海带多糖的分离纯化、结构鉴定及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海带是一种分布较广、营养价值较高的食用藻类。海带多糖有很好的生物活性,对人类健康很有益处。文献中对海带多糖的研究大多集中在硫酸化的岩藻聚糖上,对海带多糖的系统分级,特别是对褐藻胶的分离提取、结构鉴定和活性研究报道较少。为了探讨海带多糖活性和机理,更好地应用海带及其多糖,本文对海带多糖的分离、纯化,及各级分的结构特征与生物活性进行了系统的研究。
     海带经过水提、醇沉后得到两种多糖,20%醇沉得到的沉淀LFA和60%醇沉得到的沉淀LFF。LFA再经过酸分级得到两种多糖,分别是PH为2.85时的沉淀LFAG和上清LFAM,LFAG和LFAM分别经Sepharose CL-6B凝胶过滤层析制备得到多糖LFAGS和LFAMS;LFF通过DEAE-Cellulose离子交换层析和Sepharose CL-6B凝胶过滤层析制备后得到多糖LFF-1S。本论文对这三种纯化后的多糖分别进行了理化性质的研究和结构分析,其结果如下:
     LFAGS为白色粉末,微溶于水,分子量约为42 KDa,由GulA、ManA和GalA三种单糖组成,以1, 4-β-GulAp-1, 4-β-ManAp为主链,每四个ManA连有一个GulA,无分支,主链中有微量的β-1, 4-GalAp。LFAMS为白色粉末,难溶于水,分子量约为12 KDa,由GulA、ManA和GalA三种单糖组成,以1, 4-β-GulAp-1,4 -β-ManAp的重复单位为主链,ManAp的3位有分支,连有β-1, 4-GulAp糖残基或寡糖残基,支链末端为ManA。LFF-1S为白色粉末,易溶于水,单糖组成为GulA、ManA、Man、GluA、Gal和Fuc,分子量约为14 KDa。
     实验结果表明海带多糖LFAGS、LFAMS和LFF-1S对淋巴细胞有明显的调节作用。无ConA和LPS诱导时,LFAMS和LFF-1S可显著地增强小鼠脾混合淋巴细胞的增殖;在ConA和LPS诱导下,三种多糖级分可以显著的刺激ConA和LPS诱导T淋巴细胞和B淋巴细胞增殖,表明三种级分多糖对ConA和LPS诱导的T细胞和B细胞有明显激活作用。当浓度大于100μg/ml时,三种多糖均能极显著地(p < 0.01)增强巨噬细胞的吞噬能力;此外,三种多糖也能增强巨噬细胞产生NO的能力,并且呈现出一定的浓度依赖性;海带多糖LFAGS具有抑制结肠癌细胞生长的作用,而LFAMS和LFF-1S对结肠癌细胞的生长没有明显影响。细胞迁移实验结果表明这三种多糖对L929细胞的迁移没有影响。
Laminaria japonica is a very widespread edible algae. Laminarin has good bioactivities which are beneficial to people’s health. Most studies concerning the L. japonica focus on the sulfated fucosan, the systematic fractionation of L. japonica and in particular, its algin separation, structure identification, and examination of the activity are neglected. This thesis studied on the algin separation, structure identification, and examination of the activity of L. japonica.
