不同气候区居民热适应行为及热舒适区研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从国内外热舒适影响因素的研究与识别过程,静态和动态热舒适的理论、动态环境下热舒适性研究现状以及热舒适巨分析数据库等方面对国内外热舒适研究的发展现状进行了归纳总结。从热应激与热感觉等基本概念、人体对环境的生理心理行为应激的过程、人体热平衡模型、人体热反应模型和人体热舒适适应理论等方面对动态环境下热舒适适应理论进行了全面的分析和介绍。根据动态热舒适适应理论,介绍了本文开展现场环境监测的内容、仪器设备和检测方法,调查问卷的设计、现场调查的实施与质量控制、调查后数据处理与检验等内容进行详细的介绍。
     采用现场调查的方法,在重庆、武汉、成都、福州、广州、昆明、沈阳、哈尔滨和西安等九个典型城市开展居民热舒适现场调查工作,共计获得我国五个建筑气候区热舒适现场调查个案18513份,单项问题的有效个案都达到97.8%以上,各城市每月个案基本都在128份以上,调查获得的各城市室内、室外环境有效覆盖了了各城市建筑室内外环境范围。各城市热湿感觉在可接受范围的占75.7%,说明总体上我国这九个城市当前住宅热湿环境的可接受度较高,热湿环境状况较好。
     采用巨分析的方法,对我国居民的开窗习惯和通风效果进行分析,研究了吹风感和期望风速的分布特征,发现了我国各地住宅室内的通风适应模式。我国居民开窗频率与季节性温度变化有关,在各季节都有很强的通风愿望且经常开窗是一种常态。上午的开窗率通常都是最高的,晚上的开窗率受季节影响,且夏热冬冷地区各时间段的开窗率>温和地区的>夏热冬暖地区的>北方寒冷地区的。从室内通风的效果来看,无论是从全年整体还是单月来看,各城市室内风速都主要是以<0.1m/s或<0.2m/s为主;风速受到季节的影响明显,>0.8m/s的风速基本出现在室外气温高的月份。昆明室内月平均风速小于0.1m/s,哈尔滨和西安基本上都小于0.2m/s,夏热冬冷地区小于0.4m/s,福州小于0.7m/s和广州小于1.2m/s;夏热冬暖和夏热冬冷地区室内月平均风速整体上都呈倒“V”型分布,但前者的要比后者的大。
     对全国居民的衣着热阻模式和衣着热阻对热感觉的影响进行研究,发现了我国各地居民衣着热阻适应调节的模式。北方地区城市和武汉居民衣着热阻主要受室外温度的影响,其余南方地区城市主要受到室内温度的影响。重庆、成都和福州等地居民衣着热阻对温度的敏感性达0.06 clo/oC,广州和昆明对温度的敏感性较低(0.02~0.03 clo/oC)且个体差异也小,寒冷地区居民衣着热阻对温度的敏感性低但个体差异大,因而衣着热阻对广州和昆明地区居民热舒适调节能力有限,但是是其余城市居民热舒适适应调节的主要手段。重庆、武汉、成都、福州和昆明五个城市整体趋势上都符合衣着热阻越大热感觉越大的规律,表明衣着热阻是这几个城市居民热感觉的主要影响因素,但相邻热感觉对应的平均衣着热阻之间差异不明显。居民期望衣着热阻对室内温度的敏感性呈现,重庆和成都>福州>武汉>昆明>广州。此外,重庆、武汉、成都、福州和广州等地在大于约30.0oC时,期望衣着热阻基本稳定在0.27clo,这表明居民正式仪态下衣着热阻的可调节性接近为零。
     最后由于我国居民日常室内热舒适适应行为以室内通风和衣着热阻调节为主要手段,而衣着热阻调节不是欧美日常热舒适适应调节手段,通过对获得的舒适方程和可接受区带宽的比较,发现De Dear等人和Humphreys等人非空调采暖热舒适区构建方法不适用于我国。因而本文根据我国自由运行建筑中居民日常热舒适适应调节特点,提出了我国住宅非采暖空调建筑热舒适区的构建方法。
The thesis has summarized research status of thermal comfort at home and abroad from the perspectives of research and recognition process of its affecting factors, stable and dynamic thermal comfort theory, research status in the dynamic environment and giant analysis database of thermal comfort.etc, and gave a comprehensive analysis and introduction of dynamic thermal comfort theory from the concept of hot stress and thermal sensation, process of human’s physiological and psychological reaction respond to the environment, thermal equilibrium model, thermal responding model as well as adaptation theory. According to the dynamic thermal adaptation theory, this thesis also introduces monitoring contents, equipments and detection methods of field test, as well as questionnaire design, implementation and quality control, data processing and inspection, etc.
