FCC汽油萃取精馏深度脱硫过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为控制汽车尾气对环境的污染,生产低硫汽油已成为炼油工业21世纪面临的迫切任务。在诸多生产低硫汽油的技术中,汽油萃取精馏深度脱硫技术具有过程条件温和、产品辛烷值损失小、能耗低、环境友好等优势。因此,深入研究汽油萃取/萃取精馏深度脱硫过程的相关问题具有重要的理论意义和应用价值。本文以FCC汽油(fludized catalytic cracking gasoline,通称为FCC汽油)和模拟汽油为原料,分别对萃取、萃取精馏过程的溶剂筛选、溶剂萃取性能评价和过程条件优化,含硫化合物和萃取溶剂的液液、汽液相平衡以及FCC汽油连续萃取精馏过程的模拟分析进行了研究。
     以FCC汽油和三种模拟汽油(分别由硫醇、硫醚、噻吩+C6~C8烷烃组成)为原料,考察了初选溶剂环丁砜、二甲基亚砜、四甘醇和二甘醇的萃取脱硫性能,确定了环丁砜可作为FCC汽油萃取/萃取精馏脱硫的首选溶剂。FCC汽油连续萃取精馏脱硫的研究结果表明,以环丁砜为溶剂,在回流比4、剂油比0.3条件下,脱硫率达到88.5%;随着剂油比的增加,脱硫率增加,剂油比>0.3后脱硫率变化缓慢,剂油比在0.3~0.8之间较为适宜。进一步的研究结果表明,以环丁砜为萃取剂对FCC汽油中馏分进行脱硫脱芳,在回流比4、剂油比0.55的条件下,萃余油硫含量<30μg/g,苯含量<0.5%,芳烃含量<3%,可作为优质的重整原料;减压蒸馏回收的环丁砜热稳定性较好,回收后的环丁砜仍有很好的脱硫脱芳效果,可循环使用。
     采用平衡釜法测定了常压下40、50、60℃时七个含硫化合物-正辛烷-萃取溶剂三元体系的液液相平衡数据:1)噻吩-正辛烷-二甲基亚砜体系,2)噻吩-正辛烷-环丁砜体系,3)噻吩-正辛烷-四甘醇体系,4)正丁基硫醇-正辛烷-环丁砜体系,5)正丁基硫醇-正辛烷-四甘醇体系,6)正丁基硫醚-正辛烷-环丁砜体系,7)正丁基硫醚-正辛烷-四甘醇体系。用NTRL、UNIQUAC模型对相平衡数据进行了热力学关联。关联时以摩尔分数偏差平方和最小为目标函数,用单纯形和拟牛顿优化法及混合吉布斯自由能最小的热力学平衡准则,确定了相应的模型参数。结果表明,NRTL模型对噻吩体系的预测误差最小,噻吩质量百分数的平均绝对偏差在0.005左右;正丁基硫醇和正丁基硫醚的质量百分数平均绝对偏差分别在0.04和0.0342左右。这表明NRTL模型能较好的描述上述三元体系的液液相平衡。
     采用双循环汽液平衡釜法测定了四个常压下两类含硫化合物-正辛烷/环丁砜体系的二元汽液平衡数据:1)噻吩-正辛烷,2)噻吩-环丁砜,3)正丁基硫醇-正辛烷,4)正丁基硫醇-环丁砜体系。采用var Laar、Wilson、NTRL、UNIQUAC模型对汽液相平衡数据进行了热力学关联。UNIQUAC模型的预测结果优于其它三个模型的预测结果,其噻吩和正丁基硫醇的质量分数平均绝对偏差分别为0.0614和0.0505。四个体系的汽液相平衡数据基本符合Herrington的热力学一致性检验。
     采用SRK-KD和NRTL方程,结合ProII新增的含有环丁砜部分性能的系统补丁,增补由实验平衡数据拟合得到的组分间交互作用参数(采用NRTL模型,结合UNIFAC活度系数方程对实验得到的VLE与LLE数据计算得到),用ProII软件对萃取精馏过程进行了模拟计算,模拟结果与实验结果吻合较好。萃取精馏的适宜条件为理论板数10~15、剂油比0.5、回流比4,溶剂进料位置在第4块理论板,原料油在下数第3~4板进料。在此基础上提出了萃取精馏+加氢脱硫组合工艺流程。
In order to control the pollution resulted from vehicle exhaust the production of gasoline with ultra-low sulfur content has become an urgent mission for the oil refining industries in the 21st century. Extractive distillation (ED) deep desulfurization of FCC gasoline has many potential advantages over the other desulfurization techniques, such as mild process conditions, low loss of octane number, low energy consumed, environmentally friendly, and etc. The study of extraction/extractive distillation deep desulfurization is of significantly economic and social interesting.