     The polysaccharide fractions from L. japonica were isolated and purified. First, three polysaccharides, LFAG, LFAM and LFF, were obtained by fractionation with ethanol precipitation and dilute acid. LFAG and LFAM were further purified by Sepharose CL-6B to produce LFAGS and LFAMS, respectively. LFF was first separated with DEAE-Cellulose, then it was fractionated on a Sepharose CL-6B column to give LFF-1S. The physical and chemical properties of these three L. japonica polysaccharides were analyzed, and the major structural features of them were elucidated using 13C-nuclear magnetic resonance spectrometer (13C-NMR). The results are as follows:
     LFAGS is white powder and its solubility in water is very low. Sugar composition analysis by high performance liquid chromatography (HPLC) indicated that LFAGS consists of GulA, ManA and GalA. The 13C-NMR results showed that the backbone of LFAGS was in the linkage form of 1, 4-β-GulAp-1, 4-β-ManAp, it is composed of four ManA attaching one GulA units in the order of a heteropolymeric sequences, and LFAGS has no side chain, the molecular weight is 42 KDa. LFAMS is also a kind of white powder which is difficult to dissolve in water. The sugar composition of LFAMS is GulA, ManA and GalA, too. While the backbone of LFAMS is composed of repeated units 1, 4-β-GulAp-1, 4-β-ManAp, there isβ-1, 4 -GulAp attached to other sugar residues side-chain in the C-3 position of ManAp, moreover, sugar composition of the end of the side chain is ManA. The molecular weight of LFAGS is 12 KDa. LFF-1S is white powder and easily soluble in water, the molecular weight is 14 KDa, and its sugar composition is GulA, ManA, Man, GluA, Gal and Fuc.
     The results indicate that the L. japonica polysaccharides LFAGS, LFAMS and LFF-1S can regulate the activity of lymphocyte obviously. When there is no ConA and LPS induction, LFAMS and LFF-1S can enhance the proliferative response of mouse lymphocyte markedly; all of LFAGS, LFAMS and LFF-1S can enormously strengthen the lymphocyte proliferative ablility under ConA and LPS induction, this manifests that these three polysaccharides has obvious activating effect on T cell and B cell. The effect of these three compounds reinforcing the phagocytosis of macrophage was obviously significant (p < 0.01) when concentrations were larger than 100μg/ml; the three polysaccharide can also enhance the ability for producing NO of macrophage, and the effect was concentration-dependent. In addition, the experimental results also indicated that LFAGS could inhibit the growth of colon carcinoma cell, while LFAMS and LFF-1S have little influence on colon carcinoma cell growth. The three compounds have no influence on migration of L929 cell.
引文
[1] Karlsson K A,杨彬.糖类生物学-药物设计的新领域[M].国外医学(药学分册). 1992. 219-221.
    [2]赛德艾合买提.浅谈多糖的研究进展[J].伊犁师范学院学报, 2006, 3: 76-79.
    [3]周世文,徐传福.多糖的免疫药理作用[J].中国生化药物杂志, 1994, 15(2): 143-147.
    [4]黄芳,义文.活性多糖的研究进展[J].天然产物开发与研究, 1996, 11(5): 90-98.
    [5] Roseman S. Reflections on Glycobiology[J]. Journal of Biological Chemistry, 2001, 276(45): 41527-41542.
    [6]来鲁华,杨昱婷.寡糖的构象分析[J].生物化学与生物物理进展, 1995, 22(4): 290-294.
    [7] Sims I M, Furnoaux R H. Structure of the exudate gum from Meryta sinclairii[J]. Carbohydrate Polymers, 2003, 52(4): 423-431.
    [8]张翼伸.有关糖复合物的分级纯化结构确定、生物活性的几个问题[J].生命的化学, 1994, 14(6): 42-44.
    [9]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社. 1999.
    [10]初敏,齐锡祥,朱飞,等.多糖研究概述[J].中药研究与信息, 2003, 5(4): 18-20.
    [11]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报, 2001, 25(2): 197-204.
    [12]吴东谲.糖类的生物化学[M].北京:高等教育出版社. 1987.
    [13]张龙翔,张庭芳,李令媛.生化试验方法和技术[M].北京:高等教育出版社. 1997.
    [14]马立四,王式箴. HPLC法测定低热量仪器中的GIc、Fru、Svc的研究[J].食品与发酵工业, 1999, 24(4): l2-l5.
    [15]孙群,牟世芬,陆德培.单糖和寡糖的离子色谱法分析研究[J].化学通报, 1991, 8: 39-41.
    [16] Haworth W N. A new method for preparing alkylated sugars[J]. Journal of Chemical Society, 1915, 107: 8-16.
