电液负载模拟器多余力矩抑制及其反步自适应控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气动力电液负载模拟器(Electro-hydraulic load simulator)是一种地面半实物仿真设备,用来模拟飞行器舵机所受的各种空气动力力矩载荷谱,从而检测舵机驱动系统的技术性能指标,其对国防军事工业具有重要意义。
     由于电液负载模拟器是典型的被动式力(力矩)伺服控制系统,仿真过程中,舵机的主动运动会对与其固连在一起的加载系统产生一种干扰作用,使加载系统两腔形成强迫流量,进而产生多余力矩。多余力矩具有强度大、时时存在、随舵机运动状态连续变化的特点,严重影响电液负载模拟器的加载性能。因此,如何抑制多余力矩,提高加载性能是研究电液负载模拟器的关键技术问题。
     本文在查阅大量国内外资料的基础上,综述了国内外电液负载模拟器的发展现状,分析了它们的优缺点,通过对国内外负载模拟器产品和相关资料的分析,确定了本文的主要研究方向。
     首先分别建立了电液负载模拟器的四阶和五阶数学模型,并通过系统辨识和实验数据验证,得出在一般加载工况下可以使用四阶模型代替五阶模型。并提出反步遗传算法的模型参数辨识方法,使模型辨识结果更接近实际物理系统,并对电液负载模拟器四阶系统进行了参数辨识,并验证了该辨识方法的有效性。
     根据所建数学模型,深入分析电液负载模拟器多余力矩形成的原因和特点,从解决系统强迫流量入手,提出使用可调节流阀来抑制多余力矩的方法,建立了含可调节流阀的电液负载模拟器数学模型并进行了仿真验证。得出使用可调节流阀可以达到排泄强迫流量从而有效抑制多余力矩的结论。
     为解决因舵机扰动而产生多余力矩的问题,提出一种神经网络补偿控制以补偿舵机端对加载系统扰动的方法。以舵机输出的各阶状态为神经网络输入,根据系统多余力矩大小神经网络调整补偿控制器输出,进而补偿给加载系统,从而抑制由于舵机运动产生的多余力矩。并将神经网络补偿控制器与传统PID控制器、结构不变性原理等进行仿真对比,得出神经网络补偿控制器能更好抑制多余力矩的结论。
     针对系统具有强耦合干扰的特点,提出考虑参数变化的电液负载模拟器反步自适应控制器。将复杂的系统模型分解成若干个相对简单的子系统模型,然后针对每个子系统模型设计控制器,系统的耦合项通过每个子系统控制器的设计而被迭代到系统的最终控制器中。在控制器设计时还考虑了系统参数变化的因素,设计了参数变化的自适应率。并将该控制器进行了各种工况下的仿真研究,得出反步控制器能有效抑制多余力矩,提高系统加载性能。
     最后在电液负载模拟器原理样机上进行了实验研究。验证了关于多余力矩形成机理及影响因素分析的正确性;进而分别将神经网络补偿、反步自适应控制应用在电液负载模拟器实验样机上,验证其在多余力矩抑制和力矩加载控制性能等方面的有效性;还验证了可调节流阀抑制多余力矩有效性。
Electro-hydraulic load simulator(EHLS) is a Hardware-in-the-loop simulation equipment on ground. It is applied to check the qualification of rudder driving system by simulating aerodynamic load spectrum to the flight device rudder. Therefore, it is significant to national defense and military industry.
     As EHLS is a typical passive force (torque) servo control system, when it is running, the active motion of rudder will have a disturbance to loading system which is connected to the rudder. This disturbance results in forced flow between cavities of loading motor. As a result, the extra torque appears. The extra torque is known for its large power, existence at times and the variation caused by motion of rudder. These characteristics affect the performance of EHLS severely. Therefore, how to restrain extra torque and improve the loading performance is key technology in the study of EHLS.
     After synthesizing numerous related literatures and reference materials home and abroad, the development of EHLS system is summarized. The studying direction and content are decided by analyzing the merit and shortcoming of related products and studies.
     First, the fourth and fifth order mathematical model of EHLS system is built. Then the system identification and verification are made. The result shows that the fourth mathematical model has equal quality to fifth order model when system is working under the normal work condition. Then genetic algorithm identification based on backstepping theory is proposed, which makes the result of identification more close to physical system. Then the proposed method is used for the fourth order model. Verification result proves the effectivity of the method.
