五元体系Na~+,K~+,Mg~(2+)//Cl~-,Br~--H_2O 313K相平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是国家“十一.五”科技支撑计划项目“钾镁盐矿生态化开发系统工程研究”中的应用基础研究一部分。为了最大限度地保护环境和提高资源利用率,将采用水采法进行开采,但其开采技术在国内外尚无大规模生产先例。为了避免在推进钾盐产业化进程中投资的盲目性,降低项目经济风险,本文对钾镁盐矿矿石进行了初步的溶浸试验探索性研究。采用盐矿真实岩心,对岩心特殊加工,制成防漏、防渗的几何体;室内模拟溶浸温度,注水采卤,分析卤水离子变化,找出合理采卤温度,了解矿藏溶腔模型变化。
     并且进一步测定了相关体系的相平衡数据,为钾镁盐矿的工业化开发提供了必需的基础数据。该钾镁盐矿是一个比较复杂的体系,由Na~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、Br~-、CO_3~(2-)、SO_4~(2-)等离子组成,其相平衡及平衡溶液物化性质的研究,对于开发该盐矿资源是必不可少的基础性研究工作。
     针对钾镁盐矿体系,在313K下采用等温溶解平衡法,测定了五元体系Na~+,K~+,Mg~(2+) // Cl~-,Br~--H_2O及其四个四元子体系、六个三元子体系相平衡关系和相应的平衡溶液的物化性质(密度、折光率、pH值、粘度)。绘制了三元子体系的相图,物化性质-组成图;绘制了四元子体系及五元体系的有关相图。填补了该体系溶解度数据和平衡溶液物化性质参数研究方面的空白。
     相平衡研究中,同时含有氯离子和溴离子的体系中生成了固体溶液,在所研究的三元、四元及五元体系中均有出现。三元体系KBr-MgBr_2-H_2O 313K时生成了一种复盐KBr·MgBr_2·6H_2O,在含该三元体系的四元、五元体系中也发现了该复盐的结晶区。
     将Pitzer理论应用到了高浓度、多组分的实际体系,采用三元体系溶解度数据,运用多元线性回归法拟合了Pitzer方程中313K时所涉及各种盐的单盐参数及混合离子作用参数,计算出了各种盐313K时溶解平衡常数。对于含固溶体的三元子体系,拟合了平衡固相与液相组成之间新的经验关系式,使该类相平衡的计算得到简化。运用Pitzer方程对简单四元体系及六个三元体系相平衡进行了理论计算,计算结果与实验结果基本吻合。
     本文研究成果尚未见国内外文献报道。
The subject belongs to the application foundation research of the national eleventh five-year scientifical supporting and planning projects“study on systems engineering in ecotourism exploitation of potassium and magnesium salt deposit”. In order to protect environment and increase utilization as far as possible, a correct water exploitation program has been employed. However, this technology has not been applied in large-scale production at home and abroad. In order to avoid the bindness of the investment for advancing the process of industrialization of potassium and magnesium salt deposit and decrease the economic risk for the project, an exploratory research of Leaching-Experiment for K-Mg Salt-Deposit was performed in this work. Solid core of salt mine is treated with special method to be produced into leak-free and permeation-free geometrical body. Under the temperature simulated to that of the leaching, water is injected, extract brine and analyze ion change in brine. Reasonable brine extraction temperature is found for modeling in caverns in different period time in a view to learn the cavern modeling change.
     Further, in order to provide the necessary basic data for the industrialization of potassium and magnesium salt deposit, phase equilibrium data for related systems have been systematically measured. K-Mg Salt-Deposit is a complex chemical compound system, which is composed of many ions and molecule such as K~+, Na~+, Mg~(2+), Ca~(2+), Cl~-, Br~-, CO_3~(2-), SO_4~(2-), etc. So, the study of its phase equilibrium and the physico-chemical properties are in a dispensable elementary work for exploiting the resource of potassium salt mine.
     In accordance with the composition of the K-Mg Salt-Deposit, the reciprocal quinary system Na~+, K~+, Mg~(2+) // Cl~-, Br~--H_2O and its four quaternary sub-systems and six ternary sub-systems were studied at 313K with isothermal method at the present work. The solubilities and the physico-chemical properties of relevant equilibrium solutions, including density, refractivity index, pH value, viscosity, were determined. According to the experimental data, phase diagrams and physico-chemical property-composition diagrams of ternary systems were plotted; phase diagrams of four quaternary sub-systems and quinary system are also constructed. This work has filled the blank in this field of solubilities and the physico-chemical properties of relevant equilibrium solutions.