     Studies in this work focused on selection and performance evaluation of the solvents for extraction desulfurization of FCC and modeling gasolines, optimization for continuous extraction/extractive distillation process of FCC gasoline, measurement and correlation of liquid-liquid, vapor-liquid phase equilibrium of three sulfides (thiophene, n-butyl mercaptan and n-dibutyl sulfide in FCC gasoline)– solvent, and simulation and analysis of FCC gasoline ED desulfurization process.
     In the experimental study of extraction desulfurization, FCC gasoline and modeling gasolines which were prepared by respectively added mercaptan, sulfide, thiophene into C6~C8, used as feeds, the performance of the four selected solvents (sulfolane, dimethyl sulfoxide, tetraethylene glycol and diethylene glycol) were investigated, and finally sulfolane was considered as a best solvent for FCC gasoline extraction distillation desulfurization. The experimental results showed that using sulfolane as solvent, under the conditions of reflux ratio 4, solvent/oil ratio 0.3, the FCC gasoline desulfurization percentage reached to 88.5%, the desulfurization percentage increased with the increasing of solvent/oil ratio as solvent/oil ratio< 0.3, and the desulfurization percentage increased slightly with the increasing of solvent/oil ratio as solvent/oil ratio > 0.3 and a suitable solvent/oil ratio could be in a range of 0.3 ~ 0.8. Further experimental results of FCC gasoline medium fraction ED desulfurization-dearomation with sulfolane indicated that under the conditions of reflux ratio 4 and solvent/oil ratio 0.55, in the raffinate, the sulfur content could be reduced to less than 30μg/g, the benzene content less than 0.5% and the aromatics content less than 3%. The results of stability experiments showed that the recovered sulfolane with a good chemical stability can be reused.
     Liquid-liquid equilibria (LLE) data of seven ternary systems of sulfide - octane - solvent at 40,50 and 60℃under atmospheric pressure were measured using an equilibria cell,the systems included: 1) thiophene- octane - dimethyl sulfoxide, 2) thiophene - octane - sulfolane, 3) thiophene- octane - teraethylene glycol, 4) n-butyl mercaptan -octane -sulfolane, 5) n-butyl mercaptan- octane - teraethylene glycol, 6) n-dibutyl sulfide- octane- sulfolane, 7) n-dibutyl sulfide- octane- teraethylene glycol. NRTL and UNIQUAC models were used to correlate and predict the LLE data of the ternary systems. The model parameters were estimated using the simplex optimization method and the quasi-Newton method with an objective function of mass fraction deviation square and the rule of minimum Gibbs free energy in a closed thermodynamic equilibrium system. The results indicated that NRTL model was better than UNIQUAC model, and the average absolute deviation of thiophene mass percentage is ca 0.0050, n-butyl mercaptan ca 0.0400, and n-dibutyl sulfide ca 0.0342. This implies that NRTL model is more suitable for describing the Liquid-liquid equilibria of the ternary systems studied.
     Vapour-liquid equilibria (VLE) data of four binary systems of the sulfides-octane/ sulfolane were measured using a dual-circulating VLE cell, and the systems included: 1) thiophene- octane, 2) thiophene-sulfolane, 3) n-butyl mercaptan-octane, 4) n-butyl mercaptan -sulfolane. var Laar, Wilson, NRTL and UNIQUAC models were employed to correlate the VLE data and predict phase composition. Prediction of the UNIQUAC model was better than those of the other three models, and average mass fraction absolute deviations of thiophene and n-butyl mercaptan are respectively ca 0.0614 and ca 0.0505. The VLE data of the four systems were satisfied with Herrington thermodynamic consistency.