     The generating mechanics and characteristic of EHLS extra torque is analyzed according to the system model. Considering the forced flow of system, adjustable throttle to solve the extra torque is proposed, and the mathematical model with adjustable throttle is built. The simulation result shows using adjustable throttle can relieve forced flow, and the extra torque can be restrained as a result.
     To solve the extra torque which caused by movement of rudder system, the neural network compensation control strategy is proposed. It is used to compensate the disturbance of rudder system. Each order of states of the rudder output is taken as neural network inputs. Compensator changes its output according to extra torque and compensates the load system to restrain the extra torque. Then the simulation comparison among PID controller, structure invariability and the proposed controller is given. The result shows the proposed method’s effectivity.
     Aiming at the coupling between load system and rudder system, a adaptive backstepping controller with parameters variation adaptometer of EHLS is proposed. The complex system with high order is decomposed into a serial of simple low order subsystems. Then the controllers are designed for each subsystem. By doing these, the coupling relationship is passed to the system controller as a result. The variation of main parameters is considered at the same time, and parameters variation adaptometer is designed. The simulation results under different conditions show that the proposed controller can restrain extra torque effectively, and the load performance is finally improved.
     Experiments are made on the EHLS principle model machine. The extra torque generating mechanics and influencing factors are verified at first. Then experiments about neural network compensation controller and backstepping adaptive controller are made on the system. The performance about restraining extra torque and loading tracking of these two controllers are tested. The results show the controllers’effectivity. The experiments about adjustable throttle are made at last, the result shows its effectivity.
引文
1 F. Aghili, J. C. Piedboeuf. Contact Dynamics Emulation for Hardware-in- the-Loop Simulation of Robots Interacting with Environment. Proceedings of the 2002 IEEE International Conference on Robotics&Automation, Washington, DC, USA, 2002:523~529
    2 G. Basic. Hardware-in-the-Loop Simulation of Mechanical Loads for Mecha- tronics System Design. Master Thesis of University of Ottawa. 2003:26~27
    3 M. Bacic. On Hardware-in-the-Loop Simulation. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005:3194~3198
    4 S. Yalla, A. Kareem, S. Kabat, et al. Dynamic Load Simulator: Development of a Prototype. Journal of Engineering Mechanics. 2001, 127(12): 1310~1314
    5 S. Yalla, A. Kareem. Dynamic Load Simulator: Strategies and Applications. Proceeding of 15th ASCE Engineering Mechanics Conference, Columbia, USA, 2002:1~6
    6 D. Wu, Q. Zhang, J. F. Reid. Dynamic Simulator of Wheel Type Tractor Steering. 1998 ASAE Annual International Meeting Technical Papers. 1998: 1~11
    7 M. R. Hyung, J. K. Sung, K. S. Seung, et al. Dynamic Load Simulator for High- Speed Elevator System. Proceedings of the Power Conversion Conference, Osaka, Japan, 2002:885~889
    8 H. Temeltas, M. Gokasan, O. S. Bogosyan. A Nonlinear Load Simulator for Robot Manipulators. Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, CO, USA, 2001:357~362