     It is founded that the system containing chloride and bromide is of solid solution type. A kind of complex salt KBr·MgBr_2·6H_2O was found in the ternary system KBr-MgBr_2-H_2O at 313K, and this complex salt also exists in the quaternary and quinary systems which contained the KBr-MgBr_2-H_2O system.
     Pitzer’s electrolyte solution model is employed for theoretically phase relations of the high concentration multicomponent systems in this work. Using the reliable solubility data of ternary systems at 313 K, the single salt Pitzer parameters and corresponding ion-interaction mixing parameters for Pitzer’s equations were fitted by multiple linear regress method. Equilibrium constant of salts for liquid-solid equilibrium at 313 K were evaluated with Pitzer’s model. To study the phase equilibrium of complex ternary salt-water system containing solid solution, the equilibrium relationship between liquid composition and solid composition was established to achieve the phase diagram by simple iterative calculation. Using the Pitzer’s equations, the solubilities of the simple quaternary sub-system and six ternary sub-systems were predicted. The calculated values are in agreement with experiment values on the whole.
     No same report to above study results has been published in literature at present.
引文
[1]胡红江,续培信.开发钾盐矿资源实施“走出去”战略,中国井矿盐, 2005, (1): 5-7.
    [2]老挝钾盐勘查项目告捷,化工矿物与加工, 2003,(9): 37-38.
    [3]张建林.中国—老挝古近纪钾盐矿对比,云南地质, 2006, 25 (3): 309-314.
    [4]高世扬.青海盐湖锂盐开发与环境,盐湖研究, 2000,(1): 17-23.
    [5]宋彭生,姚燕,李军.盐湖卤水体系热力学和相平衡研究进展,化学进展, 2000, (3): 255-267.
    [6]杨红梅,李旭兵.水盐体系相平衡与相图研究现状,海湖盐与化工,2002, (5): 14-19.
    [7]黄西平,张琦,郭淑元等.我国镁资源利用现状及开发前景,海湖盐与化工, 2004, (6): 1-6.
    [8]陈金钟.氧化镁—氯化镁复杂体系镁电解质研究,博士学位论文, 2006.
    [9]Здановский,А,Ляховская,И,Шлеймович,Р.Справочникэкспериментальныхданныхпорастворимостимногокомпонентныхводносолевыхсистем.Трехкомпонентныесистемы, 1953.
    [10]金作美,肖显志,梁式梅. Na+,K+,Mg2+// Cl-,SO42--H2O五元体系25℃介稳平衡研究,化学学报, 1980, 38 (4): 313-321.
    [11]金作美,周惠南,王励生. Na+,K+,Mg2+∥Cl-,SO42--H2O五元体系35℃介稳相图研究,高等学校化学学报, 2001,(4): 634-638.
    [12]金作美,周惠南,王励生. Na+,K+,Mg2+∥Cl-,SO42--H2O五元体系15℃介稳相图研究,高等学校化学学报, 2002, (4): 690-694.
    [13]韩蔚田. K+,Na+,Mg2+,Ca2+// Cl-,SO42--H2O 25℃六元体系中杂卤石形成条件的研究,科学通报, 1980, 27 (6): 362-365.
    [14]李冰,王庆忠,李军等.三元体系Li+,K+(Mg2+)//SO42--H2O25℃相关系和溶液性质的研究,物理化学学报, 1994,10 (6): 536-542.
    [15]房春晖,李冰,李军等.四元体系Li+,K+,Mg2+//SO42--H2O 25℃相关系和溶液物化性质的研究,化学学报, 1994, (10): 954-959.
    [16]任开武,宋彭生.四元交互体系Li+,Mg2+//Cl-,SO42--H2O 25℃相平衡及物化性质研究无机化学学报, 1994,10 (1): 69-74.
    [17]何贤江,郭志琴. 15℃KCl-NaCl-MgCl2-H2O四元体系相平衡研究,化学学报, 1991, 49 (2): 128-134.
    [18]李冰,孙柏,房春晖等.五元体系Li+,Na+,K+,Mg2+//SO42--H2O 25℃相关系的研究,化学学报, 1997, (6): 545-552.