     The SRK-KD and NRTL equations were used to simulate the ED process of FCC gasoline desulfurization using Pro II software. The inter-action parameters used in the simulation were determined using NRTL and UNIFAC activity coefficient models with the experimental VLE and LLE data. The simulated and the experimental results of the ED process were in fairly agreetment. Optimal operation conditions of FCC gasoline extraction distillation desulfurization were obtained as follows: theory stage number NT 10~15, solvent/oil ratio 0.5, reflux ratio 4, solvent feeded in the 4th tray, and oil feeded in the 3rd or 4th tray from bottom. Based on the experimental and simulated results, a combined deep desulfurization process of ED- HDS was suggusted.
引文
[1]欣立,闫永辉,王玉环. FCC汽油脱硫新技术.石家庄职业技术学院学报[J],2002,14,(4):8~10
    [2]温永红,段天平.车用燃料低硫化及应对措施[J].石油与天然气化工. 2002,31(1):31~34
    [3]王龙延,杜道林,陈大军,等.车用清洁汽油及其生产技术[J].河南石油,2002,16(4):55~60
    [4] Lappas A A,Valla J A,Vasalos I A,et al. The effect of catalyst properties on the insitureduction of sulfur in FCC gasoline [J]. Applied Catalysis A:General,2004,262:31~41
    [5] Yin Changlong,Xia Daohong. A study of the distribution of sulfur compounds in gasoline produced in China [J]. Fuel,2004,83:433~441
    [6]殷长龙,夏道宏. FCC汽油中类型硫含量分布[J].燃料化学学报. 2001,29(3):256~258
    [7]梁咏梅,刘文惠,刘耀芳.重油FCC汽油中含硫化合物的分析[J].色谱,2002,20(3):283~285
    [8] Romanow S. Gasoline and diesel sulfur content review[J]. Hydrocarbon Processing,2000,79(9):17
    [9]贺克斌.中国车用燃油低硫计划分析.人民网,2005,7:17
    [10]钱伯章.生产清洁汽油和柴油催化技术进展[J].工业催化,2003,11(3):1~6
    [11]高明,陈洁,郑立,等.清洁汽油的生产[J].石油与天然气化工,2003,32(4):222~227
    [12]张艳维,元玉台,沈健,等.汽油深度脱硫技术进展[J].精细石油化工进展,2004,5(7):48~51
    [13]王军民,袁铁.超低硫清洁汽油的生产技术进展[J].天然气与石油. 2001,19(4):14~17
    [14] Shih S S,Owens P J. Palit S. Mobil’s Octgain Process:FCC Gasoline Desulfurization Reaches a New Performance Level[C]. NPRA,AM-99-30,San Antonio,1999
    [15] Rarrevo J D. Catalyst selects experience for hydrotreating [J]. Oil & Gas J,2000,98(41):72~74
    [16] Martinez N P,Salazzar J A,Tejada J. Meet Gasoline Pool Sulfur and Octane Targets with the ISAL Process[C]. NPRA. AM-00-52,Washington,D.C. 2000
    [17] Gardner A R. Start-up of First CD-Hydro/CDHDS Unit at Irving Oil’s Saint John[C]. NPRA. AM-01-39,New Orleans,Louisiania,2001
    [18] Judzis A,Peninger R S,Demeter J C,et al. Start-up of First CDHYDRO/CDHDS Unit at Motiva’s Port Arthur[C]. NPRA. AM-01-11,New Orleans,Louisiania,2001
    [19] Brignac G B. The SCANfining Hydrotreatment Process [J]. World Refining ,2000,10(7):14~18
    [20] Desal P H. Low Cost Production of Clean Fuel with STARS Catalyst technology[C]. NPRA,AM-99-40,San Antonio,1999