    [17] Tao L P, Matheson N K. The role of the structure on the molecular size and conformation of (1–4) and (1–6) linked polysaccharides. Carbohydrate Polymers, 1993, 20: 269-277.
    [18] Stewart T S, Ballou C E. Preparation of a mannopentaose, mannohexaose, and mannoheptaose from Saccharomyces cerevisiae mannan. Biochemistry, 1968, 7(5):1843-1854.
    [19] Hakomori S. A rapid permethylation of glycolipid and polysaccharide as catalyzed by methylsulfmylcarbanion in dimethyl sulfoxide. Journal of Biochemistry (Tokyo), 1964, 55: 205-208.
    [20] Sweet D P, Albersheim P, Shapiro R H. Partially ethylated alditol acetates as derivatives for elucidation of the glycosyl linkage-composition of polysaccharides. Carbohydrate Research, 1975, 40(2): 199-216.
    [21]郑小迅.利用高效液相色谱建立寡糖链结构分析方法[D]:[硕士学位论文].复旦大学, 2004.
    [22] Yamamoto K. Microbial endoglycosidases for analysis of oligosaccharide chains in glycoproteins [J]. Biochemistry, 1994, 116: 229-235.
    [23] Dwek P A, Edge C J, Harrey D J. Analysis of glycoprotein associated oligosaccharides[J]. Biochemistry, 1993, 62: 65-100.
    [24]张剑波,田庚元.寡糖分离和结构分析进展[J].生物化学与生物物理进展, 1998, 25(2): 114-118.
    [25]陈代杰,金飞燕.生物高分子[M].化学工业出版社. 2004.
    [26] Hakomori S. A rapid permethylation of glycolipid and polysaccharide catalyzed by methyisufinyl carbanion in dimethyl suifoxide[J]. Biochemistry, 1964, 55(2): 205-208.
    [27]方一苇.糖结构与质谱分析[J].质谱学报, 16(1): 1-8.
    [28]胡亚男,王义明,等.质谱在糖分析中的应用[J].药学学报, 2000, 35 (5): 397-400.
    [29]韩丽君,袁兆慧,范晓,等.寡糖的分离和结构分析方法[J].海洋科学集刊, 2004, 6(46): 126-133.
    [30] Bradrury J H, Jenkins G A. Determination of the structure of trisaccharides by 13C-NMR spectroscopy[J]. Carbohydrate Research, 1994, 22(3): 25-29.
    [31] Iida-Tanaka N, Ishizuka I. Complete 1H and 13C NMR assignment of monosulfated galactosyl ceramides with four tapes of ceramides from human kidney[J]. Carbohydrate Research. 2000, 324(3): 18-222.
    [32] Armstrong G S, Mandelshtam V A, Shaka A J, et al. Rapid high-resolution four-dimensional NMR spectroscopy using the filter diagonaliza-tion method and its advantages for detailed structural elucidation of oligosaccharides[J]. Journal of Magnetic Resonance. 2005, 173: 160–168.
    [33]王克夷.糖类研究的若干进展[J].生物化学与生物物理学进展, 1991, 18(6): 405-408.
    [34]李尔春.天然植物多糖的结构及活性研究进展[J].食品工程, 2007(1): 44-46.
    [35]来鲁华,杨昱婷.寡糖的构象分析[J].生物化学与生物物理进展, 1995, 22(4): 290-294.
    [36]高娃,强欣,孔样辉,等.高压液相色谱法分析常见单糖、双糖[J].生物技术, 1998, 8(2): 44-46.
    [37]胡亚男,王义明,罗国安.质谱在糖分析中的应用[J].药学学报, 2000, 35(5): 397-400.
    [38] Reinhold V N, Reinhold B B, Costello C E. Carbohydrate molecular weigh profiling, sequence, linkage, and branching data: ES-MS and CID[J]. Analytical Chemistry, 1995, 67(1): 1772-1784.