    [19]孙柏,李冰,房春晖.五元交互体系Li+,K+,Mg2+//Cl-,SO42--H2O25℃相关系和溶液物化性质的研究,盐湖研究, 1995, 3 (4): 50-56.
    [20]孙柏,宋彭生,杜宪惠.盐湖卤水体系Li+,Mg2+//Cl-,SO42-,borate的研究,盐湖研究, 1994, 2 (4): 26-30.
    [21]林耀庭.我国卤水溴资源及其开发前景展望,盐湖研究, 2000,8(02): 59-67.
    [22]林耀庭.溴的地球化学习性及其在四川找钾工作中的应用,化工矿产地质, 1995, 17 (3): 175-181.
    [23]唐宗薰,张逢星.盐卤资源锂钾卤化物水体系研究:Ⅳ.三元体系NH4I-LiI-H2O,LiI-LiBr-H2O和NH4Br-LiBr-H2O 298.2K溶解度,盐湖研究1993, 1 (3): 9-13.
    [24]桑世华,殷辉安,倪师军等.三元体系K2B4O7-KBr-H2O在298K的相平衡研究,成都理工大学学报:自然科学版, 2006, 33 (4): 414-416.
    [25]桑世华,虞海燕.三元体系Na2B4O7-NaBr-H2 O 298K相平衡研究,海湖盐与化工, 2006, 35 (2): 4-8.
    [26]裘端,任宝山. 25℃MgCl2-MgBr2-H2O水盐体系相平衡的研究,河北工业大学学报, 2002, 31 (2): 32-35.
    [27] Pitzer, K S. Thermodynamics of electrolytes. V. effects of higher-order electrostatic terms, Journal of Solution Chemistry, 1975, 4 (3): 249-265.
    [28]黄子卿.电解质溶液理论导论,修订版,北京:科学出版社, 1983.131-149
    [29]李以圭.金属溶剂萃取热力学,第一版,北京:清华大学出版社, 1988.73-120
    [30]黄子卿.电解质溶液—Debye-Hückel理论的进展,化学通报, 1980, 5: 1-9.
    [31] Robinson , R A, Stokes, R H. Electrolyte Solutions, ed 2nd ed, London: Butterworth, 1959
    [32] Bates, R G, Staples, B R, Robinson, R A. Ionic hydration and single ion activities in unassociated chlorides at high ionic strengths, Analytical Chemistry, 1970, 42 (8): 867-871.
    [33] Robinson, R A, Duer, W C, Bates, R G. Potassium fluoride. Reference standard for fluoride ion activity, Analytical Chemistry, 1971, 43 (13): 1862-1865.
    [34] Glueckauf , E. The influence of ionic hydration on activity coefficients in concentrated electrolyte solutions, Tran Faraday Soc, 1955, 51 (9): 1235-1244.
    [35] Stokes, R H, Robinson, R A. Solvation equilibria in very concentrated electrolyte solutions, Journal of Solution Chemistry, 1973, 2 (2): 173-191.
    [36]曾英.五元体系Li+、Na+、K+∥CO32-、B4O72--H2O 298K相平衡及相应平衡液相物化性质研究,博士学位论文, 1999.
    [37] Lee, W H, Wheaton, R J. Conductance of Symmetrical, Unsymmetrical and Mixed Electrolytes, J Chem Soc Faraday TransⅡ, 1978, 74 (4): 743-766.
    [38] Fuoss, R M. Conductance-concentration function for associated symmetrical electrolytes, The Journal of Physical Chemistry, 1975, 79 (5): 525-540.
    [39] Fuoss, R M. Conductance-concentration function for the paired ion model, The Journal of Physical Chemistry, 1978, 82 (22): 2427-2440.
    [40] Frank, H S, Thompson, P T. The Structure of Electrolytic Solution, New York: John Wiley & Sons. Inc, 1959
    [41] Meissner, H P, Kusik, C L. Activity coefficients of strong electrolytes in multicomponent aqueous solutions, AIChE Journal, 1972, 18 (2): 294-298.
    [42] Meissner, H P, Tester, J W. Activity Coefficients of Strong Electrolytes in Aqueous Solutions, Industrial & Engineering Chemistry Process Design and Development, 1972, 11 (1): 128-133.