    9 Z. X. Jiao, C. G. Li, Z. T. Ren. Extraneous Torque and Compensation Control on the Electric Load Simulator. Proceedings of SPIE, 5th International Symposium on Instrumentation and Control Technology, Beijing, China, 2003: 723 ~727
    10 D. H. Su, Q. H. Liu, S. L. Wu. Comprehensive Compensation for the Disturbance Torque of Electro-Hydraulic Load Simulator. Fluid Power Systems and Technology Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 1998:107~111
    11 Z. H. Yuan, J. D. Wu, J. H. Teng. Hybrid Control of Load Simulator for Unmanned Aerial Vehicle Based on Wavelet Networks. Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, Xi’an, China, 2003:715~719
    12 Y. H. Li. Development of Hybrid Control of Electro-Hydraulic Torque Load Simulator. Journal of Dynamic Systems, Measurement and Control. 2002, 124(3):415~419
    13 G. Q. Li, J. Cao, B. Zhang, et al. Design of Robust Controller in Electro- Hydraulic Load Simulator. Proceedings of 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 2006:779~784
    14 Q. Fang, Y. Yao, L. L. Fan. Modeling and Validating of Electric Torque Load Simulator. Proceedings of the First Asia International Symposium on Mechatronics(AISM 2004), Xi’an, China, 2004:27~30
    15 Y. Nam. QFT Force Loop Design for the Aerodynamic Load Simulator. IEEE Transaction on Aerospace and Electronic Systems. 2001, 37(4):1384~1392
    16袁锐波.基于H∞鲁棒控制的电液负载模拟器综合性能的研究.哈尔滨工业大学博士学位论文. 2006:1~27
    17华清.电液负载模拟器关键技术的研究.北京航空航天大学博士学位论文. 2001:27~41
    18 Y. Nam, S. K. Hong. Force Control System Design for Aerodynamic Load Simulator. Control Engineering Practice. 2002, 10(5):549~558
    19周自全,刘兴堂.现代飞行模拟技术.国防工业出版社, 1997:139
    20郝经佳.电液负载仿真台综合性能的研究.哈尔滨工业大学博士学位论文. 2001:3~15
    21李阁强.电液负载模拟器关键技术的研究.哈尔滨工业大学博士学位论文. 2006:2~5
    22西北工业大学五零八教研室.被动式加载四路的蓄压器校正方法.科技资料. 1978, 676(9):17~22
    23王经甫,叶正茂,李洪人.双阀并联控制在船舶舵机电液负载模拟器多余力抑制中的研究.机械工程学报. 2005, 41(4):229~233
    24张同祥,胡庆超,易孟林.电液伺服加载系统的优化设计与研究.华中工学院学报. 1984, 12(6):145~152
    25陈恒权.用同步反向法克服多余力.机床与液压. 1985, (3):13~17
    26杨斌.电液伺服低速大扭矩模拟系统设计与研究.液压与气动. 1986, (2): 23~26
    27 G. Q. Li, K. D. Zhao, R. B. Yuan. Study on the Effect of Generalized Coupled Stiffness in the Electro-Hydraulic Load Simulator. Proceedings of the International Conference on Mechanical Engineering and Mechanics, Nanjing, China, 2005:1137 ~1141
    28 L. X. Zhang. The Load Simulator Using Blow Servo Valve with InterconnectedPores. Proceedings of Third China-Russia-Ukraine Symposiumon Astronautical Science and Technology, Xi’an, China, 1994:652~655
    29张立勋,孟庆鑫,刘庆和.带连通孔流量阀实现力伺服系统的实验研究.机床与液压. 1995, (4):191~193
    30 Y. Q. Su, K. D. Zhao, D. H. Su. Application of Fuzzy Adaptive Control in Syncho-Compensation for Electro-Hydraulic Loading Simulator. Proceedings of 1995 International Symposium on Fluid Power Transmission and Control, Harbin, China, 1999:269~272
    31苏东海,吴盛林,付兴武,等.利用基于同步补偿的角速度差值克服多余力矩.哈尔滨工业大学学报. 2000, 32(1):78~81
    32 L. X. Zhang, Q. H. Liu. A Novel Method for Constraining the Disturbance Torque of Electro-Hydraulic Load Simulator. Proceedings of 1995 International Conference on Fluid Power Transmission and Control, Shanghai, China, 1995: 383~385
    33 A. M. Wang, Q. H. Liu. A Correction of Position Compensation for Aircraft Load Simulator. Proceedings of Third China-Russia-Ukraine Symposium on Astronautical Science and Technology, Xian, China, 1994:326~328
