给水管道气压脉冲法清洗试验与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
给水管网是给水系统的重要组成部分,净化后的水经过错综复杂的地下管网,达到用户终端。一般给水厂出水水质都能达到国家规定的生活饮用水卫生标准,但通过给水管网送至用户时,水在给水管网中停留一段时间,在此期间会受到二次污染。管网中的“生长环”是造成二次污染的重要原因,清除“生长环”有利于提高供水水质和管道通水能力。对几种管道清洗方法对比得出,气压脉冲法是一种非常好的管道冲洗方法。提高气压脉冲法的冲洗效率,对减少管网水质的二次污染有重要的理论和实际意义。
     “生长环”是多种无机物、有机物、微生物的混合物。生长环的形成机制复杂,既受到物理沉淀、管道电化学腐蚀、化学稳定性、生物稳定性的影响,对金属管而言,也受到铁细菌、硫酸盐还原菌的腐蚀作用。“生长环”不仅影响给水管网水质,而且随着管道管龄的增长,“生长环”逐渐加厚,内壁粗糙,凹凸不平,增大了管道阻力系数,缩小了过水断面面积,从而直接影响管道的通水能力、供水水压,增加了供水能耗及漏耗。
     通过自行设计搭建的试验平台,对气压脉冲管道冲洗法的脉冲规律进行了研究。试验结果表明,确定供气压力和供水流量一定的情况下,保持停气时间不变,充气时间变化,初始流速、压力迅速增大,后期增速缓慢,且在充气时间为5s的时候,流速、压力达到极大值。保持充气时间不变,随着停气时间的增长,管内的流速、压力呈线性增大趋势,管道内水流紊动加剧,冲洗效果增强;供气压力一定的情况下,改变供水流量,得到供水流量与管道中水流流速、压力之间呈线性关系;供水流量一定的情况下,改变供气压力,得到供气压力与管道中水流流速、压力之间也呈线性关系。
     对实验管道进行气液两相数值模拟研究。针对实验管段,分别建立入口直管和弯管的网格模型。利用非稳态分离求解方法,对入口直管处气、水两相流进行数值模拟,在0.0005s、0.0010s、0.0015s和0.0020s时显示实时结果。对气、水两相流的流型进行分析,研究得出在一定边界条件下,实验管段会形成“弹状流”,分析了“弹状流”的能量转化过程、尾部涡流现象及其对“生长环”的去除作用。利用稳态求解器计算弯管流场,分析弯管内外侧所受压力,及管内流速的分布情况,研究证明弯管对“生长环”去除有一定影响。
Water supply network is an important component of water supply systems. Purified water goes through the intricate network of underground pipes to users. General water treated by plants can meet the drinking water health standards. But sent to the user through the water supply network, the water has been stayed in the water supply network for a period of time. During this period water will be subjected to the secondary pollution. In pipe networks "growth ring" is an important factor to cause secondary pollution, so clearing the "growth rings" will help improve water quality and the capacity of pipes carrying water. Comparison of several methods of cleaning pipes, barometric pulse flushing is a very good method. Improving the efficiency of flushing of barometric pulse method, it has the important theoretical and practical significance to reduce secondary pollution in water supply network.
     "Growth ring" is a mixture which consists of variety of inorganic matter, organic matter, and microbe. The formation mechanism of the growth ring is complex, not only effects of physically precipitation, pipeline electrochemical corrosion, chemical stability, and biological stability, in terms of the metal pipe, but also corrosion by iron bacteria, sulfate-reducing bacteria. Growth rings affect the water quality, and with the growth of pipe age, thickening and increasing roughness of wall, so increasing pipe resistance coefficient, reducing the cross section area, directly affecting the capacity of the pipeline transmission and head, and increasing energy consumption and leakage consumption.
     By designed and built the test platform, the pulses pattern of barometric pulse flushing method is studied. The results show that in a condition of the gas pressure and water flow and maintaining the time of filling air, with changes of the time of stopping air, flow velocity and head sharply increase at the beginning, and later steadily rise. When the time of filling air is 5s, the velocity and head reach the maximum. Remaining unchanged time of filling air, with the stopped time growth, the velocity and head increase linearly in the pipes. In a certain value of gas pressure, with the increase of water flow, velocity and head in the pipes are linear relation. In a certain value of the flow, with the increase of gas pressure, velocity and head in the pipes are also linear relation.
     Study on numerical simulation of two-phase gas-liquid in the experimental pipe. For the experimental pipe sections, grid models of the entrance straight section and the bend section are established respectively. Used separate non-steady solution method, numerical simulation is processed of two-phase gas-liquid in entrance straight section. Display real-time results at 0.0005s,0.0010s,0.0015s, and 0.0020s. The flow pattern of two-phase gas-liquid analyzing, a "slug flow" will be formed in some boundary conditions. The theory of "slug flow" explains the energy conversion process, its tail vortex and the effect of removing "growth rings". Calculate the flow field of bend section with steady-state solver, and analysis pressure and velocity within the pipe. Experiments demonstrate that the elbows of pipes affect to remove "growth rings" at a certain extent.