    [21] Alph E M. The domino interaction of refinery processes for gasoline quality attainment[C]. NPRA,AM-00-61,Washington,D.C. 2000
    [22]周庆水,郝振岐,王艳涛,等. OCT-M FCC汽油深度加氢脱硫技术的研究及工业应用[J],石油炼制与化工,2007,38(9),28~31
    [23] Yang R T,Hernandez Maldonado A J,Yang F H. Desulfurization of transportation fuels with zeolitesunder ambient conditions [J]. Science,2003,301(7):79~81
    [24] Gil J G,Dennis K. Next generation sulfur removal technology[C]. NPRA. AM-00-12,Washington,D.C. 2000
    [25] Zinnen H A. Removal of organic sulfur compounds from FCC gasoline feedstock [P]. USP5935422,1999
    [26] Forte P. Removal of sulfur from a FCC gasoline fraction [P]. USP 5582714,1996
    [27] Bater K. Removal of sulfur from a hydrocarbon stream by low severity adsorption [P]. USP 5919354,1999
    [28] Lesieur. System and method for desulfurizing gasoline or diesel fuel to produce a low sulfur-content fuel for use in an internal combustion engine [P]. USP 6129835,2000
    [29] Byron G J,Dennis K. Application of Phillips Szorb Process to Distillates:Meeting the Challenge [C]. NPRA. AM-01-14,New Orleans,Louisiania,2001
    [30] Stynes P C,Sheperd T,Kidd D. Innovation Key to New Technology [C]. NPRA AM-01-43,New Orleans,Louisiana,2001
    [31] Gislason J. Phillips sulfur~removal process nears commercialization [J] ,Oil Gas J. 2002(99):74
    [32] Greenwood G J. Next Generation Sulfur Removal Technology [C]. NPRA Annual Meeting,AM-00-12,Washington,D.C. 2000
    [33] Khare. Transport Desulfurization Process Utilizing a Sulfur Sorbent that is Both Fluidizable and Circulatable and a Method of Making Such Sulfur Sorbent [P]. USP 5914292, 1999
    [34] Irvine R L,Benson B A,Varraveto D M,et al. IRVAD process—Low Cost Breakthrough for Low Sulfur Gasoline[C]. NPRA AM-99-42,San Antonic,Texas,1999
    [35] Irvine R L. Process for Desulfurizing Gasoline and Hydrocarbon Feedstocks [P]. USP 5730860,1998
    [36]张晓静,秦如意. FCC汽油吸附脱硫工艺技术—LADS工艺[J].天然气与石油,2003,21(1):39~41
    [37]秦如意,张晓静. FCC汽油吸附脱硫工艺的研究[J].石油炼制与化工,2003,34(3):24~28
    [38] Ma Xiaoliang, Sun Lu, Song Chunshan. A new approach to deep desulfurization of gasoline,diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catalysis Today,2002,77(1~2):107~116
    [39] Velu S,Watanable S,Ma X. Development of Selective Adsorbents for Removing Sulfur from Gasoline for Fuel Cell Applications [J]. Am. Chem. Soc.,Div. Petrol. Chem. Prepr.,2003,48(2):56~57
    [40] Velu S,Ma X,Song C. Selective adsorption for removing sulfur from jet fuel over zeolite–based adsorbents [J]. Ind. Eng. Chem. Res.,2003,42(21):5293~5304
    [41]刘志,董萍.燃料生物脱硫技术的研究进展[J].抚顺石油学院学报,2001,21(4):40~43
    [42] Boron D J,Deaver W R,Atals R M. Biodesulfur of Dasoline:An Assessment of Technical and Economic Feasibility and Outline of R & D Roadmap Toward Commercialization[C]. NPRA,AM-99-54,San Antonio,1999