    34 J. C. Zhou. Control Strategy of the Synchro-Drive Electro-Hydraulic Servo System. Proceedings of 1995 International Conference on Fluid Power Transmission and Control, Shanghai, China, 1995:365~367
    35 S. L. Wu. Study on Control of Twin-Hydraulic Motor Synchro-Drive System. Journal of Mechanical Engineering. 1993, (3):165~170
    36 J. C. Zhou. Dynamic Analysis of Multi-Channel Electro-Hydraulic Servo System in Flight Motion Simulator. Proceedings of 1995 International Conference on Fluid Power Transmission and Control, Shanghai, China, 1995:368~370
    37苏东海,裴忠才,翟传润,等.用于被动式电液负载仿真台的一种新型套装组合马达.机床与液压. 1997, (6):17~19
    38刘长年.液压伺服系统优化设计理论.冶金工业出版社, 1989:244~245
    39徐本洲.被动式电液力控制系统的干扰抑制与渐进跟踪研究.哈尔滨工业大学博士论文. 1992:35~48
    40赵玉琢,周连山,叶文柄,等.被动式电液力控制系统的辅助同步及补偿控制.自动化技术与应用. 1985, 4(2):25~31
    41李运华,焦宗夏,王占林.舵机力矩负载模拟器的混合控制方法研究.航空学报. 1998, 19(7):60~64
    42焦宗夏,华清,王晓东,等.电液负载模拟器的复合控制.机械工程学报. 2002, 38(12):34~38
    43 Z. X. Jiao, J. X. Gao, Q. Hua, et al. The Velocity Synchronizing Control on the Electro-Hydraulic Load Simulator. Chinese Journal of Aeronautics. 2004:39~46
    44叶正茂,李洪人,王经甫.基于CMAC的船舶操舵系统负载模拟器复合控制.工程设计学报. 2002, 9(3):147~150
    45叶正茂,李洪人,王经甫.基于CMAC的船舶操舵系统负载模拟器自学习控制.控制与决策. 2003, 18(3):343~347
    46焦宗夏,华清.电液负载模拟器的RBF神经网络控制.机械工程学报. 2003, 39(1):10~14
    47 D. K. Shen, Z. L. Wang. An Adaptive Controller Based on Neural Networks for Motor-Driver Load Simulator. Proceedings of 5th International Conference on Fluid Power Transmission and Control, Hangzhou, China, 2001:37~41
    48焦宗夏,华清.负载模拟器的DRNN神经网络控制.机械工程学报. 2003, 39(1):15~19
    49 M. Y. Wang, B. Guo, Y. D. Guan, et al. Design of Electric Dynamic Load Simulator Based on Recurrent Neural Networks. Proceedings of IEEE Electric Machines and Drives Conference, Wisconsin, USA, 2003:207~210
    50王新民,刘卫国.电液伺服加载的神经网络内部反馈控制.航空学报. 2007, 28(3):690~694
    51 Y. Nam. QFT Force Loop Design for the Aerodynamic Load Simulator. IEEE Transactions, Aerospace and Electronic Systems. 2001, 37(4):1384~ 1392
    52 Q. Wang, Q. Bi, Y. Zhang. Partial Internal Model Control. IEEE Trans. On Industrial Electrics. 2001, 48(5):976~982
    53 C. L. Chen. Design and Analysis of Neural/Fuzzy Variable Structural PID Control System. IEEE Proceedings of Control Theory and Application. 1996, 143(2):200~208
    54李运华.负载模拟器的多余力矩的抑制方法研究.机床与液压. 1999, (2): 27~29
    55 S. Y. Lee, H. S. Cho. A Fuzzy Controller for an Aeroload Simulator Using Phase Plane Method. IEEE Transaction, Control Systems Technology. 2001, 9(6): 790~801
    56 G. H. Han, J. P. Shao, Y. H. Dong. Hardware-in-the-Loop Simulation of Electro- Hydraulic Driving Force Servo System. Proceedings of the 2007 IEEE, International Conference on Mechatronics and Automation, Harbin, China, 2007: 2900~2905
    57 D. Q. Truong, K. K. Ahn, K. J. Soo, et al. Application of Fuzzy-PID Controller in Hydraulic Load Simulator. Proceedings of the 2007 IEEE InternationalConference on Mechatronics and Automation, Harbin, China, 2007: 3338~3343
    58 Q. Fang, Y. Yao, X. C. Wang. Disturbance Observer Design for Electric Aerodynamic Load Simulator. The Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005:1316~1321
    59 C. S. Liu, H. Peng. Disturbance Observer Based Tracking Control. Journal of Dynamic Systems, Measurement and Control. 2000, 122(2):332~335
    60 R. B. Yuan, K. D. Zhao, J. Cao, et al. The Torque Control of an Electro- Hydraulic Servo System Based on Robust Control Theory. Proceedings of the Third International Symposium on Instrumentation Science and Technology, Xi’an, China, 2004:1027~1033