引文
[1]Vreeburg J. H. G., Boxall J. B. Discolouration in Potable Water Distribution Systems:A Review[J]. Water Research,2007,41(5):519-529
    [2]任基成,费杰.城市供水管网系统二次污染及防治[M].北京:中国建筑工业出版社,2006,37-46
    [3]陈寅,陈国光.上海城市供水管网水质的调查分析[J].中国给水排水,2002,18(7):32-34
    [4]杜英林,任立民.浅析配水管网水质污染原因及防止措施[J].山东水利,2001,9:43-44
    [5]何维华.国内部分城市供水管网水质调研分析[J].给水排水,1993,19(11):15-19
    [6]王琳,王宝贞.优质饮用水净化技术[M].北京:科学出版社,2000,31-32
    [7]汪光熹.城市供水行业2000年技术进步发展规划[M].北京:建筑工业出版社,1993
    [8]赵洪宾.给水管网系统理论与分析[M].北京:建筑工业出版社,2003
    [9]Oberoi, Kanwal. Distribution Flushing Program: The Benefits and Results[J], Proc of American Water Works Association,1994
    [10]姜湘山,张晓明.市政工程管道工试用技术[M].北京:机械工业出版社,2005,285
    [11]Friedman, Melinda, Andrew, et al. Establishing Site-specific Flushing Velocities[J], Proc of American Water Works Association,2002
    [12]Edward N. Antoun, John E. Dyksen, David J. Hiltebran. Unidirectional Flushing: A Powerful Tool[J]. American Water Works Association,1999,91(7):62-71
    [13]焦文海.关于水质维护的管网冲洗研究[D].天津:天津大学,2005
    [14]David, Parker. Effect of pH Adjustments on Flushing in a Drinking Water Distribution System. http://www.sugdendevelopment.com/pdf/Effectofph.pdf.2010-04-15.
    [15]赵洪宾,李欣,赵明.给水管道卫生学[M].北京:中国建筑工业出版社,2008
    [16]周文会.高压水射流喷嘴内外部流场的数值模拟研究[D].兰州:兰州理工大学,2008
    [17]Klausner J. F., Mei R., Near S., et al. Two-phase Jet Impingement for Non-volatile Residue Removal[J]. Proc Instn Mech Engrs.1998,212
    [18]宋安坤.大庆供水管网气水脉冲技术研究[D].哈尔滨:哈尔滨工业大学,2007
    [19]李运长.管道清洗新技术-气脉冲清洗法在供水供热管网中的应用[J].黑龙江水利科技,2006,34(4):227
    [20]李海青.两相流参数检测及应用[M].杭州:浙江大学出版社,1991
    [21]劳力云,郑之初,吴应湘等.关于气液两相流流型及其判别的若干问题[J].力学进展,2002,32(2):235-249
    [22]白博峰,郭烈锦,赵亮.汽(气)液两相流流型在线识别的研究进展[J].力学进展,2001,31(3):437-446
    [23]Hewitt G. F. Measurement of Two-phase Flow Parameters[M]. London: Academic Press, 1980
    [24]Wang S. Z., Li Z. H., Liang Z. P., et al. Flow Patterns and Their Transition in Vertical Downward Pipelines with very Viscous Liquid[A]. Proceedings of the ASME Heat Transfer Division, Vol 3[C]. Atlanta: ASME,1996
    [25]Bonjoun J., Lallemand M. Flow Patterns during Boiling in a Narrow Space Between Two Vertical Surface[J]. Int J Multiphase Flow,1998,24:947-960
    [26]Mishima K., Hibiki T. Some Characteristics of Air-water Two-phase Flow in a Small Diameter Vertical Tubes[J]. Int J Multiphase Flow,1996,22:703-712
    [27]Triplett K. Gas-liquid Two-phase Flow in Micro Channels, Part 1:Two-phase Flow Patterns[J]. Int J Multiphase Flow,1999,25:377-394
    [28]Wolk G., Dreyer M., Rath H. J. Flow Patterns in Small Diameter Vertical Non-circular Channels[J]. Int J Multiphase Flow,2000,26:1037-1046
    [29]Gradeck M., Lebouch M. Two-phase Gas-liquid Flows in Horizontal Corrugated Channels. Int J Multiphase Flow,2000,26:435-444
    [30]Xu J. L., Cheng P., Zhao T. S. Gas-liquid Two-phase Flow Regimes in Rectangular Channels with Micro Gaps. Int J Multiphase Flow,1999,25:411-432
    [31]Wesman J., Lan J., Disimile P. The Effect of Fluid Properties on Two-phase(Vapor-liquid) Flow Patterns in the Presence of Helical Wine Ribs. Int J Multiphase Flow,1996,22:613-618
