同数学模型对长距离输水管道水力过渡计算精度的影响,并得以结论。
     本文最后结合珠海平岗输水管线为例进行断流水锤模拟计算。根据两种模型的特点,对各种相同条件下两种模型的计算结果进行了比较,验证了两种模型在断流水锤防护计算过程中的不同的效果,为输水管线做有效的水锤防护提供更为科学的依据。
With urban development and the improvement of living standards, China's rapid development of long distance water supply project construction, but how to ensure the safe operation of long distance pipeline problems in the engineering sector, aroused great attention. Prone to long-distance water column separation and drying of water column separation, resulting in serious water hammer damage. Therefore, long-distance water diversion project in the most common and most prominent problem is the issue of broken water hammer protection.
     In this paper, based on previous long-distance water pipelines in a variety of hydraulic fluid and a variety of mutual conversion between flow described. Analyzed the movement of pressure pipeline features balloon, balloon boost damage and the best exhaust pipe means, on the broken water hammer in the formation process of a deep step. The paper expounds the commonly used hydraulic transient characteristics method, and the occurrence of drying chamber of the type of space and different types of cavity and different calculation method to calculate the boundary conditions. Combination of various types of boundary conditions established basic mathematical calculation of water hammer model, the language of the preparation of water hammer protection for computer visualization of calculation procedures, using computer simulation.
     This paper mainly long distance and large diameter pipelines over the availability of off flat water hammer calculation results compared to research. Mainly through two different mathematical models of water hammer pump stops Cavities calculated to compare the results. Model 1:Calculation of pipe regardless of whether the transition process in the hydraulic water column separation occurs, the water hammer calculations Junan no-stop or stop occurred in some border points are calculated, that is, no broken water hammer calculation model; Model 2, in transient pipe flow, both the water column break occurred at any point, are separated by water column model of water hammer, water hammer that is off the mathematical model. There are two models under the same conditions in all calculations, a comparative analysis of different mathematical models on the long-distance pipeline accuracy of hydraulic transition and to conclusions.
     Finally, Ping Kong of Zhuhai broken water pipes as an example simulation of water hammer. According to the characteristics of the two models, all under the same conditions on the calculation results of the two models were compared to verify the two models in the broken water hammer protection for the calculation of the different effects, for the water line so effective water hammer provide a more scientific basis for protection.
引文
[1]金锥,姜乃昌,汪兴华等.停泵水锤及防护[M].北京:中国建筑工业出版社,2004年11月第二版
    [2]Menabrea L F.Note sur les effects de choc de leau dans les conduits[J].Comtes Rendus Hebdomadaires des Seances de L'Academid des Sciences, France,1858,47: 221-224
    [3]Frizell J P.Pressure Resultiong from Changes of Velocity of Water in Pipes[J].Trans.Amer.Soc.Civil Engrs.1898,39:1-18
    [4]Joukowski N E. Mem. Imperial Academy Soc. of st. Petersburg,1898,9(5)(in Russian translated by O. Simin, Proc. Amer. Water works Assoc.1904,24:341~342)
    [5]Allievi L.Teoria general dil moto perturbato dellacqu anei tubi in pressione. Ann.Soc.Ing. Arch.Italiana,1903
    [6]Streeter V.L.Transient Cavitating Pipe Flow[J].ASCE Journal of Hydraulic Engineering.1983,109(HY11):1408-1423
    [7]M.E.Weyler and V.L.Streeter,An Lnvestigation of the Effect of Cavitation Bubbles on the Momentum Loss in Transient Pipe Flow[J].Journal of Basic Engineering mar,p 1-10,1971
    [8]J.P.Th.Kalkwyk,C.Kranenburg, Cavitation in Horizontal Pipelines Due to Water Hammer[J]. Asce,1971
    [9][日]秋元德三著.水击与压力波动[M].支陪法等译.北京:电力工业出版社,1981
    [10]E.B.Wylie,V.L.Streeter.Fluid Transients.Mcgraw-Hill International Book Company 1978