     The author conducted field investigation on residents’thermal comfort in nine typical cities - Chongqing, Wuhan, Chengdu, Fuzhou, Guangzhou, Kunming, Shenyang and Harbin and Xian, totally obtained 18513 cases throughout five climate zones. The effective cases of each question account for 97.8%-101.5%. The number of cases in each city is more than 128 per month. Indoor and outdoor environments investigated have covered environmental range of all cities. 75.7% of hot-humid sensation votes are in acceptable range in each city; it demonstrates the high acceptable rate of residential hot-humid environment in nine cities and well environment condition.
     Using giant analysis method, this thesis finally obtains residential indoor ventilated adaptation model throughout the country based on analysis of both residents’windowing behaviors as well as ventilated effect in our country and researches distribution characteristics of draught sensation. The residents’windowing frequency is related to seasonal temperature changes and has the very strong ventilation desire with a normal state of window-open. In the morning, it is usually highest while in the evening it’s influenced by seasons, hot summer and cold winter area > mild area > hot summer and warm winter area > the north cold area. From the point of the effect of indoor ventilation, either for a whole year or a single month indoor air velocity is mainly lower than 0.1 m/s or 0.2 m/s; it is affected significantly by seasons, velocity higher than 0.8 appeares in the months with high outdoor temperature. Monthly average air velocity is less than 0.1 m/s, 0.2 m/s, 0.4 m/s, 0.7 m/s and 1.2 m/s in Kunming, Harbin and Xian, hot summer and cold winter area, Fuzhou and Guangzhou, respectively; it’s distributed in“falls V”type in hot summer and warm winter zone as well as hot summer and cold winter zone, however, the former is more than the latter.
     Researches on the influence of residents’clothing thermal insulation and its mode on thermal sensation indicates adaptive mode of clothing insulation in all parts of country. Clothing thermal insulation in northern cities and Wuhan is mainly affected by outdoor temperature, while that in the rest southern cities is mainly influenced by indoor temperature. Sensitivity of clothing thermal insulation to temperature is 0.06 clo/℃in Chongqing, Chengdu and Fuzhou, while it is only 0.02 ~ 0.03 clo/℃in Guangzhou and Kunming with small individual difference, the sensitivity is also low but with great individual differences in cold zone. It can conclude that adjustment ability of clothing thermal insulation on residents’thermal comfort is limited in Guangzhou and Kunming, but it is the main means in other cities. The whole trend, the thermal sensation rises as the clothing insulation increases, in Chongqing, Wuhan, Chengdu, Fuzhou and Kunming shows that clothing insulation is main factor of thermal sensation, but difference between corresponding mean clothing thermal insulation of adjacent thermal sensation is not significant. The order of sensitivity of the expected clothing insulation to indoor temperature is as follows, Chongqing and Chengdu > Fuzhou > Wuhan > Kunming > Guangzhou. In addition, the expected clothing insulation maintains 0.27clo when indoor air temperature is 30℃in Chongqing, Wuhan, Chengdu, Fuzhou and Guangzhou, suggesting that there is no clothing adaptive behavior when residents are under formal clothes.
     Finally, in China, indoor ventilation and clothing insulation adjustment are the main means of residents’thermal comfort adaptive behaviors, but the latter is not the common means in European and American areas. Comparative results of comfort equation and bandwidth of acceptable area shows the method of constructing comfort zone under free-running environment used by Humphreys and Dear De.etc does not apply to China. Thus this thesis puts forward method of comfort zone in residential buildings under free-running environment according to characteristics of residents’daily adjustment.
引文
[1]金振星,武涌,梁境.大型公共建筑节能监管制度设计研究[J].暖通空调, 2007, (08): 19~22.
    [2]梁境,武涌,金振星.大型公共建筑节能监管体系技术实现路线研究[J].暖通空调, 2007, (08): 13~18.
    [3] ASHRAE. ANSI/ASHRAE 55-2004, Thermal environmental coditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air Conditioninn Ennineers, Inc. 2004.
    [4] ASHRAE. ANSI/ASHRAE 55-1992, Thermal environmental coditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air Conditioninn Ennineers, Inc. 1992
    [5] ISO. International Standard 7730. Moderate thermal environments- determination of the PMV and PPD indices and specification of the conditions for thermal comfort. Geneva: International Standards Organization. 1994.
    [6] ISO. International Standard 7730. Moderate thermal environments- determination of the PMV and PPD indices and specification of the conditions for thermal comfort. Geneva: International Standards Organization. 2005.
