认知差分跳频通信网络抗干扰技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪90年代,美军披露差分跳频技术以来,其凭借良好的抗干扰、抗截获性能受到军界与学界的关注。数字化战场的作战模式正从以平台为中心转向以网络为中心的今天,差分跳频系统的多址性能不佳,制约了差分跳频组网技术的发展。认知无线电技术的出现,使用户能够感知射频环境,寻找可用频谱资源,并实现动态频谱接入。这种智能无线电技术,被公认为未来解决干扰与频谱资源枯竭问题的良药。
     本论文根据差分跳频与认知无线电技术的特点,设计出认知差分跳频网络结构,并借助干扰温度模型,结合图论中的IC着色理论和组合数学中的拉丁方理论,提出干扰温度多址算法与自适应跳频频率集原理,以解决制约传统差分跳频组网性能的多址干扰问题。
     本论文所开展的研究工作主要包括以下几个方面:
     1.认知差分跳频网络模型:本文提出了认知差分跳频收发机的结构,并在此基础上提出认知差分跳频网络的模型,针对军事通信网中的典型需求和网络环境,设计出具体的MAC层和链路层协议。并对网络性能作出了分析与讨论。
     2.以频谱感知技术为基础的差分跳频频率集自适应优化(FSAO):针对电子战中部分频带干扰和多音干扰对差分跳频系统的性能影响问题,本文提出了差分跳频频率集的自适应优化方法,可以在宽带感知并发现可用频谱的基础上,动态选取干净频点,自适应调整差分跳频频率集。
     3.干扰温度多址接入模型:对传统差分跳频网络多址干扰严重的问题,本文提出一种全新的多址接入方式。以IC着色理论为基础,通过约束发射机的干扰温度,使它们在接收机处正交的方法,可以消除网内一定数量用户的多址干扰。
     4.频率子集动态正交分配原理:对于扰温度多址接入模型不适用于大规模网络的问题。本文提出一种多用户跳频频率子集动态正交的分配原理。该原理以拉丁方为理论基础,将频率集分配成若干个动态正交频率子集提供给多用户使用,达到消除多址干扰的目的。针对大规模网络,提出干扰温度多址接入与频率子集动态正交分配技术复合使用的方法,有效降低全网多址干扰。
The research on Differential Frequency Hopping (DFH) has been an active area in military and academic society since 1990s, when it revealed by U.S. Army. The performance of anti-jamming and anti-interception are favoring. In recent years, digital battlefield combat mode is shifted from a platform centric to network-centric. But DFH networking technology has been restricted by the poor performance of multiple accesses. Cognitive radio (CR) users can use the CR technology to sense the surrounding RF environment, search for available spectrum resources and access spectrum dynamically. This smart radio technology was recognized as the miracle drug to resolve the interference and spectrum resource depletion in futurity.
     This thesis addresses on Multiple Access Interference (MAI) and anti-jamming of the DFH network. According to the characteristics of DFH and CR technology, the CogDFH network architecture is proposed. Based on the Interference Temperature (IT) model, the IC-colorings of graphs and the Latin squares of applied mathematics, some novel algorithms are proposed.
     The contributions of this thesis include:
     1. The CogDFH network architecture:This thesis proposes the CogDFH transceiver. According to the trait of the military communications scenario, the CogDFH network architecture is proposed, and the MAC layer and link layer protocol are studied. Then simulations of the CogDFH network are performed.
     2. The spectrum sensing based frequency set adaptive optimization (FSAO) algorithm: In order to avoid Partial Band Jamming (PBJ) and Multi-Tone Jamming (MTJ), this thesis proposes the frequency set adaptive optimization (FSAO) algorithm. FSAO users can sense and get the clean frequencies information, then chose some of the frequencies for an adaptive frequency set.
     3. The IT model based multiple access (IC-ITMA) algorithm:A novel multiple access algorithm is proposed to restrain the MAI of DFH networks. This algorithm is based on the IT model, the IC-colorings and IC-indices of graphs. In short, the interference temperatures on the detection trellis at the receiving antenna, which are caused by the transmitters, are restricted and measured by the receiver. The transmitters can be distinguished by the dissimilar values of the interference temperatures. The maximal IC-coloring method is used to compute the predisposed value of each user's interference temperature.