    [43] Konishi. High-temperature desulfurization by microorganisms[P],USP 6130081,2000
    [44] Anne K R. Enzymes desulfurizing diesel fuel in pilot plant tests[J],OGJ,1995,93(20):39~40
    [45] Michael A.P,Elaine A L. Biodesulfur of Gasoline:Recent advances in biodesulfurization of diesel fuel [C]. NPRA,AM-99-27,San Antonio,1999
    [46]蒙泰斯洛D J,基尔贝恩二世J J.有机硫分子的生物催化脱硫[P]. CN 1082094A,1993
    [47]钱伯章,吴虹.石油生物脱硫技术及其应用前景[J].炼油设计,1999,29(8):26~31
    [48]吕雷.汽油脱硫技术[J].南炼科技,2002,9(6):68~70
    [49]祝文书,罗国华,徐新,等.催化精馏用于噻吩硫化物烷基化脱硫的研究[J].化学反应工程与工艺,2004,20(2):129~133
    [50]常振勇.汽油噻吩硫的烷基化脱除技术[J].炼油设计,2002,32(5):44~46
    [51] Rodney P,Carol C. BP Unveils OATS process [N]. Octane Week,Texas:2000–12–03
    [52] Alexander B D,Huff G A,Pradhan V R,et al. Sulfur removal process [P]. USP 6024865,2000
    [53] Alexander B D,Huff G A,Pradhan V R,et al. Multiple stage sulfur removal process [P]. USP 6059962,2000
    [54] Collins N A,Trewella J C. Alkylation process for desulfurization of gasoline [P]. USP 5599441,1997
    [55] Stuntz G F. The production of low sulfur naphtha streams via sweetening and fractionation combined with thiophene alkylation [P]. WO 2005019387,2005
    [56] Stuntz G F,Smiley R J,Halbert T R. Olefin addition for selective naphtha desulfurization with reduced octane loss [P]. WO 2005019390,2005
    [57] Stuntz G F,Smiley R J,Halbert T R. Naphtha desulfurization with no octane loss and increased olefin retention [P]. WO 2005019391,2005
    [58] Magne-Drisch J,Picard F. Process for desulfurization of gasolines [P]. USP 20050061711,2005
    [59] Pradhan V R,Burnett P A,Mcdaniel S,et al. Multistage process for removal of sulfur from components for blending of transportation fuels [P]. WO 03012010,2003
    [60] Pradhan V R,Burnett P A,Mcdaniel S,et al. Multistage process for removal of sulfur from components for blending of transportation fuels [P]. USP 6733660,2004
    [61] Pradhan V R,Burnett P A,Mcdaniel S,et al. Multiple stage process for removal of sulfur from components for blending of transportation fuels [P]. USP 6736963,2004
    [62] Quentin D,Jean-Luc N. Prime-G+-(TM) from pilot to start-up of world’s first commercial 10μg/g FCC gasoline Desulfurization Process [C]. NPRA 2002 Annual Meeting,San Antonio TX,2002. John Adlington. BP and IFP form new alliance [N]. European Fuels News,2001–04–03
    [63]孔令艳,李刚,王祥生.液体燃料催化氧化脱硫[J].化学通报,2004,67(3):178~184
    [64]姚秀清,王少军,凌凤香.模拟轻质油品的氧化脱硫[J].燃料化学学报,2004,32(3):318~322
    [65]李海燕,宋华,李锋,等.燃料油氧化脱硫的研究进展[J].石油化工,2006,35(11):1110~1114
    [66] Doug C.采用选择性氧化和抽提工艺生产超低硫柴油[J].天然气与石油,2000,18(4):34~39
