从锑酸钠制备硫代锑酸锑的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国对锑深加工产品硫代锑酸锑的需求,研究了用锑酸钠合成硫代锑酸锑的新工艺。新工艺采用硫化钠浸取锑酸钠制取硫代锑酸钠(五价锑),用含盐酸的氯化钠饱和溶液浸取锑白,制取三氯化锑(三价锑)之后,在HCl+NaCl+H2O的反应体系中合成硫代锑酸锑。该工艺有效解决了传统工艺存在的三价锑水解、硫对产品的污染以及反应后液对环境的污染等问题,同时具有较好的经济效益。
     研究了硫化钠浸取锑酸钠制取硫代锑酸钠的实验条件,确定了温度、硫化钠用量、浸出时间等条件对锑酸钠浸出率的影响。硫化钠用量为理论量的1.08倍时,锑的浸出率达到最高,当硫化钠用量超过理论量的1.08倍后,锑浸出率略有下降;锑的浸出率随温度升高和浸出时间的延长,锑的浸出率也随之增加;浸出滤液采取缓慢冷却,温度冷却至18-20℃,硫代锑酸钠即大部分结晶析出。得到了最佳实验条件:温度95℃、浸出时间3h、搅拌速度300r/min、硫化钠与锑的质量比为2.8时,锑的浸出率为97.42%,所得浸出液经过滤、缓冷结晶可得硫代锑酸钠产品,该产品既可做进一步生产硫代锑酸锑的原料,又可以作为产品销售。同时,研究了pH、NaCl浓度对三氯化锑水解的影响。结果表明,加入的总锑离子浓度一定时,随着pH的增大,达到平衡时溶液中的锑离子浓度都是急剧减小;随着总氯离子浓度的增加,溶液中的锑离子浓度显著增加,并且三氯化锑水解产物由易到难顺序依次为Sb4O5Cl2、SbOCl、Sb2O3、Sb(OH)3。在加入的总氯离子浓度为6mol/L时,其与锑离子的配合导致平衡时溶液中所含锑离子浓度也显著增加;在总锑离子浓度一定时,随着pH的增加,平衡时溶液中所含锑离子浓度减少。
     探索了合成硫代锑酸锑的反应体系,以及pH值、氯化钠浓度、温度、反应时间、洗涤等条件对合成硫代锑酸锑的影响。为避免三价锑水解,设计了HCl+NaCl+H2O的反应体系,体系中,NaCl饱和,将Sb(Ⅴ)和Sb(Ⅲ)以1:1的摩尔比缓慢滴加到反应体系中,过程不断搅拌,反应过程中以HCl和NaOH调整体系环境,维持pH值在2左右,并控制反应在室温下进行,将合成产物过滤后,用pH值为2的去离子水洗涤,在75℃左右烘干24h,得到了含锑总量为65.1%,含硫总量为34.2%的化学产品。
     半工业试验表明,产品的直收率为98.2%,其中锑的质量分数为64.1%,S的质量分数为33.8%,接近于理论含锑、硫总量65.55%、34.45%,达到了较好的产品质量。研磨后经差热、XRD谱图分析确定此红棕色产品为不是Sb2S3或Sb2S5和S的混合物,而是硫代锑酸锑。
To meet the demand of China for the antimony thioantimonate, the intensive processing product of antimony, new technique of antimony thioantimonate prepared from sodium pyroantimonate is researched. The processing technique is as follows: sodium sulfantimonate (pentavalent stibium) is prepared by sodium pyroantimonate leached in sodium sulfide solution, antimony trioxide is leached with sodium chloride saturated solution and hydrochloric acid, after the antimony trichloride (tervalence stibium) and sodium sulfantimonate are prepared, they are added to the reaction system of HCl+NaCl to synthesize into antimony thioantimonate. The technique can solve the traditional technique problem of tervalence stibium hydrolysis, products pollution from sulphur and environment pollution from after-reaction liquid. Meanwhile, good economic benefits can be achieved.