     4. The frequency micro-sets dissimilar adaptive optimization algorithm:The Latin squares based frequency set adaptive optimization (LS-FSAO) algorithm is proposed. In short, the frequency set is divided into many frequency micro-sets after the spectrum sensing, and the micro-sets are assigned to DFH users with dynamic Latin squares. The users'frequency micro-sets are dissimilar during a same time slot to cut down the MAI. For a Large-scale CogDFH network, this thesis proposes a LS-FSAO aid IC-ITMA model, and it can obtain favorable network performance.
引文
[1]Jubin J, Tornow J D. The DARPA packet radio network protocols. Proceedings of the IEEE,1987,75(1):21-32
    [2]Davies B H, Davies T R. The application of packet switching techniques to combat net radio. Proceedings of the IEEE,1987,75(1):43-55
    [3]Shacham N, Westcott J. Future directions in packet radio architectures and protocols. Proceedings of the IEEE,1987,75(1):83-99
    [4]Heggestad H M. An overview of packet-switching communications. IEEE Communications Magazine,1984,22(4):24-31
    [5]Roberts L G. The evolution of packet switching. Proceedings of the IEEE,1978, 66(11):1307-1313
    [6]Nilsson A, Chou W, Graff C J. A packet radio communication system architecture in a mixed traffic and dynamic environment. New York, NY, USA:IEEE,1980
    [7]Beyer D A. Accomplishments of the DARPA SURAN Program. New York, NY, USA:IEEE,1990
    [8]Leiner B M, Ruth R J, Sastry A R. Goals and challenges of the DARPA GloMo program. IEEE Personal Communications,1996,3(6):34-42
    [9]Papavassiliou S, Xu S, Orlik P, et al. Scalability in global mobile information systems (GloMo):Issues, evaluation methodologyand experiences. Wireless Networks,2002,8(6):637-648
    [10]Chen Z, Li S, Dong B. Multi-user performance analysis of differential frequency hopping system over Rayleigh-fading channel. High Technology Letters,2008, 14(2):147-153
    [11]Herrick D L, Lee P K. CHESS a new reliable high speed HF radio. in:IEEE Proceedings of the IEEE Military Communications Conference MILCOM'96. Washington DC,1996.684-690
    [12]Herrick D L, Lee P K, Ledlow Jr. L L. Correlated frequency hopping:An improved approach to HF spread spectrum communications. in:IEEE Proceedings of the Tactical Communications Conference 1996. Fort Wayne,1996.319-324
    [13]Dong B, Li S, Shi F. Designing a differential frequency hopping system with hop variable frequency transition function. in:IEEE Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing,2009. Beijing, China,2009.1-4
    [14]Qu X, Wang S, Li A, et al. A method to improve 2D continuity performance of differential frequency hopping sequence. in:IEEE Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing,2008. Dalian, China,2008.1-5
    [15]Chen Z, Li S, Dong B. A frequency transition function construction method of differential frequency hopping system. in:IEEE Proceedings of Vehicular Technology Conference,2004. Los Angeles, CA,2004.4692-4695
    [16]姚富强.短波差分跳频有关系统及技术问题分析.电讯技术,2004,(06):114-118
    [17]刘忠英,万谦,姚富强.基于可加性模糊系统原理的差分跳频G函数算法.电子学报,2002,(05):647-650
    [18]Mills D G, Egnor D E, Edelson G S. A performance comparison of differential frequency hopping and fast frequency hopping.in:IEEE Proceedings of Military Communications Conference,2004. Monterey, CA,2004.445-450
    [19]朱秀林.差分跳频系统G函数算法研究:[硕士学位论文].华中科技大学:华中科技大学图书馆,2005
    [20]史锋旗.差分跳频系统跳频图案的生成方法和性能分析:[硕士学位论文].电子科技大学:电子科技大学图书馆,2009
    [21]Chen Z, Li S, Dong B. Performance of differential frequency hopping receivers over Rayleigh-fading channel with multi-tone jamming.in:IEEE Proceedings of International Conference on Communications, Circuits and Systems,2009. Milpitas, CA,2009.147-151