    [67] Kane L,Romanow S. Oxidative Desulfurization for Disel Demonstrate [J]. Hydrocarbon Process,2003,82(7):29
    [68]杨金荣,侯影飞,孔瑛,等.柴油臭氧氧化脱硫研究[J].石油大学学报(自然科学版),2002,26(4):84~89
    [69]唐晓东,税蕾蕾,刘亮.直馏柴油Nox-空气催化氧化脱硫研究[J].催化学报,2004,25(10):789~792
    [70]王豪,唐晓东,税蕾蕾.柴油催化氧化脱硫技术研究[J].炼油技术与工程,2004,34(6):47~49
    [71]唐晓东,崔盈贤,于志鹏,等.直馏柴油选择催化氧化脱硫催化剂的制备与评价[J].石油化工,2005,34(10):922~926
    [72]大庆石油学院.用高铁酸钾氧化生产超低硫油品的方法[P].中国,CN 1730399A. 2006
    [73]顾约伦.新的汽油脱硫高效方法[J].高校化工,2002,17(6):56~58
    [74]钱伯章.膜法技术用于催化汽油脱硫[J].精细石油化工进展,2003,4(12):50
    [75] SCHUCKER R C. TransSep-S-A unique pervaporation process for the removal of sulfur from gasoline [EB/OL]. [2005-06-15] http://www.bccresearch.com/membrane 2003 proceed. html
    [76] Gjetty E G. New routes for gasoline deep desulfurization [J]. Chem. Eng.,2001,108 (8) :17~21
    [77] Halber T,Garland B. Technology options for meeting low sulfur mogastargents[C]. NPRA,AM-00-11,Washington,D.C. 2000
    [78]李雅琴.低硫指标促使炼油厂考察加氢处理方案[J].石油炼制与化工,1999,30(5):9
    [79]李建强,钮根林.FCC汽油脱硫技术研究及进展[J].天然气与石油,2003,21(2):26~29
    [80]张德义.含硫原油加工技术[M].北京:中国石化出版社,2003:130~131
    [81]李春义,山红红,杨朝合,等.汽油FCC脱硫催化剂[P].中国专利:00120711,2000
    [82]李春义,山红红,杨朝合,等.汽油FCC脱硫催化剂的研究[J].石油大学学报,2001,25(3):52~54
    [83]候晓明,盛全福,乐利民.清洁汽油生产[J].炼油设计,1999;29(10):5~8
    [84]赵光辉.燃料油非加氢脱硫技术的新进展[J].发展论坛. 2003,26 (3):10~13
    [85]崔文广,周二鹏,赵地顺,等. FCC汽油脱硫技术研究进展[J].河北工业科技. 2004,21(2):1~4
    [86]刘成军,李胜山.国外清洁汽油生产工艺[J].石油与天然气化工,2001,30 (6):298~301
    [87]单佳慧,刘晓勤,岳军.汽油中硫含量的分析方法进展[J].南京工业大学学报,2007,29(5):106~110
    [88]杨永坛,王征,杨海鹰,等.气相色谱法测定催化柴油中硫化物类型分布及数据对比[J].分析化学,2005,33(11):1517~1520
    [89]姚玉英主编.化工原理[M].天津:天津大学出版社,1999
    [90]兰州大学、复旦大学化学系有机化学教研组编.有机化学实验[M].上海:人民教育出版社,1978
    [91]文峰,张芳.满足绿色燃料产品规格的炼油工艺技术进展[J].精细石油化工展,2000,1(9):32~38
    [92] LESHCHEV S,MELSITOVA I V.Extraction of organinc sulfurs nonelectronlytes by polar organic solvents and their aqueous mixtures[J].Izv Vyssh Uchebn Zaved,1991,34(10):65~68
    [93]王军民,骆广生,朱慎林.FCC柴油溶剂萃取精制工艺的研究[J].石油炼制与化工,1998,29(10):14~18
    [94]崔盈贤,唐晓东.复合萃取剂选择性萃取脱硫研究[J].石油与天然气化工,2005,34(5):387~388
    [95]杨宝康,张继军,傅军等.汽油中含硫化合物脱除新技术[J].石油炼制与化工. 2000,31(7):36~39
    [96] Romanow S. Gasoline and diesel sulfur content review [J]. Hydrocarbon Processing,2000,79:17~19
    [97]夏道宏,苏贻勋,钱家麟.汽油中硫醇的分离及结构、组成分析[J].炼油设计. 1995,25(1):46~49
    [98]王军民,房少华,廖启玲. FCC汽油溶剂萃取脱硫工艺的研究[J].炼油设计. 2000,30(10):32~34
    [99]田龙胜,唐文成. FCC汽油溶剂抽提脱硫的研究[J].石油炼制与化工,2001,32(9):7~9
    [100]周瀚成,陈楠,石峰,等.离子液体萃取脱硫新工艺研究[J].分子催化. 2005,19(3):94~97
    [101]郭荣华. FCC汽油溶剂萃取脱硫的研究[J].技术进步. 2003,19~20
    [102]李志东,朴香兰,朱慎林. PEG-400萃取脱除FCC汽油中硫化物的研究[J].石油炼制与化工. 2002,33(7):24~25
    [103]袁铁.溶剂萃取脱除FCC汽油中硫化物的研究[D].北京:清华大学,2000
    [104] GTC Technology Corporation. Proccess of removing sulfur compounds from gasoline[P]. USP 6551502 B1,2003