    [39] Mock K K, Davey M, Cottrell J S. The Analysis if undefivafized oligosaechrides by matrix—assistied laserdesorption mass spectrometry[J]. Biochemical and Biophysical Research Communication, 1991, 177 (2): 644-651.
    [40] Borchers A T, Stern J S, Hackman R M, et a1. Mushrooms tumors,and immunity[J]. Proceedings of the Society for Experimental Biology and Medicine, 1999, 221(4): 281-293.
    [41] Wasser S P, Weis A L. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective [J]. Critical Reviews in Immunology, 1999, 19(1): 65-96.
    [42]薛明,孟宪松.生物活性多糖的免疫研究进展与展望[J].总兽医医学杂志, 1996, 3: 15-18.
    [43]王格林,林志彬.香菇多糖的免疫调节作用[J].药学学报, 1996, 31(2): 86-89.
    [44]周林珠,杨祥良,周井炎,等.多糖抗氧化作用研究进展[J].中国生化药物杂志, 2002, 23(4): 210-212.
    [45] Lee J M, Kwon H, Jeong H, et al. Inhibition of lipid poroxidation and oxidative DNA damage by Ganederma lucidum[J]. Phytotherapy Research, 2001, 15(3): 245-249.
    [46]许燕萍,笪远峰,杨伟珠,等.凤尾侧耳多糖的分离纯化及抗氧化作用[J].中国生化药物杂志, 1997, l8(2): 59-62.
    [47] Volpi N, Tarugi P. Influence of chondroitin sulfate charge density, sulfate group position, and molecular mass on Cu2+-mediated oxidation of human low-density lipoproteins: effect of normal human plasma-derived chondroitin sulfate[J]. Journal of Biochemistry, 1999, 125(2): 297-304.
    [48]周学君,俞发.毛木耳多糖的抗氧化作用[J].中国医药学杂志, 2000, 20(10): 610-611.
    [49] Qiu F, Ma Z Z, Pei Y P. A new dammarane glycoside, ginsenoside III from the flower-buds of Panax ginseng C. A. Meyer[J]. Chinese Chemical Letters, 1998, 9(7): 643-645.
    [50]黄庆纾.灰树花多糖及其抗癌作用[J].中国食用菌, 1993, 13(1): 41-43.
    [51]左绍远,栾玉泉.多糖生物学活性研究进展[J].昆明医学院学报, 2004, 6(10): 90-93.
    [52]周国华,于国萍.黑木耳多糖降血脂作用的研究[J].现代食品科技, 21(1): 46-48.
    [53]汤龙海,徐济良,杨丽云,等.南瓜多糖降血脂抗动脉粥样硬化的实验研究[J].南通大学学报(医学版), 2006, 26(3): 184-185.
    [54]王长云,管华诗.多糖抗病毒作用研究进展I.多糖抗病毒作用[J].生物工程进展, 2000, 20(1): 17-20.
    [55]王长云,管华诗.多糖抗病毒作用研究进展II.硫酸多糖抗病毒作用[J].生物工程进展, 2000, 20(2): 3-8.
    [56]左绍远,栾玉泉.多糖生物学活性研究进展[J].昆明医学院学报, 2004, 6(10): 90-93.
    [57]王克夷.以糖类为基础的药物:概况和发展趋向[J].药物生物技术, 2001, 8(6): .345-347.
    [58]陈建国,王茵,梅松,等.茶多糖降血糖、改善糖尿病症状作用的实验研究[J].营养学报, 2003, 25(3): 253-255.
    [59]吴建芬,冯磊,张春飞,等.茶多糖降血糖机制研究[J].浙江预防医学, 2003, 15( 9): 10-13.
    [60]刘树兴,唐孟忠,李红.仙人掌粗多糖降血糖作用研究[J].食品科学, 2007, 28(8): 481-483.
    [61]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发, 1999, 2: 90-98.
    [62]金城.糖生物学:基因组学和蛋白质组学的延伸[J].科技前沿与学术评论, 2002, 23(2) : 31-35.