    [43] Pitzer, K S. Thermodynamics of electrolytes. I. Theoretical basis and general equations, The Journal of Physical Chemistry, 1973, 77 (2): 268-277.
    [44] Pitzer, K S, Mayorga, G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, The Journal of Physical Chemistry, 1973, 77 (19): 2300-2308.
    [45] Pitzer, K S, Kim, J J. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes, Journal of the American Chemical Society, 1974, 96 (18): 5701-5707.
    [46] Pitzer, K S, Mayorga, G. Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes, Journal of Solution Chemistry, 1974, 3 (7): 539-546.
    [47] Pitzer, K S, Silvester, L F. Thermodynamics of electrolytes. VI. Weak electrolytes including H3PO4, Journal of Solution Chemistry, 1976, 5 (4): 269-278.
    [48] Pitzer, K S, Roy, R N, Silvester, L F. Thermodynamics of electrolytes. 7. Sulfuric acid, Journal of the American Chemical Society, 1977, 99 (15): 4930-4936.
    [49] Silvester, L F, Pitzer, K S. Thermodynamics of electrolytes. 8. High-temperature properties, including enthalpy and heat capacity, with application to sodium chloride, The Journal of Physical Chemistry, 1977, 81 (19): 1822-1828.
    [50] Pitzer, K S, Peterson, J R, Silvester, L F. Thermodynamics of electrolytes. IX. Rare earth chlorides, nitrates, and perchlorates, Journal of Solution Chemistry, 1978, 7 (1): 45-56.
    [51] Pitzer, K S, Silvester, L F. Thermodynamics of electrolytes. 11. Properties of 3: 2, 4: 2, and other high-valence types, The Journal of Physical Chemistry, 1978, 82 (11): 1239-1242.
    [52] Silvester, L F, Pitzer, K S. Thermodynamics of electrolytes. X. Enthalpy and the effect of temperature on the activity coefficients, Journal of Solution Chemistry, 1978, 7 (5): 327-337.
    [53] Bradley, D J, Pitzer, K S. Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye--Hueckel parameters to 350/sup 0/℃and 1 kbar, The Journal of Physical Chemistry, 1979, 83 (12): 1599-1603.
    [54] Pitzer, K S, Peiper, J C. Activity coefficient of aqueous NaHCO3, The Journal of Physical Chemistry, 1980, 84 (19): 2396-2398.
    [55] Peiper, J C, Pitzer, K S. Thermodynamics of Aqueous Carbonate Solutions Including Mixtures of Sodium Carbonate, Bicarbonate, and Chloride, Journal of Chemical Thermodynamics, 1982, 14 (7): 613-638.
    [56] Pitzer, K S. Thermodynamics of unsymmetrical electrolyte mixture. Enthalpy and heat capacity, The Journal of Physical Chemistry, 1983, 87 (13): 2360-2364.
    [57] Roy, R N, Gibbons, J J, Peiper, J C, et al. Thermodynamics of the unsymmetrical mixed electrolyte HCl-LaCl3, The Journal of Physical Chemistry, 1983, 87 (13): 2365-2369.
    [58] Pabalan, R T, Pitzer, K S. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O, Geochim. Cosmochim. Acta, 1987, 51 (9): 2429-2443.
    [59] Pitzer, K S. Activity Coefficients in Electrolyte Solutions,2ed, Boca Raton: CRC Press, 1991
    [60] Harvie, C E, Weare, J H. The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25℃, Geochimica et Cosmochimica Acta, 1980, 44 (7): 981-997.
    [61] Harvie, C E, Eugster, H P, Weare, J H. Mineral equilibria in the six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25℃. II: Compositions of the saturated solutions, Geochimica et Cosmochimica Acta, 1982, 46 (9): 1603-1618.
    [62] Harvie, C E, M ? ller, N, Weare, J H. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25℃, Geochimica et Cosmochimica Acta, 1984, 48 (4): 723-751.
    [63] Kim, H T, Frederick Jr, W J. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25℃. 1. Single salt parameters, Journal of Chemical and Engineering Data, 1988, 33 (2): 177-184.
    [64] Kim, H T, Frederick Jr, W J. Evaluation of Pitzer ion interaction parameters of aqueous mixed electrolyte solutions at 25℃. 2. Ternary mixing parameters, Journal of Chemical and Engineering Data, 1988, 33 (3): 278-283.