    [22]Chen Z, Li S, Dong B. Synchronous multi-user performance analysis of differential frequency hopping system over rayleigh-fading channels. in:IEEE Proceedings of 6th International Conference on ITS Telecommunications Proceedings. Chengdu, China,2007.590-595
    [23]Chen Z, Li S, Dong B. Performance analysis of differential frequency hopping system under partial band noise jamming. in:IEEE Proceedings of 2006 8th International Conference on Signal Processing. Guilin, China,2007.1-5
    [24]Zhu Y, Gan L, Lin J, et al. Performance of differential frequency hopping systems in a fading channel with partial-band noise jamming. in:IEEE Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing. Wuhan, China,2006.1-4
    [25]潘武,周世东,姚彦.差分跳频通信系统性能分析.电子学报,1999,(S1):102-104
    [26]潘武,周世东,姚彦.瑞利衰落信道下差分跳频通信系统性能分析.无线通信技术,2003,(02):34-38
    [27]周运伟,赵荣黎,李承恕.差分跳频信号的存在性检测.铁道学报,2002,(03):40-44
    [28]周运伟,赵荣黎,李承恕.差分跳频信号的波形复制-FFT联合检测.铁道学报,2002,(01):56-60
    [29]梁迎新,金报春.差分跳频系统对抗初探.通信对抗,2007,(02):11-14
    [30]田岩,苟彦新,孟庆微.对CHESS信号侦察干扰方案的探讨.中国电子科学研究院学报,2006,(05):477-480
    [31]Mills D G, Edelson G S, Egnor D E. A multiple access differential frequency hopping system.in:IEEE Proceedings of Military Communications Conference, 2003. Monterey, CA,2003.1184-1189
    [32]Nejad A Z, Aref M R. Designing a multiple access differential frequency hopping system with variable frequency transition function. in:IEEE Proceedings of Wireless and Microwave Technology Conference,2006. Clearwater Beach, FL, 2006.1-2
    [33]赵丽屏,姚富强,李永贵.差分跳频组网及其特性分析.电子学报,2006,(10):1888-1891
    [34]Chen Z, Li S, Dong B. Asynchronous multiuser performance analysis of differential frequency hopping system over Rayleigh-fading channel. in:IEEE Proceedings of Military Communications Conference,2006. Washington, D.C.,2007.1-6
    [35]Egnor D, Cazzantiy L, Hsiehy J, et al. Underwater acoustic single-and multi-user differential frequency hopping communications. in:IEEE Proceedings of OCEANS 2008. Quebec City, QC,2008.1-6
    [36]张振刚.差分跳频通信系统的多用户技术研究:[硕士学位论文].电子科技大学:电子科技大学图书馆,2009
    [37]朱毅超,甘良才,熊俊俏,等.同步短波差分跳频多址系统单用户及多用户检测的性能.电子与信息学报,2010,(01):151-156
    [38]Mitola Iii J, Maguire Jr G Q. Cognitive radio:making software radios more personal. IEEE personal communications,1999,6(4):13-18
    [39]Joseph M. Cognitive radio:An integrated agent architecture for software defined radio. Doctor of Technology Dissertation, Royal Institute of Technology, Sweden, 2000,
    [40]Gu J. Wicom 2009 presentation:2009
    [41]Mitola Iii J. Cognitive radio for flexible mobile multimedia communications. Mobile Networks and Applications,2001,6(5):435-441
    [42]Fcc E T. Docket No 03-222 Notice of proposed rule making and order. 2003-12-30)[2008-07-01]. http://www.fee.gov,
    [43]Haykin S. Cognitive radio:brain-empowered wireless communications. IEEE Journal on selected areas in communications,2005,23(2):201-220
    [44]李波,刘勤,李维英.认知无线电技术.中兴通讯技术,2006,12(2):10-13
    [45]Weiss T A, Jondral F K. Spectrum pooling:an innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine,2004,42(3): S8-S14
    [46]Leaves P, Moessner K, Tafazolli R, et al. Dynamic spectrum allocation in composite reconfigurable wireless networks. IEEE Communications Magazine,2004,42(5): 72-81
    [47]Luo J, Demestichas P, Dimitrakopoulos G, et al. Feasibility study of the dynamic network planning and management in an End to End Reconfiguration (E2R). WWRF, Peking, China,2004:26-27
    [48]Moessner K, Bourse D, El-Khazen K, et al. The responsibility chain in end-to end reconfigurable systems. in:IEEE Proceedings of IST Workshop on Mobile Future, 2004 and the Symposium on Trends in Communications. Bratislava, Slovakia,2004. 208-211