    [7] CEN Standard EN15251. Indoor environmental input parameters for design and assessment of energy performance of buildings- addressing indoor air quality, thermal environment, lighting and acoustics. Brussels: Comite′Europe′en de Normalisation; 2007.
    [8] Macpherson RK. The assessment of the thermal environment [J]. British Journal of Industrial medicine, 1962, 27(10): 19.
    [9]金招芬.朱颖心主编.建筑环境学.中国建筑工业出版社. 2001. 12.
    [10]中国科普网(http: //www. cpus. gov. cn/magazine/dzyx/2003/09_46. htm).
    [11]徐小林,李百战,罗明智.室内热环境对人体舒适性的影响分析.制冷与空调. 2004(4)
    [12] F Rohles, et al. Ceiling fans as extenders of the summer comfort envelope. ASHRAE Trans, 1983, 89 (1).
    [13] L Berglund, A Fobelets. Subjective human response to low2level air currents and asymmetric radiation. ASHRAE Trans, 1987, 93(1).
    [14] D Scheatzle, et al. Extending the summer comfort envelope with ceiling fans in hot arid climates. ASHRAE Trans, 1989, 95 (1).
    [15] P O Fanger, A K Melikov, et al. Turbulence and draft. ASHRAE J, 1989, (4).
    [16] Marc Fountain, et al. Locally controlled air movement preferred in warm isothermalenvironments. ASHRAE Trans, 1994, 100 (2): 937.
    [17] S Tanabe, et al. Importance of air movement for thermal comfort under hot and humid conditions. Proc 2nd ASHRAE FEC on air conditioning in hot climates, 1989.
    [18] Edward Arens, Michael A. Humphreys, Richard de Dear, Hui Zhang. Are‘class A’temperature requirements realistic or desirable?.Building and Environment (2009), doi:10.1016/j.buildenv.2009.03.014.
    [19]魏润柏,徐文华,编著.热环境.上海:同济大学出版社. 1994.
    [20]李兆坚.大型综合气候环境室空调制冷设计.暖通空调. 1999. 29(5). 57-59).
    [21]邱冠雄.针织服装穿着舒适性的研究综述.针织工业, 1990, (2): 46-51; 1990, (4): 33-40; 1990, (5): 45-48.
    [22]福特L.霍利斯著.服装的舒适性与功能.曹俊周译.北京:纺织工业出版社, 1984
    [23]黄莉茜.热环境中针织面料穿着舒适性影响因素的研究.中国纺织大学学报,第24卷第6期, 1998年12月: 76-79.
    [24] Fishman, D. S. , and S. L. Pimbert. 1982. The thermal environment in offices. Energy and Buildings 5(2): 109-116.
    [25] Fanger P O (1970) Thermal Comfort. Danish Technical Press, Copenhagen.
    [26] Humphreys, M. A. 1994b. An adaptive approach to the thermal comfort of office workers in North West Pakistan. Renewable Energy 5(ii): 985-992.
    [27] Nicol, J. F. , G. N. Jamy, O. Sykes, M. A. Humphreys, S. Roaf, and M. Hancock. 1994. A survey of comfort temperatures in Pakistan: Towards new indoor temperature standards. Oxford: Oxford Brookes Univ. (Report).
    [28] Nicol, J. F. , and I. A. Raja. 1996. Thermal comfort, time and posture: Exploratory studies in the nature of adaptive thermal comfort. School of Architecture, England: Oxford Brookes University.
    [29] Hale, Frank C. ; Westland, Ronald A. , and Taylor, Craig L. : Barometric and vapour pressure influence on insensible weight loss. J. Appl. Physiol. 12(1): 20-28, 1958.
    [30] A Strand, P. O. : The respiratory activity in man exposed to prolonged hypoxia. Acta Physiol Scand. 30: 343-368, 1954.
    [31] Mcnall JR. , P. E. , Jaax, J. : Rohles, F. H. ; Nevins, R. G. , and Springer, W. : Thermal comfort(thermally neutral) conditions for three levels of activity. ASHRAE Trans. 73, I, 1967.
    [32] Houghten, F. C. , Giesecke, F. E. ; Tasker, C. , and Gutberlet, Carl: Cooling requirements for summer comfort air conditioning. Ashve Trans. 43: 145-185, 1937.
    [33] Tasker, C. : Cooling requiremrnts for summer comfort air conditioning in Toronto. ASHRAE Trans. 44: 549-558, 1938.
    [34] Ellis, F. P.: Thermal comfort in warm, humid atmospheres. Observations on groups and individuals in Singapore. J. Hyg. 51: 386, 1953.