    [32]Du Y. Experiment of Two-phase Flow Pattern and Analysis of a Flow Map for Horizontal Condensation inside Two-dimensional Inner Micro Fin in Tubes [A]. Proceedings of ISME[C]. Peking: Int Academic Press,1997,326-331
    [33]施丽莲,蔡晋辉,周泽魁.基于图像处理的气液两相流流型识别[J],浙江大学学报 (工学版),2005,39(8):1128-1130
    [34]周云龙,李洪伟,陈飞.基于图像轮廓特征和粒子群优化神经网络的气液两相流流型识别[J],吉林大学学报(工学版),2009,39(3):673-678
    [35]孙斌,钟金山,陈飞等.奇异值分解在气液两相流流行识别中的应用[J].热能动力工程,2008,23(3):252-255
    [36]Wallis G B. One-dimensional Two-phase Flow[J], New York: McGraw-Hill,1969,143
    [37]Nguyen D. L., Winter E. R. F., Greirer M. Sonic Velocity in Two-phase System[J], Int J of Multiphase Flow,1981,7(3):311-320
    [38]Martin C. S., Padamanabhan M. Pressure Pulse Propagation in Two-component Slug Flow[J]. ASME J of Fluids Engineering,1979,101(1):44-52
    [39]徐进良,陈听宽,汽液两相流中的声速研究[J].西安交通大学学报,1994,28(5):73-80
    [40]Hall P. The Propagation of Pressure Waves and Critical Flow in Two-phase Mixtures [D]. Edinburgh, U. K: Heriot-Watt University,1971
    [41]刘磊,王跃社,周芳德.气液两相流压力波传播速度研究[J],应用力学学报,1999
    [42]Dukler A. E., Hubbard M. G. A Model for Gas-Liquid Slug Flow in Horizontal and Near Horizontal Tubes[J]. Ind. Eng Chem. Fundam,1975,14,337-347
    [43]Gregory G A, Nicholson M. K, Aziz K. Correlation of the Liquid Volume Fraction in the Slug for Horizontal Gas-Liquid Slug Flow[J]. Int. J. Multiphase Flow,1978, (4):33-39
    [44]Felizola H, Shoham O. Aunified Model for Slug Flow in Upward Inclined Pipes[J]. ASME J. Energy Resources Technology,1977,117,7-12
    [45]Andreussi P., Minervini A., Paglianti A. A Mechanistic Model of Slug Flow in Near Horizontal Pipes[J], A. I. CH. E. Journal,1986,39,1281-1291
    [46]刘磊,周芳德.水跃对水平管弹状流压力降的影响[J],水动力学研究与进展,1998,13(2):181-188
    [47]Brill J. P., Schmidt Z., et al. Analysis of Two-phase Tests in Large Diameter Flow Lines in Prudhoe Bay Fiels[J]. Soc Petrol Engrs J,1981,271(6):363-378
    [48]Nydal O. J., Pintus S., et al. Statistical Characterization of Slug Flow in Horizontal Pipes[J]. Int J Multiphase Flow,1992,18(3):439-453
    [49]Dhulesia H., Hustvedt E. Measurement and Analysis of Slug Characteristics in Multiphase Pipelines[A]. Proc 6th Int Conf on Multiphase Prod[C]. Cannes, France,1993: 179-192
    [50]Saether G., Bendiksen K., et al. The Fractal Statistics of Liquid Slug Lengths[J]. Int J Multiphase Flow,1990,16(6):1117-112
    [51]Scott S. L., Shoham O., Bril J. P. Prediction of Slug Length in Horizontal Large Diameter Pipes[J], SPEPE,1989,4,335-340
    [52]王鑫,郭烈锦,何利民等.水平管气液段塞流液塞长度演化规律研究[J].西安交通大学学报.2003,37(9):966-970
    [53]吴江航,韩庆书.计算流体力学的理论方法及应用[M],北京:科学出版社,1989
    [54]王宁,赵晓路,秦立森.管线中气-液两相流动数值模拟[J].工程热物理学报,2001,(22):41-43
    [55]高忠信,邓杰,葛新峰.圆形弯管气液两相流数值模拟[J].水利学报,2009,40(6):696-702
    [56]谭立新.水气二相数值模拟研究[D].四川:四川大学,1999
    [57]袁一星,赵洪宾,赵明.给水管网生长环研究[J].哈尔滨建筑大学学报.1998,31(1):72-76
    [58]Vreeburg J. H. G, Schaap P. G., Bergmans B., et al. How Effective Is Flushing of Cast Iron Pipes[A]. Proceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008[C]. Kruger National Park, South Africa,2008:559-570
    [59]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [60]江帆,黄鹏.FLUENT高级应用与实例分析[M].北京:清华大学出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700