    61 J. F. Wang, L. H. Liang, S. T. Zhang, et al. Application of H_infinity Control Based on Mixed Sensitivity in the Electro-Hydraulic Load Simulator. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007:2991~2996
    62方强.被动式力矩伺服控制系统设计方法及应用研究.哈尔滨工业大学博士论文. 2006:69~89
    63 G. Q. Li, J. Cao, B. Zhang, et al. Design of Robust Controller in Electro- Hydraulic Load Simulator. Proceedings of 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 2006:779~784
    64 R. B. Yuan, J. Cao, G. Q. Li, et al. Torque Control of Electro-Hydraulic Servo System Based onμSynthesis Theory. 1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin, China, 2006:1175~1179
    65李阁强,赵克定,袁锐波,等.μ理论在电液负载模拟器中的应用.航空学报. 2007, 28(1):228~233
    66黄銳,池谷光栄.モデル規範形適应制御を用いた能動制御システムにおける非干涉制御方法の有用性.日本機械学会論文集(C編). 1991, 57(543):3571~3576
    67黄銳,池谷光栄.モデル規範形適应制御を用いた非干涉制御方法の能動制御システムへの適用.日本機械学会論文集(C編). 1991, 57(544): 3863~3868
    68黄銳,池谷光栄.油圧式模拟負荷システムに关するシミュレ—ミヨン解析.平成2年春季油空圧講演会, 1989:153~156
    69戒能修三等.モデル規範形適应制御の油圧式模拟負荷システムヘの应用.平成2年秋季油空圧講演会, 1989:170~173
    70黄锐.能動制御システムにおけるモデル規範形適应制御の有用性に関する実験.日本機械学会論文集(C編). 1992, 58(547):130~134
    71池谷光栄.油圧式模拟負荷系に関する実験的研究.航空宇宙技術研究所报告. TR-422, 1975:1~25
    72池谷光栄.負荷を有する油圧サ—ボ機構のシミュレ—ミヨン解析.航空宇宙技術研究所报告. TR-421, 1975, 8:1~17
    73池谷光栄.油圧式模擬負荷系の有用性评价.航空宇宙技術研究所报告. TR-424, 1975:1~18
    74 W. J. Carter, D. C. Lee, V. A. Simeone, et al. Aeroload Torque Simulator. United States Patent:4,235,103. November 25, 1980. Uspto Patent Full-Text and Image Database.
    75 Capabilities in Flight Motion Simulation and Guidance and Navigational Test Equipment. Carco Electronics. 1982:1~10
    76 HTTP://www.carcoelectronics.com/products.htm. April 2004
    77 J. Carter, K. Willis. A History of Flight Motion Simulators used for Hardware- in-the-Loop Testing of Missile Systems. Proceedings of SPIE, Technologies for Synthetic Environments: HITL TestingⅢ, Florida, USA, 1998:425~431
    78 Production Description for an ADFL-2 Aerodynamic Fin Loader System. Contraves. 1989:1~5
    79 H. Ohuchi, J. K. Han, K. Inatomi, et al. Model Reference Adaptive Control of a Hydraulic Load Simulator. Proceedings of 1993 International Conference on Fluid Power Transmission and Control, Hangzhou, China, 1993:136~140
    80 Y. Eto, N. Endo. Real-Time Simulator for Torque Split Control Systems. JSAE Review. 1995, 16(4):391~395
    81 M. J. Kaiser, W. L. Weeks. Electro-Hydrodynamic Simulator Investigations. Mathematics and Computers in Simulation. 1994, 36(3):221~240
    82 J. J. Biesiadecki, D. A. Henriquez. Real-Time Spacecraft Dynamics Simulator. Proceedings of the 16th AIAA/IEEE Digital Avionics Systems, Irvine, CA, USA, 1997: 82~92
    83 S. Ramachandran, P. Dransfield. Interaction between the Actuators in Loaded Multi-Channel Electro-Hydraulic Drives. Journal of Dynamic Systems, Measurement and Control. 1993, 115(6):291~302
    84 H. Ohuchi. Control of a Load Simulator. International Symposium on Fluid Power, Tokyo, Japan, 1989:55~60
    85 A. Pizon. Computer Simulation Research of Load Sensing Systems. Proceedings of 1993 International Conference on Fluid Power Transmission and Control, Hangzhou, China, 1993:207~212
    86阎杰.动态负载仿真系统研制中非线性因素的分析和抑制.西南工业大学学报. 1998, 16(2):266~270
    87喻统武.舵面力矩负载模拟器的研究与设计.中国航空学会液压气动学术讨论会,北京, 1992:135~140
    88王经甫. P-Q阀控制电液负载模拟器及其鲁棒控制研究.哈尔滨工业大学博士学位论文. 2006:19~20