    [35] Angus , T. C. , and Brown, J. R. : Thermal comfort in the Iectureroom. Jihve, 25: 175-182, 1957.
    [36] Newton , A. B; Houghten, F. C. ; Gutberlet, Carl; Qualley, R. W. , and Tomlinson. C. W. : Shock experiences of 275 workers after entering and leaving cooled and air conditioned offics. ASHRAE Trans. 44: 571-590, 1938.
    [37] Mcconnell, W. J. , and Spiegelman, M. : Rractions of 745 clerks to summer air conditioning. Heat. , Pip. And Air Condit. 12: 318-322, 1940.
    [38] Black, Flora A. : Desirable temperatures in offices. A study of occupant reaction to the heating provided. Inst. Heat. Vent. Engr. J. 22: 319-328, 1954-55.
    [39] Yaglou. C. P. , and Messer, A. : The importance of clothing in air conditioning. J. Amer. Med. Ass. 117: 1261, 1941.
    [40] Mcnall JR. , P. E. , Ryan, P. W. ; Rohles, F. H. ; Nevin, R. G. ; and Springer, W. E. : Metabolic rates at four activity levels and their relationship to thermal comfort. ASHRAE Trans. 74, part I: IV. 3. 1. , 1968.
    [41] Rudeiko, V. A. : Vlijanie temperature vozducha zilisca na termoreguljaciju ljudei preklonnogo vozrasta (The effect of the air temperature in dwellings on the thermoregulation og aged persons). Gig. Sanit, 30(2): 25-28, 1965.
    [42] Partridge, Ruth C. and Maclean, D. L. : Determination of the comfort zone for school children, Journ. Of Industrial Hygiene, 17: 66-71, 1935.
    [43] Midgley, Rees A. and Jaffe Robert B. : Human Inteinizing hormone in serum during the menstrual cycle: Determination by radioimmunoassay. Journ. Of Clinical Endocrinology. 26: 1375-1381, 1966.
    [44] Nevins, R. G. ; Rohles, F. H. ; Springer, W. , and Feyerherm, A. M. : A temperature humidity chart for thermal comfort of seated persons. ASHRAE Trans. 72. I: 283-291, 1966.
    [45] Mielsen, Marius: Under gelser overrelationen mellem behagelighed fornemmelser, opvarmning stilstand og fysiologiske reaktioner ved stillesiddende arbejde. (Studies on the ralation between sensations of comfort , degree of heating and physiological reactions). Boligopvarmningsudvalgets meddelelse nr. 3, Kbenhavn, 1947.
    [46] McIntyre, D. A. 1980. Design requirements for a comfortable environment. Bioengineering: Thermal Physiology and Comfort. K. Cena, and J. A. Clark, eds. , pp. 157-168. Amsterdam: Elsevier.
    [47] Heijs, W., and P. Stringer. 1988. Research on residential thermal comfort: some contributionsfrom environmental psychology. J. Environ. Psychol. 8: 235-247.
    [48] Busch, J. F. 1990. Thermal responses to the Thai office environment. ASHRAE Transactions 96(1): 859-872.
    [49] de Dear, R. J. , K. G. Leow, and S. C. Foo. 1991c. Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore. International Journal of Biometeorology 34: 259-265.
    [50] Rowe, D., S. G. Lambert, and S. E. Wilke. 1995. Pale green, simple and user friendly: Occupant perceptions of thermal comfort in office buildings. In Standards for thermal comfort. J. F. Nicol, M. A. Humphreys, O. Sykes, and S. Roaf, eds. , pp. 59-69. London: E and FN Spon.
    [51] Oseland, N. A. 1995. Predicted and reported thermal sensation in climate chambers, offices and homes. Energy and Buildings 22: (in press).
    [52] Paciuk, M. 1990. The role of personal control of the environment in thermal comfort and satisfaction at the workplace. Coming of age. EDRA 21/1990. R. I. Selby, K. H. Anthony, J. Choi, and B. Orland, eds. , pp. 303-312. Oklahoma City, Okla. U. S. : Environmental Design Research Association, xviii, 372 pp.
    [53] Williams, R. N. 1995. Field investigation of thermal comfort, environmental satisfaction and perceived control levels in UK office buildings. Healthy Buildings.
    [54] Black, F. A. , and E. A. Milroy. 1966. Experience of air conditioning in offices. J. Inst. Heat. Vent. Engrs. 34: 188-196.
    [55] Rohles, F. H. , R. B. Hayter, and L. G. Berglund. 1977. Comfort and cold and warm discomfort during summer and winter in northern and southern United States. ASHRAE Transactions 83(1): 78-87.