    [49]Moessner K, Luo J, Mohyeldin E, et al. Functional architecture of end-to-end reconfigurable systems. in:IEEE Proceedings of IEEE 63rd Vehicular Technology Conference,2006. Melbourne, Vic,2006.196-200
    [50]Bourse D, Agusti R, Ballon P, et al. The E2R II Flexible Spectrum Management (FSM) Framework and Cognitive Pilot Channel (CPC) Concept-Technical and Business Analysis and Recommendations. IST-E2R Ⅱ White Paper,2007,
    [51]Brodersen R W, Wolisz A, Cabric D, et al. Corvus:a cognitive radio approach for usage of virtual unlicensed spectrum. Berkeley Wireless Research Center (BWRC) White paper,2004,
    [52]Cabri'c D, Mishra S, Willkomm D, et al. A cognitive radio approach for usage of virtual unlicensed spectrum. in:IEEE Proceedings of IST Mobile and Wireless Communications. Dresden,Germany,2005.1-4
    [53]Yang J, Brodersen R W, Tse D. Addressing the Dynamic Range Problem in Cognitive Radios. in:IEEE Proceedings of International Conference on Communications,2007. Glasgow,2007.5183-5188
    [54]Mishra S M, Brodersen R W. Cognitive technology for improving ultra-wideband (UWB) coexistence.in:IEEE Proceedings of International Conference on Ultra-Wideband,2007. Singapore,2007.253-258
    [55]Buddhikot M M, Ryan K. Spectrum management in coordinated dynamic spectrum access based cellular networks. in:IEEE Proceedings of International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2005. Baltimore, MD, 2005.299-307
    [56]Kamakaris T, Buddhikot M M, Iyer R. A case for coordinated dynamic spectrum access in cellular networks. in:IEEE Proceedings of International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2005. Baltimore, MD,2005. 289-298
    [57]Buddhikot M M, Kolodzy P, Miller S, et al. DIMSUMnet:new directions in wireless networking using coordinated dynamic spectrum. in:IEEE Proceedings of the Sixth IEEE International Symposium on World of Wireless Mobile and Multimedia Networks,2005. Taormina, Italy,2005.78-85
    [58]Ryan K, Aravantinos E, Buddhikot M M. A new pricing model for next generation spectrum access.in:ACM Proceedings of the first international workshop on Technology and policy for accessing spectrum,2006. Boston, Massachusetts,2006. 11-11
    [59]Peng C, Zheng H, Zhao B Y. Utilization and fairness in spectrum assignment for opportunistic spectrum access. Mobile Networks and Applications,2006,11(4): 555-576
    [60]Zhao J, Zheng H, Yang G H. Spectrum sharing through distributed coordination in dynamic spectrum access networks. Wireless Communications and Mobile Computing,2007,7(9):1061-1076
    [61]Zhu Y, Zheng H. Understanding the impact of interference on collaborative relays. IEEE Transactions on Mobile Computing,2008,7(6):724-736
    [62]Gandhi S, Buragohain C, Cao L, et al. Towards real-time dynamic spectrum auctions. Computer Networks,2008,52(4):879-897
    [63]Cao L, Zheng H. Understanding the power of distributed coordination for dynamic spectrum management. Mobile Networks and Applications,2008,13(5):477-497
    [64]Cao L, Zheng H. Distributed rule-regulated spectrum sharing. IEEE Journal on Selected Areas in Communications,2008,26(1):130
    [65]Yang L, Cao L, Zheng H. Proactive channel access in dynamic spectrum networks. Physical Communication,2008,1(2):103-111
    [66]Cao L, Yang L, Zheng H. The impact of frequencyagility on dynamic spectrum sharing.in:Proceedings of 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum. Singapore,2010.1-12
    [67]Stevenson C R, Cordeiro C, Sofer E, et al. Functional requirements for the IEEE 802.22 WRAN standard. IEEE, Piscataway, NJ, Tech. Rep,:802-822
    [68]Cordeiro C, Slide P. A cognitive PHY/MAC proposal for IEEE 802.22 WRAN systems.2005,