    [11]R.A.Humpherys,J.R.Kroon.Computer Modeling as a Tool for Selecting Appropriate Air Valves for Pipeline Surge Protection.Water Resources Planning and Management and Urban Water Resources.1991,(4):939~943
    [12]A.Qaqish,D.E.Guastella,J.H.Dillingham,D.V.Chase.Proceedings of the 2nd International Conference on Advances in Underground Pipeline Engineering.425-436
    [13]A.Khamlichi,L.Jezequel,F.Tephany.Elastic-plastic Water Hammer Analysis in Piping Systems.Wave Motion.1995,(22):279-295
    [14]D.Stephenson.Effects of Air Valves and Pipework on Water Hammer Pressures. Journal of Transportation Engineering.1997,(3):101~106
    [15]GA.Nash,B.W.Karney..Efficient Inverse Transient Anaylysis in Series Pipe Systems.Journal of Hydraulic Engineering.1999,125(7):761~764
    [16]Y.R.Filion,B.W.Karney.Extended~Period Analysis with a Transient Model. Journal of Hydraulic Engineering.2002,128(6):616~624
    [17]J.Izquierdo,P.L.Iglesias.Mathematical Modelling of Hydraulic Transients in Simple Systems.Mathematical and Computer Modelling.2002,(35),801-812
    [18]M.R.Ansari,A.Davari.Numerical Analysis of Pipeline Equipment Effect on Water Hammer Using Characteristic Method.Proceedings of the ASME/JSME Joint Fluids Engineering Conference.Honolulu,2003:2821-2826
    [19]S.Jung,B.W.Karney.Hydraulic Optimization of Transient Protection Devices Using GA and PSO Approaches.Journal Water Resource Planning and Management.2006,132(1):44~52
    [20]J.Izquierdo,P.L.Iglesias.Hydraulic Transients in Complex Systems. Mathematical and Computer Modelling.2004,39:529~540
    [21]Wood F M. Discussion of Reference[12]. Trans. Amer. Soc. Mech. Engrs., 1926.48
    [22]J.Wood.Waterhammer Analysis~Essential and Easy and Efficient.Journal of Environmental Engineering.2005,(8):1123~1131
    [23]J.Kochupillai,N.Ganesan,C.Padmanabhan.A New Finite Element Formulation Based on the Velocity of Flow for Water Hammer Problems. International Journal of Pressure Vessels and Piping.2005,(82):1~14
    [24]S.H.Kim,W.S.Yoo and K.J.Oh.Transient Analysis and Leakage Detection Algorithm using GA and HS algorithm for a Pipeline System.Journal of Mechanical Science and Technology.2006,20(3):426-434
    [25]M.Shimada,J.Brown,A.Vardy.Estimating Friction Errors in MOC Analyses of Unsteady Pipe Flows.Computers and Fluids.2007,(36):1235~1246
    [26]A.Lockwood,T.Murray,G.Stuart.Locating Leaks from Water Supply Pipes Ssing the Passive Acoustic Method.Journal of Water Supply.2005,54(8):519~530
    [27]刘光临,刘志勇,王听全等.单向调压塔水锤防护特性的研究[J].给水排水,2002,28(2),82-85
    [28]龙期泰.停泵直接水锤性能的实验研究[M].建筑科学研究院市政工程研究所,1964
    [29]王树人,刘天雄,彭天攻.水击理论与水击计算[M].北京:清华大学出版社,1981
    [30][美]E.B. Wylie,V.L.Streeter著.瞬变流[M].清华大学流体传动与控制教研组译.北京:水利电力出版社,1985
    [31][加]M.H.Chaudhry著.实用水力过渡过程[M].陈家远,孙诗杰,张治滨.译成都:四川水力发电工程学会,1985
    [32]陆宏沂.流体机械与流体动力工程.武汉:武汉水利电力出版社.1998:4~6
    [33]丁浩.水电站压力引水系统非恒定流[M].北京:水利电力出版社,1986
    [34]杨玉思,张世昌,付林.有压供水管道中气囊运动的危害与防护[J].中国给水排水,2002,18(9),32-33
    [35]刘竹溪,刘光临等.泵站水锤及其防护[M].北京:水利电力出版社,1988
    [36]刘光临,蒋劲等.泵站水锤阀调节防护实验研究[J].武汉水利电力大学学报,1991.12
    [37]李明.高扬程抽水站水锤防护措施—液控缓闭蝶阀选型[J].山西:科技情报开发与经济,1999.4:30-31
    [38]孙金兰.空气阀在长管道供水系统水锤防护中的应用研究[D].武汉:武汉大学,2005
    [39]金锥,杨玉思.两处水柱分离与断流空腔弥合水锤的研究[A].第三届中日流体机械国际学术会议.大阪:1990
    [40]赵明,张杰.长距离输水管线动态水力工况模拟.沈阳建筑大学学报(自然科学版).2007,23(1):109~112
    [41]朱满林,沈冰,张言禾等.长距离压力输水工程水锤防护研究.西安建筑科技大学学报.2007,39(1):13~16
    [42]王念慎,罗建群,宋莉等.多功能水泵控制阀对水锤的防护作用.中国给水排 水.2007,23(2):103~105
    [43]葛茹倩.长距离输水管线水力工况分析及空气阀设置的初步研究2003:32~34
    [44]彭新民,穆祥鹏.水头压力及管道特性对水击波速变化的影响.水利水电技术.2004,35(11):84~86
    [45]杨丽明,吴秀云.缓闭止回阀防护水锤的研究.中国安全科学学报.2004,14:83-87
    [46]樊希葆,谢水波.水泵站停泵水锤数值计算理论研究模型求解与应用.南华大学学报(自然科学版).2005,19(2):6~9
    [47]谭平,徐蕾.动力管道水锤激振分析.南京理工大学学报2006,20(2):182~185
    [48]朱满林,沈冰,张言禾等.长距离压力输水工程水锤防护研究.西安建筑科技大学学报.2007,39(1):13~16
    [49]梁兴,张进国.含有空气释出的水锤分析与计算.水科学与工程技术.2006,(2):21~22
    [50]刘志勇.长输水管道系统水锤防护的比较及研究[D].北京:北京国家图书馆,2001.4
    [51]朱承军,杨建东.非棱柱体管道的一维水击计算及分析.水力发电学报.1998,(61):59~68
    [52]侯建国,郭亚洁.有气阀的长距离输水管道流动特性分析与应用.水利学报.2002,(1):86~91
    [53]郑源,刘德有.有压输水管道系统气液两相瞬变流研究综述.河海大学学报(自然科学版).2002,30(6):21-25
    [54]中国市政工程东北设计研究院,长安大学主编,城镇供水长距离输水管(渠)道工程技术规程.中国计划出版社.2005
    [55]徐元明.国外跨流域调水工程建设与管理综述[J].人民长江,1997,28(3):11-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700