    89李阁强,赵克定,袁锐波,等.三类伺服阀控制电液伺服加载系统的分析.机床与液压. 2005, (8):123~125
    90袁锐波,赵克定,李阁强.电液负载模拟器力矩控制伺服系统不确定性的分析研究.机床与液压. 2006, (2):159~162
    91李阁强,赵克定,曹建,等.微力矩导弹舵机负载模拟器的理论研究.中国惯性技术学报. 2005, (6):54~57
    92李阁强,赵克定,袁锐波.阀控摆动式马达电液伺服加载系统的分析和实验研究.机床与液压. 2006,(6):94~96
    93郝经佳,赵克定,许宏光.双阀控制在电液负载仿真台中的应用.中国机械工程, 2002, 13(10):814~817
    94 D. E. Goldberg. Genetic Algorithm in Research , Optimizing, and Machine Learning. Addison Wesley, 1989:10~12
    95徐丽娜.神经网络控制.电子工业出版社, 2003:167-170
    96丁志中.双线性变换法原理的解释.电气电子教学学报. 2004, 26(2):53~54
    97王小平,曹立明.遗传算法理论、应用与软件实现.西安交通大学出版社, 2002:35~42
    98 W. S. McCulloch, W. A. Pitts. Logical Calculus of Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics. 1943, (5):115~ 133
    99 S. A. A. Shah, A. ul Asar, S. W. Shah. Interactive Voice Response with Pattern Recognition Based on Artificial Neural Network Approach. International Conference on Emerging Technologies, Islamabad, Pakistan, 2007:249 ~ 252
    100 D. Y. Ge, X. F. Yao, W. X. Chen. Research of Machine Vision System Based on RBF Neural Network. International Conference on Computer Science and Information Technology, Singapore, 2008:218~222
    101 S. K. Hasnain, P. Akhter. A Fair Play Comparison of Neural Networks Algorithms in Speech Signal Processing. 9th International Multi-Topic Conference, Karachi, Pakistan, 2005:1~6
    102 V. P. Machado, A. Neto, J. D. de Melo, et al. A Neural Network Multi-Agent Architecture Applied to Fieldbus Intelligent Control. IEEE International Emerging Technologies and Factory Automation, Hamburg, Germany, 2008: 567~574
    103 L. W. Li, J. W. Ma, X. Chen, et al. High Spatial Resolution Remote SensingImage Segmentation Using Temporal Independent Pulse Coupled Neural Network. IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007:1915~1917
    104 Y. G. Bae, J. K. Park, H. W. Jeon, et al. Neural Network Control for Image Stabilization System on Helicopter in Remote Sensing. International Joint Conference, Busan, Korea, 2006:5169~5172
    105 K. Funahashi. On the Approximate Realization of Continuous Mapping by Neural Networks. Neural Networks. 1989, 3(2):183~192
    106 J. O. Jang. Neural Network Saturation Compensation for DC Motor Systems. IEEE Transactions on Industrial Electronics. 2007, 54(3):1763~1767
    107 Q. Wu, J. K. Liu. Backstepping Position Tracking Controller Design with Neural Network Deadzone Compensation. 1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin, China, 2006:1145~1150
    108 S. Piche, P. Sabiston. A Disturbance Rejection Based Neural Network Algorithm for Control of Air Pollution Emissions. IEEE International Joint Conference on Neural Networks, Montreal, Quebec, Canada, 2005:2937~2941
    109 V. Vitiello, A. Tornamb. Adaptive Compensation of Modeled Friction Using a RBF Neural Network Approximation. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007:4699~4704
    110 I. R. Gundala, A. Narain. Friction Compensation Using Neural Networks Applicable to High Precision Motion Control Systems in Manufacturing. The Third IEEE International Conference on Industrial Informatics, Austin, TX, USA, 2005:808~812
    111王兴松,张正峰,王中华,等.定位平台非线性摩擦的神经网络补偿.东南大学学报. 2002, 32(4):605~609
    112 M. K. Ciliz, M. Tomizuka. Neural Network Based Friction Compensation in Motion Control. Electronics Letters. 2004, 40(12):752~753
    113 S. M. Song, Z. Y. Song, B. T. Zhang, et al. Adaptive Wavelet Network Friction Compensation of Inter-Satellite Optical Communication Coarse Pointing Subsystem. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 2768 ~2772