    [56] Parsons, K. 1994. Thermal comfort standards: Past, present and future, and open discussion that follows. In Thermal Comfort: Past, present and future. N. A. Oseland, and M. A. Humphreys, eds. , pp. 184-197. Garston, United Kingdom: BRE.
    [57] de Dear R. A global database of thermal comfort field experiments. ASHRAE Transactions 1998; 104(1b): 1141–52.
    [58] de Dear R, Fountain ME. Field experiments on occupant comfort and office thermal environments in a hot-humid climate. ASHRAE Transactions 1994; 100(2): 457–75.
    [59] Cena K, de Dear R. Field study of occupant thermal comfort and office thermal environments in a hot, arid climate. ASHRAE Transactions 1999; 105(2): 204–17.
    [60] Donnini G, Monila J, Martello C, Lai DHC, Kit LH, Chang CY, et al. Field study of occupant comfort and office thermal environments in a cold climate. ASHRAE Transactions 1996;103(2): 795–802.
    [61] Zhang H, Arens E, Abbaszadeh S, Huizenga H, Brager G, Paliaga P, et al. Air movement preferences observed in office buildings. International Journal of Biometeorology 2007; 51: 349–60.
    [62] Toftum J. Air movement– good or bad? Indoor Air 2004; 14: 40–5.
    [63] Kempton, W. , and L. Lutzenhiser, eds. 1992. Energy and buildings, vol. 18.
    [64] Auliciems, A. 1981. Towards a psychophysiological model of thermal perception. Int. J. Biometeor 25: 109-122.
    [65] Auliciems, A. 1989. Thermal Comfort. In Building design and human performance, pp. 71-88. Ed. : Ruck, N. New York: Van Nostrand.
    [66] de Dear, R. J. 1994a. Outdoor climatic influences on indoor thermal comfort requirements. In Thermal comfort: past present and future. Eds. : Oseland, N. A. , and Humphreys, M. A. United Kingdom: BRE.
    [67] Nicol, F. 1993. Thermal Comfort—A handbook for field studies toward an adaptive model. United Kingdom: University of East London.
    [68] Folk, G. E. 1974. Adaptation and heat loss: The past thirty years. Heat loss from animals and man: Assessment and control. In Proceedings of the 20th Easter School in Agricultural Science, Univ. of Nottingham. J. L. Monteith, and L. E. Mount, eds. London: Butterworths.
    [69] Folk, G. E. 1981. Climatic change and acclimatization. From Bioengineering, Thermal physiology and comfort, Cena, K. , and J. A. Clark, eds. , pp. 157-168. Amsterdam: Elsevier.
    [70] Goldsmith, R. 1974. Acclimatization to cold in man—Fact or fiction? Heat loss from animals and man: assessment and control. In Proceedings of the 20th Easter School in Agricultural Science, Univ. of Nottingham. J. L. Monteith, and L. E. Mount, eds. London: Butterworths.
    [71] Prosser, C. L. , ed. 1958. Physiological adaptation. Washington, D. C. : Am. Physiol. Soc.
    [72] Clark, R. P. , and O. G. Edholm. 1985. Man and his thermal environment. Edward Arnold.
    [73] Glaser, E. 1966. The physiological basis of habituation. London: O. U. P.
    [74] Frisancho, A. R. 1981. Human Adaptation. Ann Arbor: U. of Mich. Press.
    [75] Humphreys, M. A. (1975/76) Field studies of thermal comfort compared and applied, Department of the Environment: Building Research Establishment, Current Paper CP 76/75 (also in: Physiological Requirements on the Microclimate, Institute of Hygiene and Epidemiology, Prague, 1975, pp115-181, and in J. Inst. Heat. and Vent. Eng. vol 44, 1976, pp5-27).
    [76] Humphreys,M.A. Outdoor temperature and comfort indoor[J].Build. Res. Pract., 1978, 6:92- 105.
    [77] M. A. Humphreys. Field Studies of Thermal Comfort Compared and Applied[J]. Building Serviees Engineer. 1976,44:5-27.
    [78] Auliciems, A. Psychophysical criteria for global thermal zones of building design[J].Int. J Biometeorol., 1983,27:69-86.
    [79] Auliciems A. Validation of the predicted mean vote model of thermal comfort in six Australian field studies[M]. In: ASHRAE Trans. 1985, 91 (2B):452-468.
    [80] J. F. Busch. Thermal comfort in Thai air-conditioned and naturally ventilated offices[J]. Standards for Thermal Comfort, 1995, 114-121.