    [69]Cordeiro C, Challapali K, Birru D, et al. IEEE 802.22:an introduction to the first wireless standard based on cognitive radios. Journal of communications,2006,1(1): 38-47
    [70]许晓丹,毕光国,张在琛.循环功率谱特征检测算法在认知超宽带无线通信的应用.电子与信息学报,2008,30(10):2435-2438
    [71]朱丽平,朱义胜.认知超宽带无线电波形设计和频谱整形技术.通信技术,2009,42(7):48-49
    [72]Zhou L, Wang Y. A novel adaptive ultra-wideband pulse design based on cognitive radio theory. in:IEEE Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing,2009. Beijing, China,2009. 1-4
    [73]Zhang W, Shen H, Kwak K S. Adaptive radio scenario evaluation and FMW generation methods or cognitive UWB radio systems. in:IEEE Proceedings of International Symposium on Communications and Information Technologies,2007. Sydney, Australia,2007.1490-1495
    [74]Zhang L, Niu X, Liu Y, et al. Design of UWB SSCI signal applicable for Cognitive Radio. in:IEEE Proceedings of International Symposium on Communications and Information Technologies,2006. Bangkok, Thailand,2006.1133-1136
    [75]Weng W, Liu Y, Hu H, et al. A novel OFDM-MSK scheme for MB-OFDM UWB based on cognitive radio. in:IEEE Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing,2009. Beijing, China,2009.1-4
    [76]Liu W, Zou W, Xu F, et al. A novel frequency-band coded orthogonal UWB Chirp pulse design for cognitive NBI suppression. in:Proceedings of International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,2007. Hangzhou, China,2007.1048-1051
    [77]Liu Q, Zhang L, Zhou Z, et al. A novel active spectrum sensing scheme for cognitive MB-OFDM UWB radio. in:Proceedings of the 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications,2008. Singapore, Singapore,2008.1-6
    [78]Kadhim D J, Liu W, Cheng W. Ultra wideband cognitive network objective issues. in:Proceedings of International Conference on Future Computer and Communication,2009. Wuhan, China,2009.35-38
    [79]Cheng Y, Zheng Z, Yabin Y. The constraints satisfied to suppress the interferences caused by MB-OFDM UWB based cognitive radio systems. in:Proceedings of the 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications,2008. Singapore, Singapore,2008.1-5
    [80]程世伦,杨震,张晖.基于认知无线电系统的新型合作功率控制博弈算法.通信学报,2007,28(8):54-60
    [81]徐斌阳,李少谦.认知无线电系统中的联合功率控制.电子科技大学学报,2008,37(5):649-652
    [82]杨春刚,李建东.认知网络中基于纳什议价解的功率控制方法.北京邮电大学学报,2009,32(3):77-81
    [83]Yao H, Zhou Z, Liu H, et al. Optimal power allocation in joint spectrum underlay and overlay cognitive radio networks. in:Proceedings of the 4rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2009. Hanover, Germany,2009.1-5
    [84]Yang Y, Wang J, Wu Q. Low-complexity joint beamforming and power control for SINR balancing and number of antenna considerations in cognitive radio. in: Proceedings of the International Conference on Apperceiving Computing and Intelligence Analysis,2009. Chengdu, China,2009.306-312
    [85]Wu Y, Tsang D H K. Distributed power allocation algorithm for spectrum sharing cognitive radio networks with QoS guarantee. in:Proceedings of INFOCOM 2009. Rio de Janeiro, Brazil,2009.981-989
    [86]Tang Z, Wei G. An efficient subcarrier and power allocation algorithm for uplink OFDMA-based cognitive radio systems. in:Proceedings of Wireless Communications and Networking Conference,2009. Budapest, Hungary,2009.1-6
    [87]Tang L, Hu L, Wang H, et al. Power allocation based on convex optimization theory for fading channels in OFDM-based cognitive radio networks. in:Proceedings of International Conference on Wireless Communications & Signal,2009. Nanjing, China,2009.1-5
    [88]Li J, Yang C, Li W, et al. Pricing based power control game for cognitive radio networks. in:Proceedings of International Conference on Telecommunications,2009. Marrakech, Morocco,2009.270-275