    [63] Zhang H L, Lia J, Li G, et al. Structural characterization and anti-fatigue activity of polysaccharides from the roots of Morinda officinalis[J]. International Journal of Biological Macromolecules, 2009, 44: 257-261.
    [64]杨晓杰,付学鹏,刘泽东.蒲公英多糖抗疲劳作用研究[J].时珍国医国药, 2008, 19(11): 2686-2687.
    [65]丁红秀,高荫榆,晁红娟,等.毛竹叶多糖抗疲劳作用研究[J].食品科学, 2008, 29(4): 389-391.
    [66]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发, 1999, 2: 90-98.
    [67]田庚元.天然多糖的研究和应用(上)[J].上海化工, 2000, 10: 29-31.
    [68]李蒙芷,何云庆.灵芝多糖抗衰老机理的探讨[J].老年学杂志, 1992, 12(3): 184-186.
    [69]涂雪松,胡友红,胡利霞.枸杞多糖抗衰老药理作用研究进展[J].实用医技杂志, 2007, 14(26): 3685-3686.
    [70]田庚元.天然多糖的研究和应用(下)[J].上海化工, 2000, 11: 23-35.
    [71]钱风云,傅德贤,欧阳藩.海带多糖功用研究进展(一)[J].精细与专用化学品, 2003, 7: 11-12.
    [72]钱风云,傅德贤,欧阳藩.海带多糖功用研究进展(二)[J].精细与专用化学品, 2003, 8: 13-15.
    [73]吉礼,车振明,夏云空.海带多糖的研究进展[J].农产食品科技, 2008, 2(2): 59-61.
    [74] Zvyagintseva T N, Shevchenko N M, et al. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions[J]. Journal of Experimental Marine Biology and Ecology, 2003, 294: 1-13.
    [75] Maria E R, Duarte, Cardoso M A. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum[J]. Carbohydrate Research, 2001, 333: 281-293.
    [76] Alexander O C, Dell A. A study of fucoidan from the brown seaweed Chorda filum[J]. Carbohydrate Research, 1999, 320: 108-119.
    [77]许凤清,吴皓.海带多糖的研究进展[J].中国中医药信息杂志, 2005, 12(6): 106-108.
    [78] Zvyagintseva T N, Shevchenko N M, et al. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions[J]. Journal of Experimental Marine Biology and Ecology, 2003, 294: 1-13.
    [79] Bilan M I. A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L[J]. Carbohydrate Research, 2004, 339: 511-517.
    [80]周裔彬,汪东风,杜先锋,等.酸化法提取海带多糖及其纯化的研究[J].南京农业大学学报, 2006, 29(3): 103-106.
    [81] Miller I J. Alginate compositon of some new Zealand bown seaweeds[J]. Phytochemistry, 1996, 41 (5): 1315-1317.
    [82]廖建民,张瑾,沈子龙.超声波法提取海带多糖的研究[J].药物生物技术, 2002, 9(3): 157-161
    [83]王谦,黄猛,赵兵.气升式反应器超声破碎海带提取硫酸酯多糖[J].过程工程学报, 2001, 1(1): 58-61.
    [84]王海仁,席振乐.酶法生产海带多糖[J].精细与专用化学品, 2002, 22: 15-17.
    [85]张慧玲,任秀莲等.酶法提取纯化海带多糖的工艺[J].食品研究与开发, 2007, 28: 101-104.
    [86] Nora M A, Ponce, Pujol C A. Fucoidans from the brown seaweed Adenocystis utricularis:extraction methods, antiviral activity and structural studies[J]. Carbohydrate Research, 2003, 338: 153-165.
    [87] Samee H, Li Z X. Anti-allergic effects of ethanol extracts from brown seaweeds[J]. Journal of Zhejiang University Science B, 2009, 10(2): 147-153.
    [88] Nardella A, Chaubet F. Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum[J]. Carbohydrate Research, 1996, 289: 201-208.