    [65] Pitzer, K S. Electrolytes. From dilute solutions to fused salts, Journal of the American Chemical Society, 1980, 102 (9): 2902-2906.
    [66] Pitzer, K S, Li, Y G. Thermodynamics of Aqueous Sodium Chloride to 823 K and 1 Kilobar (100 MPa), Proceedings of the National Academy of Sciences, 1983, 80 (24): 7689-7693.
    [67]何向明,陆九芳. Na+,K+//Cl-,Br-水溶液体系中活度系数的测定,清华大学学报:自然科学版, 1991, 31 (6): 45-52.
    [68] Li, Y G, Mather, A E. Correlation and Prediction of the Solubility of Carbon Dioxide in a Mixed Alkanolamine Solution, Industrial & Engineering Chemistry Research, 1994, 33 (8): 2006-2015.
    [69] Li, Y G, Mather, A E. Correlation and Prediction of the Solubility of CO2 and H2S in Aqueous Solutions of Methyldiethanolamine, Industrial & Engineering Chemistry Research, 1997, 36 (7): 2760-2765.
    [70] Pitzer, K S, Simonson, J M. Thermodynamics of multicomponent, miscible, ionic systems: theory and equations, The Journal of Physical Chemistry, 1986, 90 (13): 3005-3009.
    [71] Chen, C C, Britt, H I, Boston, J F, et al. Local Composition Model for Excess Gibbs Energy of Electrolyte Systems, AIChE J, 1982, 28 (4): 588-596.
    [72] Mock, B, Evans, L B, Chen, C C. Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems, AIChE Journal, 1986, 32 (10): 1655-1664.
    [73] Abrams, D S, Prausnitz, J M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE Journal, 1975, 21 (1): 116-128.
    [74] Sander, B, Fredenslund, A, Rasmussen, P. Calculation of vapour-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation, Chemical Engineering Science, 1986, 41 (5): 1171-1183.
    [75] Sander, B, Rasmussen, P, Fredenslund, A. Calculation of vapour-liquid equilibria in nitric acid-water-nitrate salt systems using an extended UNIQUAC equation, Chemical Engineering Science, 1986, 41 (5): 1185-1195.
    [76] Sander, B, Rasmussen, P, Fredenslund, A. Calculation of solid-liquid equilibria in aqueous solutions of nitrate salts using an extended UNIQUAC equation, Chemical Engineering Science, 1986, 41 (5): 1197-1202.
    [77] Nicolaisen, H, Rasmussen, P, S rensen, J M. Correlation and prediction of mineral solubilities in the reciprocal salt system (Na+, K+)(Cl-, SO42-)-H2O at 0-100°C, Chemical Engineering Science, 1993, 48 (18): 3149-3158.
    [78] Li, J, Polka, H M, Gmehling, J. Ag(E) model for single and mixed solvent electrolyte systems. 1. Model and results for strong electrolytes, Fluid Phase Equilibria, 1994, 94: 89–114.
    [79] Polka, H M, Li, J D, Gmehling, J. Ag (E) Model for Single and Mixed-Solvent Electrolyte Systems. 2. Results and Comparison with Other Models, Fluid Phase Equilibria, 1994, 94: 115-127.
    [80] Lu, X, Zhang, L, Wang, Y, et al. Prediction of Activity Coefficients of Electrolytes in Aqueous Solutions at High Temperatures, Ind. Eng. Chem. Res, 1996, 35 (5): 1777-1784.
    [81] Lu, X, Maurer, G. Model for describing activity coefficients in mixed electrolyte aqueous solutions, AIChE Journal, 1993, 39 (9): 1527-1538.
    [82] Ornstein, L S, Zernike, F. Solution an Arbitrary Function of Time, Proc. Acad. Sci., Amsterdam, 1914, 17: 793-801.
    [83]于养信,陆九芳,李以圭.平均球近似法计算电解质活度系数的研究(Ⅰ):单一电解质水溶液,化工学报, 1992, 43 (5): 523-531.
    [84]于养信,陆九芳,李以圭.平均球近似法计算电解质活度系数的研究(Ⅱ):混合电解质水溶液,化工学报, 1992, 43 (5): 532-539.
    [85]李以圭,李春喜.电解质溶液的分子热力学模型研究进展,化学进展, 1996, 8 (2): 155-161.