     The experimental process, in which sodium sulfantimonate is prepared by sodium pyroantimonate leached in sodium sulfide solution, is studied. The effect of temperature, concentration of sodium sulfide and leaching time on leaching rate of sodium antimonite is made. When the dosage of sodium sulfide is higher than 1.08 times of the theory dosage, the leaching rate of sodium pyroantimonate begins to decrease from the highest value; with the higher temperature and the longer time, the leaching of sodium pyroantimonate increases;and then the leaching solution is cooled slowly, when the temperature is about 18-20℃,the sodium sulfantimonate can be filted.The experimental results show that the leaching rate can reach 97.42% when the optimum is adopted which the weight ratio of sodium antimonate and antimony is 2.8, and the sodium antimonate is leached at 95℃for 3 hours. After filtration,the crystals of sodium sulfantimonate are produced. The crystals can be used as the raw materials of antimony thioantimonate as well as the products to sell, which can bring good economic benefits.
     Meanwhile, the influences of pH and concentration of NaCl on hydrolysis of antimony trichloride are studied. The result shows that when the same concentration of antimony ions are kept in different conditions, the concentration of antimony ion in the solution decreases rapidly with the increase of pH value; antimony ion concentration in solution increases with the increase of total antimony ion, the hydrolysates production of antimony trichloride are Sb4O5Cl2、SbOCl、Sb2O3 and Sb(OH)3 by order. When the total chlorine ion concentration is up to 6mol/L, the coordination of antimony ion leads to increase of the antimony ion in the balance solution; when the total antimony ion concentration is added in the same higher dosage, the antimony ion concentration in balance solution decreases with the increase of pH value.
     The influences of the reaction system of HCl+NaCl, pH value, concentration of sodium chloride, temperature, time and washing on the antimony thioantimonate synthesizing are researched. In order to avoid hydrolysis of tervalence stibium, the reaction of HCl+NaCl+H2O is designed. In the reaction system, NaCl is saturated.Then SbⅤ+ and SbⅢ+, whose mol ratio is 1:1, are dripped into the reaction system and continuously mixed. In the reaction process, HCl and NaOH are used to keep pH value at 2 and the room temperature in the reaction system. The filtrated products are washed with de-ionized water, whose pH value is 2, dried at 75℃for 24 hours. The chemical analyse shows that, the antimony content is 65.1% and the sulpur content is 34.2%.