    [105]王磊,沈本贤. FCC汽油中乙腈萃取脱硫的研究[J],华东理工大学学报(自然科学版),2008,34(1),36~39
    [106]朱自强,徐汛合编.化工热力学[M].第二版.北京:化学工业出版社,1991
    [107]童景山.流体的热物理性质[M].北京:中国石化出版社,1996
    [108]孙德敏.工程最优化方法及应用[M].合肥:中国科技大学出版社,1991
    [109]薛毅.最优化原理与方法[M].北京:北京工业大学出版社,1989
    [110]王子若,陈永昌.优化计算方法[M].北京:机械工业出版社,1989
    [111]程能林编著.溶剂手册[M].第三版,北京:化学工业出版社,2002
    [112]中华人民共和国国家标准,GB1792-79,喷气燃料硫醇性硫含量测定法(电位滴定法)[S],中国国家标准汇编,No. 10北京:中国标准出版社,1984
    [113]殷长龙. FCC汽油中硫化物形态及含量分布的研究[D],北京:石油大学,1998
    [114]刘永新,费德君,涂敏端.辛烷-磷酸-水三元体系液-液相平衡[J].河北理工学院学报,2002,24(1):71~76
    [115]陈晓晖,许锡恩.丙烯-甲醇-水三元体系汽液相平衡测定[J].化工学报,1998,49(5):632~638
    [116]陈维苗,张雅明.醇-水-醋酸钠/碘化钾体系汽液平衡[J].高校化学工程学报,2003,17(2):123~127
    [117] Alberto A,Manuel B,Jose M As,Isabel V.Analysis of the relationship between ternary mixture and their binary subsystems as represented by the UNIQUAC and NRTL models[J].Thermochimica Acta.1995(260):105~114
    [118] Ricardo Rl , Luiz M N , Silvana M . Liquid-liquid equilibria data for sustems containing aromatic+nonaromatic+sulfolane at 308.15 and 323.15K[J]. Fluid Phase Equilibria. 2002(202):263~276
    [119]张广林.燃料油品的低硫化[J].炼油设计,1999,29(8):3~8
    [120] Laszlo T N. Removal of Sulfur Compounds From Liquid Organic Feedstreams [P].USP 5360536,1994
    [121]马桂荣,陈晓春,于光认.甲苯-环丁砜-硅醚三元体系液-液平衡数据的测定[J].北京化工大学学报,2003,30(3):5~9
    [122]靳广洲,高俊斌,丁福臣.甲苯-正庚烷-(环丁砜+NMP)液-液平衡数据的关联[J].石油化工高等学校学报,2004,17(2):28~31
    [123]郑英峨,司林旭,赵权宇,等.正庚烷-芳烃在加水N-甲酰吗啉溶剂中的液-液平衡[J].石油学报,2002,18(5):64~71
    [124]郭卫军,赵维彭.苯-烷烃-NMP体系汽液平衡[J].南京化工大学学报,1997,19(2):59~62
    [125] Pawel G. Rescription of binary systems containing hydrocarbons and alcols by a modified NRTL equation [J]. Thermohimica Acta,1987(116):267~174
    [126] Pawel G.,Jacek R J. Correlation and Prediction of VLE in Ternary Systems Formad by Hydrocarbons and Alcohols [J]. Thermohimica Acta,1989(142):59~71
    [127]化学工程手册编辑委员会.化学工程手册[M].第十四篇(萃取与浸取).北京:化学工业出版社,1985,7~9
    [128]刘家祺.分离工程[M].北京:化学工业出版社,1999
    [129] Weldlich U,Rohm H J,Gmehling J. Measurement ofγ∞Using GLC .2.Results for the Stationary Phases N-Formylmorphline and N-Methylpyrrolldone [J]. J Chem Eng Data,1987,32:450~453
    [130] Gruber D,Topphoff M,Gmehling J. Measurement of Activity Coefficients at Infinite Dilution Using Gas-Liquid Chromatography .9.Results for Various Solutes with the Stationary Phases 2-Pyrrolidone and N-Methylformamide [J]. J Chem Eng Data,1998,43:935~940
    [131] Topphoff M,Gruber D,Gmehling J. Measurement of Activity Coefficients at Infinite Dilution Using Gas-Liquid Chromatography .10. Results for Various Solutes with the Stationary Phases Dimethyl Sulfoxide,Propylene Carbonate,and N-Ethylformamide. J Chem Eng Data,1999,44:1355~1359