    [81] G. R. Milne. The energy implications of a climate-based indoor air temperature standard, Standards for Thermal Comfort, 1995, 182-189.
    [82] Richard J. de Dear, GallSB. Developing an Adaptive Model of Thermal Comfort and preference[J]. ASHRAE Trans. 1998, 104(l).
    [83] de Dear R, Brager G, Cooper D. Developing an adaptive model of thermal comfort and preference - final report ASHRAE RP-884[R]. Sydney: Macquarie Research Ltd., 1997.
    [84] Humphreys M A, Nicol J F. Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies[M]. In: ASHRAE Trans. 2000, 106(2): 185-192.
    [85] Nicol, J. F. Adaptive thermal comfort standards in the hot-humid tropics[J].Energy and Building, 2004, 36:628-637.
    [86] C. Bouden , N. Ghrab An adaptive thermal comfort model for the Tunisian context:a field study results[J] Energy and Buildings , 2005,37:952–963.
    [87] Griffiths I. Thermal comfort studies in buildings with passive solar features[S]. UK: Commission of the European Community; 1990.
    [88] Henry Feriadi, Nyuk Hien Wong. Thermal comfort for naturally ventilated houses in Indonesia[J]. Energy and Buildings 2004,36:614–626.
    [89] Stuart Barlow, Dusan Fiala Occupant comfort in UK offices—How adaptive comfort theories might influence future low energy office refurbishment strategies[J]. Energy and Buildings 2007, 39:837–846.
    [90] Hugo S. L. C. Hens. Thermal comfort in office buildings: Two case studies commented [J] Building and Environment 2009,44:1399–1408.
    [91]姚润明,陈启高,李白战.通风降温建筑室内热环境模拟与热舒适研究[J].暖通空调, 1999, 27(6):5-9.
    [92]纪秀玲,王保国,刘淑艳,戴白视.浙江地区非空调环境热舒适研究[J].北京理工大学学报, 2004,24(12):1100-1103.
    [93]王昭俊,方修睦,廉乐明.哈尔滨市冬季居民热舒适现场研究[J].哈尔滨工业大学学报, 2002, 34(4):500-504.
    [94]田元媛,许为全.人机环境下人体热反映的实验研究[J].暖通空调, 2003,33(4):55-57.
    [95]杨柳.建筑气候分析与设计策略研究[D].西安:西安建筑科技大学,2003.
    [96]张培红.沈阳市商场冬季热舒适的实测调查研究[J].沈阳建筑工程学院学报, 2004, 20(3):220-223.
    [97]李百战,刘晶,姚润明.重庆地区冬季教室热环境调查分析[J].暖通空调, 2007,37(5): 115-117.
    [98]茅艳.人体热舒适气候适应性研究[D].西安:西安建筑科技大学,2006.
    [99]叶晓江,连之伟,文远高.上海地区适应性热舒适研究[J].建筑热能通风空调, 2007,26(5): 86-88.
    [100]刘晶.夏热冬冷地区自然通风建筑室内热环境与人体热舒适的研究[D],重庆:重庆大学, 2007.
    [101] Runming Yao, Jing Liu, Baizhan Li. Occupants’adaptive responses and perception of thermal environment in naturally conditioned university classrooms[J]. Applied Energy, 2010, 87: 1015-1022.
    [102] Bedford, T. (1936) The Warmth Factor in Comfort at Work, Medical Research Council Industrial Health Board, Report No 76, London, HMSO.
    [103] Humphreys, M. A. (1978)‘Outdoor temperatures and comfort indoors’, Building Research and Practice (J. CIB), vol 6, no 2, pp92-105.
    [104] Humphreys, M. A. (1981)‘The dependence of comfortable temperature upon indoor and outdoor climate’, in Cena, K. , Clark, J. A. (eds) Bioengineering, Thermal Physiology and Comfort, Elsevier, pp229-250.
    [105] McIntyre, D. A. (1980) Indoor Climate, London, Applied Science Publishers.
    [106] Humphreys, M. A. (1995)‘Thermal comfort temperatures and the habits of Hobbits’, in Nicol, F. , Humphreys, M. , Sykes, O. and Roaf, S. (eds) Standards for Thermal Comfort, London, Chapman & Hall pp3–13.
    [107] Humphreys, M. A. and Nicol, J. F. (1998)‘Understanding the adaptive approach to thermal comfort’, ASHRAE Transactions, vol 104, no 1, pp991–1004.
    [108] Schiller, G. , E. Arens, F. Bauman, C. Benton, M. Fountain, T. Doherty. 1988. A Field study of thermal environments and comfort in office buildings. ASHRAE Transactions 94(2): 280-308.