     In the half industrial experiment, the direct recovery rate is 98.2%, antimony content is 64.1% and sulphur content is 33.8%, which are close to theoretical content of antimony(65.55%) and sulphur content(34.45%). The brick-red product is analyzed by XRD spectrogram which shows that the product is not compound of Sb2S3、Sb2S5 and S but antimony thioantimonate.
引文
[1]王淑玲.中国锑资源现状及可持续发展问题探讨[J].有色金属,2001,(18):16-18
    [2]杨军臣,许启新.大幅控制锑产量是振兴我国锑产品的唯一出路[J].中国矿山地质与西部矿山资源开发研讨会论文集,2001,(10):55-61
    [3]胡林轩.我国锑产品深度加工发展战略研究[J].有色金属(冶炼部分),1999,(4):45-50
    [4]段绍甫,宣宁等.锑工业的可持续发展[J].有色金属工业,2005,(7):9-13
    [5]中国有色金属产品品种质量调查与研究编委会编.中国有色金属产品品种质量调查与研究[M].北京:科学出版社,1995,150-160
    [6]刘述平.我国锑深加工产品[J].矿产综合利用,2003,(1):29-33
    [7]唐玉彪,赵锦琪,罗靖.提高锑资源综合利用水平,实现锑工业可持续发展[J].大众科技,2008,(8):96-97
    [8]戴永俊.我国锑冶炼生产可持续发展战略研究[J].中国重有色金属工业发战略研讨会暨重冶学会第四届学术年会论文集,2003,125-138
    [9]王德润,周子离.锑工业发展战略[J].中国有色金属学会第三届学术会议论文集:1997,(10):333-338
    [10]卢铁贵.中国锑吕业现状及发展对策[J].无机盐工业,1996,(5):16-19
    [11]杜新玲,汤长青.高纯锑白生产工艺述评[J].辽宁化工,2007,(12):853-856
    [12]赵晓军,张旭.高砷氯氧锑碱浸脱砷试验研究[J].云南冶金,2005.12(6):37-39
    [13]Qiu Keqiang,Zhang Rongliang. Research on preparation of nanometer antimony trioxide from slag containing antimony by vacuum evaporation method[J].Vacuum,2006,(80):1016-1020
    [14]Zeng D W, Xie C S, Zhu B L, etal. Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method[J]. Mater Lett.2004, 58(3-4):312-315
    [15]吴少华,谭显铂,戴永俊.顶吹法生产锑白新工艺的研究与应用[J].中国有色冶金,2006,8(4):23-25
    [16]赵天从.锑[M].北京:冶金工业出版社,1987:552-573
    [17]Abdul Halim Abdullah, Nor Hayati Mohd Noor, Irmawati Ramli. Effect of precipitation route on the properties of antimony trioxide[J]. Materials Chemistry and Physics,2008(111):201-204
    [18]邓志城,崔英德,朱柒金.湿法立方晶锑白的制备方法及主要应用[J].广州化工,2000,(4):154-156
    [19]李文杰,徐本富.论酸法锑白工艺[J].广东工学院学报,1993,6(2):51-58
    [20]许素敏,刘秀庆.硫化锑矿直接制取锑白的研究[J].甘肃冶金,2003,25(1):24-26
    [21]佟永顺,张素芬.粗锑氧提纯[J].有色矿冶,1993(3):45-47
    [22]雷新有,刘新文,左国防,杜树荣.湿法锑白生产中还原液水解工艺控制[J].应用化工,2001.2(1):42-43
    [23]李景国,姜胤.从含锑工业废渣中制取锑白工艺过程的研究[J].辽宁化工,1996(3):39-41
    [24]柳松.高铅粗锑氧制取锑白的研究[J].无机盐工业,2007,1(1):19-20
    [25]冉春玲,何占航,王振民,徐琰.从中低品位辉锑矿制取锑白的湿法工艺[J].河南化工,1995,(8):4-6
    [26]李景国,姜胤.从含锑工业废渣中制取锑白工艺过程的研究[J].辽宁化工,1996,(3):39-41
    [27]聂晓军,朱柒金,陈庆邦.从复杂含砷锑银矿制取立方晶型锑白[J].矿产综合利用,2000,2(1):5-9
    [28]吕志平,吴岚,李福祥,薛建伟.立方晶体三氧化二锑的制备[J].太原理工大学学报,2001,32(5):510-512
    [29]段学臣,黄蔚庄,赵天从.高纯超细锑白的研制[J].矿冶工程,1998,6(2):61-63
    [30]叶有明.低铅砷含量超细锑白产品的研制[J].中国有色冶金,2004,10(5):16-18
    [3l]杜新玲.焦锑酸钠生产工艺研究[J].湖南有色金属,2008,(5):24-26
    [32]黄华林.辉锑矿碱性湿法制备焦锑酸钠的研究[J].广东化工,1999,(2):109-110
    [33]杨天足,唐建军等.焦锑酸钠生产工艺及研究进展[J].无机盐工业,1991,(1):20-22
    [34]杨天足,刘伟锋等.空气氧化法生产焦锑酸钠过程氧化后液中硫的形态分析[J].湖南有色金属,2004,(4):41-43
    [35]舒万良.有色金属精细化工产品生产与应用[M].长沙:中南工业大学出版社,1995:12-13
    [36]谈应顺.一步法生产粗颗粒锑酸钠[J].湖南有色金属,1995,(5):34-38
    [37]李蓉晖.硫化锑精矿直接制取焦锑酸钠初探.锡矿山科技,1994,(1):17-20
    [38]张之洁,华东发等.辉锑矿湿法生产焦锑酸钠的工艺研究[J].无机盐工业,1998,(1):5-6
    [39]陈荣安.从辉锑矿中湿法制取焦锑酸钠的研究[J].无机盐工业,1992,(4):15-17