    [89]程赓,李昀照,刘威,等.认知无线电网络路由及频谱分配联合策略研究.电子与信息学报,2008,30(3):695-698
    [90]张忠起,许晓东.认知无线网络中的频谱切换技术.移动通信,2009,33(18):17-20
    [91]Zhu J, Wang J, Luo T, et al. Adaptive transmission scheduling over fading channels for energy-efficient cognitive radio networks by reinforcement learning. Telecommunication Systems,2009,42(1-2):123-138
    [92]Zhu J, Zheng B, Zou Y. Cooperative spectrum sensing in multiuser cognitive radio networks with best relay selection. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010,38(1):92-98
    [93]Zhou X, Lin L, Wang J, et al. Cross-layer routing design in cognitive radio networks by colored multigraph model. Wireless Personal Communications,2009,49(1): 123-131
    [94]Xu Y, Lui J C S, Chiu D. On oligopoly spectrum allocation game in cognitive radio networks with capacity constraints. Computer Networks,2010,54(6):925-943
    [95]Wang W, Wang W, Lu Q, et al. An uplink resource allocation scheme for ofdma-based Cognitive radio networks. International Journal of Communication Systems,2009,22(5):603-623
    [96]Ma Z, Cao Z. Secondary user cooperative opportunistic access scheme in cognitive radio networks. Tien Tzu Hsueh Pao/Acta Electronica Sinica,2009,37(4):678-683
    [97]Lu Q, Peng T, Wang W, et al. Utility-based resource allocation in uplink of OFDMA-based cognitive radio networks. International Journal of Communication Systems,2010,23(2):252-274
    [98]Huang J, Jiang L, He C. An in-band proactive sensing strategy based on queuing model in cognitive radio networks. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University,2010,44(2):198-203
    [99]刘勤,张雯.认知无线电中的频谱空洞检测技术.中兴通讯技术,2007,13(3): 12-14,18
    [100]高路,康桂华,李佳珉.衰落环境中认知无线电分布式合作频谱检测.计算机仿真,2009,26(9):116-119
    [101]Yue W, Zheng B. Reliability based spectrum sensing algorithms for primary detection in cognitive radio. Jiefangjun Ligong Daxue Xuebao/Journal of PLA University of Science and Technology (Natural Science Edition),2008,9(6): 599-602
    [102]Yue W, Zheng B. Spectrum sensing algorithms for primary detection based on reliability in cognitive radio systems. Computers and Electrical Engineering,2010, 36(3):469-479
    [103]Shi L, Ye Z, Zhang Z. Cooperative detection algorithm of spectrum holes in cognitive radio. Journal of Harbin Institute of Technology (New Series),2009,16(1): 27-30
    [104]Shi L, Jiang W, Zhang Z. Collaborative detection algorithm of idle spectrum in cognitive radio. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science),2010,38(1):38-43
    [105]Chen X, Bie Z, Wu W. Detection efficiency of cooperative spectrum sensing in cognitive radio network. Journal of China Universities of Posts and Telecommunications,2008,15(3):1-7
    [106]陈智.差分跳频通信系统的性能分析:[博士学位论文].电子科技大学:电子科技大学图书馆,2006
    [107]Fcc E T. Docket No.03-108. Cognitive Radio Technologies Proceeding (CRTP), 2003,
    [108]Jondral F K. Software-defined radio:basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking,2005,2005(3): 283
    [109]Cabric D, Mishra S M, Brodersen R W. Implementation issues in spectrum sensing for cognitive radios.in:Proceedings of the Conference on Signals, Systems and Computers,2004. Pacific Grove, California,2004.772-776
    [110]Cabric D, Brodersen R W. Physical layer design issues unique to cognitive radio systems. in:Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications,2005. Berlin, Germany,2005.759-763
    [111]Akyildiz I F, Lee W Y, Vuran M C, et al. NeXt generation/dynamic spectrum access/cognitive radio wireless networks:a survey. Computer Networks,2006, 50(13):2127-2159
    [112]Mchenry M, Livsics E, Nguyen T, et al. XG dynamic spectrum access field test results [Topics in Radio Communications]. IEEE Communications Magazine,2007, 45(6):51-57