    [86]张吕正,陆小华.电解质溶液热力学新进展,南京化工学院学报,1995,17 (3): 86-91.
    [87] Hu, Y, Ludecke, D, Prausnitz, J. Molecular thermodynamics of fluid mixtures containing molecules differing in size and potential energy, Fluid Phase Equilibria, 1984, 17 (2): 217-241.
    [88] Li, Y G, Mather, A E. Correlation and prediction of the solubility of N2O in mixed solvents, Fluid Phase Equilib, 1994, 96: 119-142.
    [89]朱建军,刘文彬,卢锦梭等.研究简报,物理化学学报, 1990, 6(2): 246-251.
    [90] Ullner, M, Staikos, G, Theodorou, D N. Monte Carlo simulations of a single polyelectrolyte in solution: Activity coefficients of the simple ions and application to viscosity measurements, Macromolecules, 1998, 31 (22): 7921-7933.
    [91] Nishio, T, Minakata, A. Monte Carlo Simulations of Ion Activities in Rodlike Polyelectrolyte Solutions, Langmuir, 1999, 15 (12): 4123-4128.
    [92] Lund, M, Jonsson, B, Pedersen, T. Activity coefficients in sea water using Monte Carlo simulations, Marine Chemistry, 2003, 80 (2): 95-101.
    [93] Lee, L L, Llano-Restrepo, M, Chapman, W G, et al. Improved MSA Theory for Concentrated Electrolyte Solutions Based on Monte Carlo Simulation at High Ionic Strengths, Journal-Chinese Institutute of Chemical Engineers, 1996, 27: 213-234.
    [94] Strauch, H J, Cummings, P T. Computer simulation of vapor-liquid equilibrium in mixed solvent electrolyte solutions, Fluid Phase Equilibria, 1993, 83: 213-222.
    [95] Stephen, H, Stephen, T. Solubilities of Inorganic and Organic Compounds, New York: Pergamon Press, 1963
    [96]苏裕光,王向荣.无机化工生产相图分析,(二).化学肥料:化学工业出版社, 1992
    [97]梁保民.水盐体系相图原理及运用,第一版,北京:轻工业出版社, 1986.551-563
    [98]张若桦.四元水盐体系溶解度研究方法的介绍,化学通报, 1962, 14 (3): 42-44.
    [99]张进棠,齐小玲,俞通武.某盐田日晒工艺过程中钾的容量法测定,海湖盐与化工, 1998, 27 (4): 15-20.
    [100]马欣华,孙世庆.卤水化工,第一版,北京:化学工业出版社, 1995.295-296
    [101]中国科学院青海盐湖研究所分析室.卤水和盐的分析方法,第二版,北京:科学出版社, 1988.61-63
    [102]徐汝云,宋秋生.溴、氯元素共存时二者含量的测定,安徽化工, 2001, 27 (2): 44-45.
    [103]左华,张立桥. pH计的应用与维护,中国仪器仪表, 2002, (3): 45-48.
    [104]顾菡珍,叶于浦.相平衡和相图基础,第一版,北京:北京大学出版社, 1995.164-167
    [105]张联科.化工热力学,北京:化学工业出版社, 1980
    [106]苏裕光,吕秉玲,王向荣.无机化工生产相图分析(一):基础理论,北京:化学工业出版社, 1985.96-117
    [107]迪安, J A,尚久方,操时杰.兰氏化学手册,第十三版,北京:科学出版社, 1991.223-229
    [108]宋彭生,杜宪惠,许恒存.三元体系Li2B4O7-Li2SO4-H2O 25℃相关系和溶液物化性质的研究,科学通报, 1983, 28 (2): 106-110.
    [109]孙尔康,徐维清,邱金恒.物理化学实验,第一版,南京:南京大学出版社, 1998.277-284
    [110]牛自得,程芳琴,李宝存.水盐体系相图及其应用,第一版,天津:天津大学出版社, 2002.183-226
    [111] Robinson, R A, Stokes, R H. Electrolyte Solutions, 2nd ed, London: Butterworths, 1965
    [112]樊彩梅,舒兰.含固溶体三元体系K2SO4-(NH4)2SO4-H2O和KCl-NH4Cl-H2O溶解度的计算,高校化学工程学报, 1998, 12 (1): 64-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700