    [109] de Dear, R. J. , and M. E. Fountain. 1994c. Thermal comfort in air-conditioned office buildings in the tropics. Journal of the Australian Institute of Refrigerating, Air-Conditioningand Heating 48(9): 14-30.
    [110] Fountain, M. E., and C. Huizenga. 1996. WinComf¤: A Windows 3. 1 thermal sensation model—User’s manual. Berkeley, Calif. : Environmental Analytics.
    [111] McCartney KJ, Nicol JF. Developing an adaptive control algorithm for Europe: results of the SCATs project. Energy and Buildings 2002; 34(6): 623–35.
    [112] Wilson M, Solomon J, Wilkins P, Jacobs A, Nicol F. Final report of SCATs task 1, Instrumentation. Oxford Brookes University, http: //www. learn. londonmet. ac. uk/portfolio/ 1996-1998/scats/index. shtml; 2000. see also.
    [113] Nicol, J. F. and Sykes, O. D. (1998)‘Smart controls for thermal comfort, the SCATs Project’, Proceedings of the EPIC 98 Conference, Lyon, vol 3, pp844–849.
    [114] Humphreys, M. A. Nicol, J. F. and McCartney, K. J. (2002)‘An analysis of some subjective assessments of indoor air-quality in five European countries’, Indoor Air 2002, vol 5, pp86–91 (Proceedings of the 9th International Conference on Indoor Air Quality and Climate, Monterey, California July)
    [115] Humphreys MA, Nicol JF. Self-assessed productivity and the office environment in: monthly surveys in five European countries. ASHRAE Transactions; 2007.
    [116] Nicol F, McCartney K. Final report (Public) Smart Controls and Thermal Comfort (SCATs) (also subsidiary reports to project Tasks 1–7). Report to the European Commission of the Smart Controls and Thermal Comfort project (Contract JOE3-CT97-0066). Oxford Brookes University; 2001.
    [117]周郁秋.心理学基础.高等教育出版社,2004:37-50.
    [118] Phillip L. Rice著.压力与健康.中国轻工业出版社. 2000.5.
    [119]宋广舜,王邵汉等主编.环境医学.天津科学技术出版社.1987.1.
    [120]金英姿.动态热环境中人体热健康的探讨[J].黑龙江大学自然科学学报, 2003, 20(3): 89-92.
    [121]李百战,吴婧,郑洁.基于生理-心理学的热舒适和热健康探讨[J].制冷与空调, 2005,增刊. , 154-157.
    [122]叶晓江,连之伟.夜间空调舒适温度初探[J].制冷学报, 2000, (2): 36-40.
    [123] Auliciems A. Towards a psycho-physiological model of thermal perception [J]. International Journal of Biometeorology, 1981, 25(2): 109-122.
    [124]汪国雄,黄水平,赵进顺.预防医学[M].南京:东南大学出版社, 2005.
    [125]刘景良,杨立全,朱虹.安全人机工程[M].北京:化学工业出版社, 2009.
    [126]张国高主编.高温生理与卫生.上海:上海科学技术出版社出版.1989.
    [127]黑岛晨讯(日).朱世华,黄政武,方希和等译.环境生理学[M].北京:海洋出版社,1986.
    [128] Fanger P O, Toftum, J. Thermal Comfort in the future - Excellence and Expectation. //The International conference Moving Thermal Standards into the 21st Century, Windsor, 2001: 11-18.
    [129] Nigel A Oseland. A review of thermal comfort and its relevant to future design models and guidance. AIVC: 205-215.
    [130]姚润明.室内气候模拟及热舒适研究[D].重庆:重庆建筑大学, 1997.
    [131] Runming Yao, Baizhan Li, Jing Liu. A theoretical adaptive model of thermal comfort- Adaptive Predicted Mean Vote (aPMV)[J]. Building and Environment, 2009, 44: 2089–2096.
    [132]风笑天著.社会调查中的问卷设计. 2002年01月第一版.
    [133]郭星华等著.问卷调查技术及实例. 1997年01月第一版.
    [134]重庆气象网. 2009. http: //www. 121. cq. cn/service/cqweather. htm..
    [135]武汉市政府门户网. http: //www. wuhan. gov. cn.
    [136]成都市政府网站http://www.chengdu.gov.cn/cd_know/detail.jsp?id=273938.
    [137]福州市政府门户网. http: //www. fuzhou. gov. cn.
    [138]广州市政府门户网http: //www. gz. gov. cn.
    [139]沈阳市政府门户网. http: //www. shenyang. gov. cn.
    [140]哈尔滨市政府门户网. http: //www. harbin. gov. cn.