    [113]Prasad R V, Pawczak P, Hoffmeyer J A, et al. Cognitive functionality in next generation wireless networks:Standardization efforts. IEEE Communications magazine,2008,46(4):72
    [114]Seelig F W. A description of the August 2006 XG demonstrations at fort AP Hill. in: Proceedings of 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2007. Dublin, Ireland,2007.1-12
    [115]Mchenry M, Steadman K, Leu A E, et al. XG DSA Radio System. in:Proceedings of 3rd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2008. Chicago, IL,2008.1-11
    [116]Clancy T C. Dynamic spectrum access using the interference temperature model. Annales des Telecommunications/Annals of Telecommunications,2009,64(7-8): 573-592
    [117]Clancy T C. Formalizing the interference temperature model. Wireless Communications and Mobile Computing,2007,7(9):1077-1086
    [118]Clancy T C. Achievable capacity under the interference temperature model. in: Proceedings of 26th IEEE International Conference on Computer Communications. Anchorage, AK,2007.794-802
    [119]Chen T, Zhang H, Maggio G M, et al. CogMesh:A cluster-based cognitive radio network. in:Proceedings of 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2007. Dublin, Ireland,2007.168-178
    [120]So J, Vaidya N. Multi-channel MAC for ad hoc networks:Handling multi-channel hidden terminals using a single transceiver. in:ACM International Symposium on Mobile Ad Hoc Networking and Computing. Tokyo, Japan,2004.222-233
    [121]Shih-Lin W, Chih-Yu L, Yu-Chee T, et al. A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks. in: International Symposium on Parallel Architectures, Algorithms and Networks,2000. Los Alamitos, CA,2000.232-237
    [122]Li Q, Rus D. Global clock synchronization in sensor networks. IEEE Transactions on Computers,2006,55(2):214-226
    [123]Cordeiro C, Challapali K, Ghosh M. Cognitive PHY and MAC layers for dynamic spectrum access and sharing of TV bands. in:Proceedings of IEEE International Workshop on Technology and Policy for Accessing Spectrum,2006.US,2006.222
    [124]Clancy T C. Dynamic spectrum access in cognitive radio networks. PhD thesis, University of Maryland, College Park,2006
    [125]Clancy T, Arbaugh W. Measuring interference temperature. in:Proceedings of Virginia Tech MPRG Symp Wireless Personal Commun 2006. Blacksburg, VA, 2006.1-7
    [126]Rogers A E E, Salah J E, Smythe D L, et al. Interference temperature measurements from 70 to 1500 MHz in suburban and rural environments of the Northeast. in:IEEE Proceedings of International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2005. Baltimore, MD,2005.119-123
    [127]Macdonald J T, Ucci D R. Interference temperature limits of IEEE 802.11 protocol radio channels. in:IEEE Proceedings of International Conference on Electro/Information Technology,2007. Chicago, IL,2007.64-69
    [128]Clancy T C. Dynamic spectrum access using the interference temperature model. Annales des Telecommunications/Annals of Telecommunications,2009,64(7-8): 573-592
    [129]杨志伟.认知无线电的频谱探测方案研究:[硕士学位论文].西安电子科技大学:西安电子科技大学图书馆,2007
    [130]Chen Z, Li S, Dong B. Synchronous multi-user performance analysis of differential frequency hopping system over rayleigh-fading channels. in:IEEE Proceedings of 6th International Conference on ITS Telecommunications,2006. Chengdu, China 2006.590-595
    [131]Shiue C L, Fu H L. The IC-indices of complete bipartite graphs. Electron. J. Combin, 2008,15(43):13
    [132]Salehi E, Lee S M, Khatirinejad M. IC-colorings and IC-indices of graphs. Discrete mathematics,2005,299(1-3):297-310
    [133]Roberts F S, Tesman B. Applied combinatorics. Prentice-Hall:Englewood Cliffs (NJ),1984.