    [132] Gmehling J,Writing R,Lohmann J,et al. A Modified UNIFAC (Dortmond) Model. 4. Revision and Extension [J]. Ind Eng Chem Res,2002,41:1678~1688
    [133]郭天明.多元汽液平衡及精馏[M].北京:化学工业出版社,2002
    [134]金克钧,赵传钧,马沛生.化工热力学[M].天津:天津大学出版社,1990
    [135]阿格.弗雷登斯隆德,于根.格麦林,彼得.拉斯穆森编,许志宏等译. UNIFAC功能团法推算汽液平衡[M].北京:化学工业出版社,1982
    [136] Grant M.W. Vapor-liquid equilibrium. XI. A new expression for the excess free enegry of mixing[J]. Journal of the American chemical society,1964,86(2):127~130
    [137] Denis S.A.,John M.P. Statistical thermodynamics of liquid mixtures. A new expression for the excess Gibbs enegry of partly or completely miscible system [J]. AIChE J,1975,21(l):116~128
    [138] Katsumi T.,Detlef T.,Jurgen G.,etal. Determination of new ASOG Parameters [J]. Journal of chemical engineering of Japan,1990,23(4):453~463
    [139] Aage F.,Russell L. J.,John M. P. Group-contribution estimation of activity coefficients in nonideal liquid mixutres [J]. AIChE J,1975,21(6):1086~1099
    [140] Henrik K.H.,Peter R.,Aage F.,etal. Vapor-liquid equilibria by UNIFAC group contribution. 5. revision and extension[J]. Industrial & engineering chemistry research,1991,30(10):2352~2355
    [141] Roland W.,Jurgen L.,Jurgen G. Vapor-liquid equilibria by UN1FAC group contribution 6. revision andextention[J]. Industrial & engineering chemistry research,2003,42(l):183~188
    [142] Sandra G.,Tore B.,Ake C.R. Prediction of solubility of solid organic compounds in solvents by UNIFAC [J]. Industrial & engineering chemistry research,2002,41(20):5114~5124
    [143] Kenneth B.,Jens A. UNIFAC Parameters for four new groups [J]. Industrial & engineering chemistry research,2002,41(8):2047~2057
    [144] Bent L.L.,Peter R.,Aage F. A modified UNIFAC group-contribution model for Prediction of phase equilibria and heats of mixing[J]. Industrial & engineering chemistry research,1987,26(11):2274~2286
    [145] Jurgen G.,Jiding L.,Martin S. A modified UNIFAC model 2. present parameter matrix and results for different thermodynamic properties[J]. Industrial & engineering chemistry research,1993,32(l):175~193
    [146] Constantine T. An empirical correlation of second Virial coefficients[J]. AIChE J,1974,20(2):263~272
    [147] Constantine T. Second Virial coefficients of polar haloalkanes [J]. AIChE J,1975,21(4):827~829
    [148] Hayden G. J.,John P. O. A generalized method for predicting second Virial coefficients [J]. I & EC process design and development,1975,143:209~216
    [149]马沛生.石油化工基础数据(续编)[M].北京:化学工业出版社,1993
    [150] Jinsong W.,Kabadi V. N. Generalized method for prediction of saturated liquidvolumes using Van der Waals volumes [J]. AIChE J,1996,42(2):595~598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700