    [89] Zhao X, Xue C H, Li B F. Study of antioxidant activities of sulfated polysaccharides from Laminaria japonica[J]. Journal of Applied Phycology, 2008, 20: 431-436.
    [90] Xue C H, Fang Y, Lin H. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica[J]. Journal of Applied Phycology, 2001, 13: 67-70.
    [91]张英慧,曲爱琴.海带多糖FGS对小鼠巨噬细胞细胞毒活性的影响[J].免疫学杂志, 2002, 18(5): 403-405.
    [92]王庭欣,王庭祥,庞佳宏.海带多糖降血糖、血脂作用的研究[J].营养学报, 2007, 1(29): 99-100.
    [93]张惟杰.糖复合物生化研究技术[M].第二版.浙江:浙江大学出版社. 1999.
    [94]李润秋,张翼伸.人参果胶的纯化与鉴定[J].药学学报, 1984, 19(10): 764-768.
    [95]盛家荣,曾令辉,翟春,等.多糖的提取、分离及结构分析[J].广西师院学报(自然科学版), 1999, 16(4): 49-54.
    [96]马盛群.糖生物学与糖蛋白研究进展[J].南京农专学报, 2001, 17(1): 4-7.
    [97] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars andrelated substances[J]. Analytical Chemistry, 1956, 28: 350-356.
    [98] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry, 1973, 54: 484-489.
    [99] Maria I Bilan, Ekaterina V Vinogradova, Alexander S Shashkov, et al. Isolation and preliminary characterization of a highly pyruvylated galactan sulfate from Codium yezoense (Bryopsidales, Chlorophyta)[J]. Botanica Marina, 2006, 49(3): 259-262.
    [100] Filisetti-Cozzi T M C C, Carpita N C. Measurement of uronic acids without interference from neutral sugars[J]. Analytical Biochemistry, 1991, 197: 157-162.
    [101] Sedmark J J, Grossberg S E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250[J]. Analytical Biochemistry, 1979, 79: 544-552.
    [102] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(2): 248-254.
    [103] Yang C, He N, Ling X, et al. The isolation and characterization of polysaccharides from longan pulp[J]. Separation and Purification Technology, 2008, 63(1): 226-230.
    [104] Chambers R E, Clamp J R. An Assessment of Methanolysis and Other Factors Used in the Analysis of Carbohydrate-Containing Materials[J].The biochemical journalm 1971, 125: 1009-1018.
    [105] Strydom D J. Chromatographic separation of 1-phenyl-3-methyl-Spyrazolone-derivatized neutral, acidic and basic aldoses[J]. Journal of Chromatography A, 1994, 678: 17-23.
    [106] Fu Y D, O’neill R A. Monosaccharide Composition Analysis of Oligosaccharides and Glycoproteins by High-Performance Liquid Chromatography[J]. Analytical Biochemistry, 1995, 227: 377-384.
    [107] ShengS Q, Cherniak R. Structure of the capsular polysaccharide of lostridium Perfringens Hobbs 10 determined by NMR spectroscopy[J].CarbohydrateResearch, 1998, 305: 65-72.
    [108] Lee J, Hollinsworth R I. Oligosaccharide-glucans with unusual linkages fromSarcina ventriculi[J]. Carbohydrate Research, 1997, 304: 133-141.
    [109] Funane K, Ishii T, Matsushita M, et al. Water-soluble and water-insoluble glucans produced by Escherichia coli recombinant dextransucrases from Leucomostoc mesetteroides NRRL B-512F[J]. Carbohydrate Research, 2001, 334: 19-25.
    [110] Zhang Z Q. Preparation and structure elucidation of alginate oligosaccharidesdegraded by alginate lyase from Vibro sp[J]. Carbohydrate Research, 2004, 339:1475-1481.
    [111] Fan Y Y, Cheng H R, Li S S, et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides[J]. Carbohydrate Polymers, 2010, doi: 10.1016/j.carbpol.2010.02.028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700