    [141]西安市政府门户网站. http: //www. xa. gov. cn.
    [142]云南省体育局门户网站. http: //www. ynsport. cn/ynsport/7th_cdpgame_web/ 5-jsxx/fwzn/ fwzn-1/index-ynqh. htm.
    [143]国家气象信息中心数据库http://cdc.cma.gov.cn.
    [144] Nicol F, Humphreys M, Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251, Building and Environment (2009), doi:10.1016/j.buildenv.2008.12.013.
    [145] FANGER P O, MELIKOV A K, HANZAWA H, et al. Air turbulence and sensation of draught [J]. Energy and Buildings, 1988, 12: 21--39·
    [146] Rohles F, Konz S, Jones B. Ceiling fans as extenders of the summer comfort envelope[J]. ASHRAE Transactions, 1983, 89(1): 245-263.
    [147] Arens E, Xu T, Miura K, et al. A study of occupant cooling by personally controlled air movement[J]. Energy and Buildings, 1998, 27:45-59.
    [148] TANABE S, KIMURAK. Effects of air temperature, humidity and air movement on thermal comfort under hot and humid conditions[J]. ASHRAE Transaction, 1994, 100(2): 953—969.
    [149] Fanger P O, Toftum J. Prediction of thermal sensation in non-air-conditioned buildings in warm climates[C]∥The 9th International Conference on Indoor Air Quality and Climate. Monterey, California, USA, 2002: 92-97.
    [150] Fanger P O, Toftum J. Extension of the PMV model to non-air-conditioned buildings in warm climates[J]. Energy and Buildings, 2002, 34(6): 533-536.
    [151]邹声华,张登春,李孔清.自然通风改善半封闭热源厂房热环境的研究.矿冶工程. 2005年04月第25卷第2期: 81~84.
    [152]陈慧梅,张宇峰,王进勇,孟庆林.我国湿热地区自然通风建筑夏季热舒适研究——以广州为例.暖通空调HV&AC. 2010年第40卷第2期: 96~101.
    [153]夏一哉,牛建磊,赵荣义.空气流动对热舒适影响的实验研究:总结与分析[J].暖通空调, 2000, 30(3): 41—45.
    [154]夏一哉,牛建磊,赵荣义.等温热环境中紊动气流对人体热感觉的影响[J].清华大学学报(自然科学版), 2000, 40(10): 100—103.
    [155]夏一哉,赵荣义.等温条件下气流运动的选择频率[J].清华大学学报(自然科学版), 2001, 41(6): 92—94.
    [156]罗明智.室内空气流速对人体生理指标及热舒适性影响的研究[D].重庆:重庆大学, 2005
    [157]徐小林.重庆夏季室内热环境对人体生理指标及热舒适的影响研究[D].重庆:重庆大学, 2005
    [158]嵇赟喆,高屹,王晓杰等.空气流速对人体热舒适的影响研究[J].兰州大学学报(自然科学版), 2003, 39(2): 95—99.
    [159]周俊彦,魏润柏.环境风速和温度的热舒适组合模型[J].同济大学学报, 1998, 26(6): 701—705.
    [160] Yang C, Li W, Wu X, et al. The investigation of thermal comfort under non-air-conditioning environment[C]. The 10th International Conference on Indoor Air Quality and Climate. Beijing, China, 2005: 952-956.
    [161] Mui K W H, Chan W T D. Adaptive comfort temperature model of air-conditioned buildings in Hong Kong[J]. Building and Environment, 2003, 38 (6): 837~852.
    [162] Yang Wei and Zhang Guoqiang. Thermal comfort investigation of buildings on a campus in Hunan. HV&AC.
    [163] Zhenxing Jin, Yong Wu, Baizhan Li, YafengGao. Energy efficiency supervision strategy selection of Chinese large-scale public buildings. Energy Policy. 37 (2009): 2066–2072 (SCI、SSCI收录).
    [164] Nicol JF, Humphreys MA. Maximum temperatures in European office buildings to avoidheat discomfort. Solar Energy 2007; 81(3): 295–304.
    [165] M A Humphreys, H B Rijal, J F Nicol.Examining and developing the adaptive relation between climate and thermal comfort indoors. Proceedings of Conference: Adapting to Change: New Thinking on Comfort Cumberland Lodge, Windsor, UK, 9-11 April 2010. London: Network for Comfort and Energy Use in Buildings, http://nceub.org.uk.
    [166]于永中,李天麟,刘尊永.采暖卫生标准的研究(I)7oC-25oC环境中立静状态时手指皮肤温度和手指血流图的改变.卫生研究,1984年第13类第1期:45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700