    114 Y. Li, Y. C. Li. Robust Neural networks Compensating Motion Control of Reconfigurable Manipulator in Geometric Form. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006:306~311
    115 J. E. Slotine, W. P. Li. Applied Nonlinear Control. Prentice Hall, 1991:42~61
    116 I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. Systematic Design ofAdaptive Controllers for Feedback Linearizable Systems. IEEE Trans on Automatic Control. 1991, 36(11):1241~1253
    117 M. Krstic, I. Kanellakopoulos, P. V. Kokotovic. Nonlinear Design of Adaptive Controllers for Linear Systems. IEEE Trans on Automatic Control. 1994, 39(4): 738~752
    118董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用.控制与决策. 2006, 21(10): 1081~ 1086
    119 Y. Ling, G. Tao. Adaptive Backstepping Control Design for Linear Multi- Variable Plants. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, 1996:2438~2443
    120 Y. Q. Wu, X. H. Yu. Adaptive Control of Linear MIMO Systems Using Backstepping Approach. Proceedings of the American Control Conference, Philadelphia, USA, 1998:599~60
    121 R. R. Costa, L. Hsu, A. K. Imai, et al. Adaptive Backstepping Control Design for MIMO Plants Using Factorization. Proceedings of the American Control Conference, Anchorage, USA, 2002:4601~4606
    122 Y. Zhang, P. A. Ioannou. Robustness of the Adaptive Backstepping Controllers for Linear Systems. Proceedings of the American Control Conference, New Mexico, USA, 1997:746~750
    123 I. Faycal, M. Kristic. Robustness of the Tuning Functions Adaptive Back- stepping Design for Linear Systems. IEEE Trans on Automatic Control. 1998, 43(12):431~437
    124 Y. Zhang, C. Y. Wen, Y. C. Soh. Adaptive Backstepping Control Design for Systems with Unknown High frequency Gain. IEEE Trans on Automatic Control. 2000, 45(12):2250~2254
    125 Y. P. Zhang, B. Fidan, P. A. Ioannou. Backstepping Control of Linear Time Varying Systems with Known and Unknown Parameters. IEEE Trans on Automatic Control. 2003, 48(11):1908~1925
    126 B. Fidan, Y. P. Zhang, P. A. Ioannou. Adaptive Control of a Class of Slowly Time Varying Systems with Modeling Uncertainties. IEEE Trans on Automatic Control. 2005, 50(6):915~920
    127解学军,吴昭景,张嗣瀛.具有未规范化自适应律的直接模型参考自适应反推控制器.控制与决策. 2004, 19(1):53~56
    128 W. L. Li, S. R. Liu, G. M. Dimirovski. Adaptive Robust Backstepping Design for a Class of Nonlinear System. Proceedings of the IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada, 2005: 516~520
    129于占东,王庆超.一类非线性系统的微分平滑反步自适应输出反馈控制.控制理论与应用. 2005, 22(5):687~693
    130 M. Krstic, S. I. Kanellakopoulo, P. V. Kokotovic. Nonlinear and Adaptive Control Design. John Wiley & Sons, 1995:32~60
    131 P. Ranger, A. Desbiens. Improved Backstepping-Based Adaptive PID Control. The Fourth International Conference on Control and Automation, Montreal, Canada, 2003:123~127
    132 Y. Zhang, S. Y. Li. Backstepping-Based Decentralized PID Controller Design for MIMO Processes. Acta Automatica Sinica. 2005, 31(5):675~682
    133 C. F. Hsu, C. M. Lin, T. T. Lee. Wavelet Adaptive Backstepping Control for a Class of Nonlinear Systems. IEEE Transactions on Neural Networks. 2006, 17(5):1175~1183
    134 W. S. Chen, J. M. Li. Decentralized Output-Feedback Neural Control for Systems With Unknown Interconnections. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics. 2008, 38(1):258~266