    [134]C. E. Laywine G L M. Discrete Mathematics Using Latin Squares. Wiley-Interscience,1998
    [135]Chen Z, Li S, Dong B. Performance analysis of differential frequency hopping system with multi-tone jamming over rayleigh-fading channels. in:IEEE Proceedings of Global Telecommunications Conference,2006. San Francisco, CA, 2007.1-6
    [136]Yuping W, Chuangyin D. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares. Evolutionary Computation, IEEE Transactions on,2007,11(5):579-595
    [137]Stamatiou K, Proakis J G. Performance Analysis of a Coherent FH-MA System Based on Latin Squares. Wireless Communications, IEEE Transactions on,2007, 6(11):4183-4192
    [138]Pal S K, Bhardwaj D, Kumar R, et al. A New Cryptographic Hash Function based on Latin Squares and Non-linear Transformations. in:IEEE Proceedings of Advance Computing Conference,2009. Patiala,2009.862-867
    [139]Kim K, Prasanna V K. Latin squares for parallel array access. Parallel and Distributed Systems, IEEE Transactions on,1993,4(4):361-370
    [140]Ji-Her J, Li V O K. TDMA scheduling design of multihop packet radio networks based on latin squares. IEEE Journal on Selected Areas in Communications,1999, 17(8):1345-1352
    [141]Genello G J, Cheung J F Y, Billis S H, et al. Graeco-Latin squares design for line detection in the presence of correlated noise. Image Processing, IEEE Transactions on,2000,9(4):609-622
    [142]El Moutia A, Makki K, Pissinou N. Space Division Multiple Access for Wireless Sensor Networks. in:IEEE Proceedings of Conference on Technologies for Homeland Security,2008. Waltham, MA,2008.453-458
    [143]Dalin Z, Natarajan B. Residue Number System Arithmetic Aided Frequency-Hopping Pattern Design in Coded OFDMA. in:IEEE Proceedings of 70th Vehicular Technology Conference Fall,2009. orage, AK,2009.1-5
    [144]Dae-Son K, Hyun-Young O, Hong-Yeop S. Collision-Free Interleaver Composed of a Latin Square for Parallel-Architecture Turbo Codes. Communications Letters, IEEE,2008,12(3):203-205
    [145]Colbourn C J, Klove T, Ling A C H. Permutation arrays for powerline communication and mutually orthogonal latin squares. Information Theory, IEEE Transactions on,2004,50(6):1289-1291
    [146]LDPC Codes Based on Latin Squares:Cycle Structure, Stopping, and Trapping Set Analysis. Communications, IEEE Transactions on,2007,55(1):235
    [147]Bao L. MALS:multiple access scheduling based on Latin squares. in:IEEE Proceedings of Military Communications Conference,2004. Monterey, CA,2004. 315-321
    [148]Zhuo C, Shu W, Xiaoxu Q, et al. CogDFH-a Cognitive-Based differential frequency hopping network. in:IEEE Proceedings of International Conference on Military Communications Conference,2009. Boston, MA,2009.1-7
    [149]Simon M K, Omura J K, Scholtz R A, et al. Spread Spectrum Communications Handbook, Electronic EditionMcGraw-Hill Professional Publishing,2001.
    [150]Teh K C, Kot A C, Li K H. Performance study of a maximum-likelihood receiver for FFH/BFSK systems with multitone jamming. IEEE Transactions on Communications,1999,47(5):766-772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700