    135 C. C. Hua, X. P. Guan, P. Shi. Robust Backstepping Control for a Class of Time Delayed Systems. IEEE Transactions on Automatic Control. 2005, 50(6):894 ~899
    136 F. Mazenc, S. Bowong. Backstepping with Bounded Feedbacks for Time- Varying Systems. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005: 4560~4565
    137 A. Y. Alanis, E. N. Sanchez, A. G. Loukianov. Discrete-Time Backstepping Neural Control for Synchronous Generators. Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, 2007:2569~2574
    138 F. Mazenc, P. A. Bliman. Backstepping Design for Time-Delay Nonlinear Systems. IEEE Transactions on Automatic Control. 2006, 51(1):149~154
    139 I. Ursu, F. Ursu, F. Popescu. Backstepping Design for Controlling Electro- Hydraulic Servos. Journal of the Franklin Institute. 2006, 343(1):94~110
    140 H. R. Zeng, N. Sepehri. Adaptive Backstepping Control of Hydraulic Manipulators with Friction Compensation Using LuGre Model. Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 2006: 3164~3169
    141 C. Kaddissi, J. P. Kenne, M. Saad. Identification and Real-Time Control of an Electro-Hydraulic Servo System Based on Nonlinear Backstepping. IEEE Transactions on Mechatronics. 2007, 12(1):12~22
    142 S. Im, B. S. Lee. Adaptive Nonlinear Backstepping Control of SEDCM underVelocity Constraint. 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 2006:31~36
    143 A. R. Maleknia, K. Rahimi, H. A. Zarchi, et al. Robust Backstepping Control of Permanent Magnet Linear Synchronous Motor in Extended Region Using Artificial Neural Network. IEEE International Conference on Industrial Technology, Chengdu, China, 2008:1~5
    144 Y. L. Tan, J. Chang, H. L. Tan. Adaptive Backstepping Control and Friction Compensation for AC Servo with Inertia and Load Uncertainties. IEEE Transactions on Industrial Electronics. 2003, 50(5):944~952
    145 J. Kabzinski. Adaptive Backstepping Control of a Completely Unknown Permanent Magnet Motor. 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 2007:1~10
    146张兴华.具有参数和负载不确定性的感应电机自适应反步控制.控制与决策. 2006, 21(12):1379~1382
    147王家军,赵光宙,齐东莲.基于反推的永磁同步电动机伺服系统的位置跟踪控制.电路与系统学报. 2004, 9(6):19~21
    148张春朋,林飞,宋文超,等.异步电机鲁棒控制及其Backstepping设计.控制与决策. 2004, 19(3):267~271
    149纪志成,李三东,沈艳霞.自适应积分反步法永磁同步电机伺服控制器的设计.控制与决策. 2005, 20(3):329~331
    150 A. H. Richard, S. Darren, Z. H. Qu. Design and Evaluation of Robust Nonlinear Missile Autopilots From a Performance Perspective. Proceedings of the American Control Conference, Seattle, WA, USA, 1995:189~193
    151张友安,胡云安.导弹控制和制导的非线性设计方法.国防工业出版社, 2003:12~35
    152曹邦武,姜长生.基于回馈递归方法的导弹鲁棒飞行控制系统设计.宇航学报. 2005, 26(2):148~151
    153吴文海,耿昌茂,罗德林,等.现代战机超机动攻击研究.南京航空航天大学学报. 2004, 36 (4):417~421
    154连葆华,崔祜涛,崔平远.再入飞行器自动驾驶仪的自适应退步控制设计.中国空间科学技术. 2003, (1):7~13
    155 G. Li, K. Amir. Robust Control of a Hydraulically Driven Flexible Arm Using Backstepping Technique. Journal of Sound and Vibration. 2004, 208(3):759~775
    156 M. Smaoui, X. Brun, D. Thomasset. Systematic Control of an Electro-Pneumatic System: Integrator Backstepping and Sliding Mode Control. IEEE Transactions on Control System Technology. 2006, 14(5):905~913
    157 M. H. Casado, R. Ferreiro. Identification of the Nonlinear Ship Model Parameters Based on the Turning Test Trial and the Backstepping Procedure. Ocean Engineering. 2005, 32(11):1350~1369
    158张伟,穆旭,袁朝辉,等.基于自适应反演的电液负载模拟器设计.第25届中国控制会议,哈尔滨, 2006:251~254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700