    [40]曾振欧,赵瑞荣等.氧化回流法制备锑酸钠研究[J].无机盐工业,1991,(1):11-13
    [41]杜燕军,申小清等.氧化回流法制备锑酸钠工艺研究[J].河南师范大学学报(自然科学版),2000,(1):47-49
    [42]秦毅红,王云燕等.低Sb(Ⅲ)含量焦锑酸钠的制备研究[J].矿冶工程,1999,(3):50-52
    [43]王志明,刘伟锋等.空气氧化法生产焦锑酸钠的设备改进[J].湖南有色冶金,2005,(3):14-17
    [44]王志明,杨天足,王卫东等.从锑精矿制备焦锑酸钠的工业实验[J].湖南冶金,2005,(5):17-20
    [45]苏秀芳.空气氧化法氧化硫代亚锑酸钠制取焦锑酸钠[J].南宁师专学报,1995,(1):56-58
    [46]冯新中.钾盐法焦锑酸钠生产工艺[J]..贵州化工,2000,(1):22-23
    [47]梁永棠,钟宁远.氯化法生产焦锑酸钠工艺[J].无机盐工业,1991,(1):14-18
    [48]杜新玲,杨天足,张杜超.锑酸钠合成硫代锑酸钠的工艺研究[J].无机盐工业,2008,40(1):35-36
    [49]王文.碱性溶液中硫代锑酸钠的测定[J].河南化工,2001,(4):34-35
    [50]周听.含锑双金属配合物及新型润滑剂的研究[D],重庆:重庆后勤工程学院,1995:
    [51]黄春林.李德昌.罗桂林等.硫代锑酸锑的合成研究[J].现代化工,1999,19(7):19-23
    [52]Soulen John Richard. Complex antimony sulfides as lubricant additives[P].US:3965016,1976-06-22:
    [53]James.P.King. Lubricant additive mixtures of antimony thioantimonate and antimony trioxide[P].US:4741845,1988-05-03:
    [54]King James Ping; Lindahl Charles B.Antimony Thioantimonate and Intermediate Preparation for Lubricant Additive[p].WIPO:1986/006363,1986-04-22:
    [55]Donaho, Jr Ruel M.Low-Wear Grease for Journal Bearings[P].US: 3935114,1976-01-27:
    [56]King James P. Lubrication blends[P]..US:4965001,1990-10-23:
    [57]唐中坤.周昕.硫代锑酸锑的合成与应用[J].合成润滑材料,2000,(4):14-18
    [58]Hanks William V; Lindahl Charles B; Meshri Dayaldas T J; King James P. Antimony thioantimonate lubricant additive and preparation.US:4735790,1988-04-05:
    [59]张广仁,唐中坤等.新型极压抗磨剂SbSbS4的合成与性质研究.中国石油学会炼制分会第二届年会论文集,1994:4
    [60]吴诚.机械工程测试手册(化学卷)[M].辽宁科学技术出版社,1996:256
    [6l]符斌.有色冶金分析手册[M].北京,冶金工业出版社,2004:427
    [62]Yong-lai Feng,Hisatake Narasaki,Hong-Yuan Chen.Speciation of antimony(Ⅲ) and antimony(Ⅴ) using hydride inductively coupled plasma atomic emission spectrometry combined with the rate of pre-reduction of antimony[J].Analytica ChimicaActa,1999,386(3):297-304
    [63]Petit de Pena Y,Vielma O,Burguera JL.On-line determination of antimony(Ⅲ) and antimony(V) in liver tissue and whole blood by flow injection-hydride generation-atomic absorption spectrometry[J].Talanta,2001,55(4):743-754
    [64]Sun Han-wen,Qiao Feng-xia,Suo ran.Simultaneous determination of trace arsenic (Ⅲ), antimony(Ⅲ),total arsenic and antimony in Chinese medicinal herbs by hydride generation-double channel atomic fluorescence [J].Analytica Chimica Acta,2004,505(2):255-261
    [65]Garbos Slawomir,Bulska Ewa,Hulanicki Asam.Determination of total antimony and antimony(Ⅴ) by inductively coupled plasma mass spectrometry after selective separation of antimony(Ⅲ) by solvent extraction with N-beneoyl-N-phenylhydroxylamine[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2000,55(7):793-800
    [66]唐谟堂,赵天从.三氯化锑水解体系的热力学研究[J].中南矿冶学院学报,1994,10(3):179-183
    [67]潘勇,郑国渠.含氟三氯化锑中和水解过程研究[J].有色金属,2005,57(3):47-49
    [68]郑国渠,黄荣斌,潘勇等.含氟三氯化锑溶液中和水解产物的物相[J].中国有色金属学报,2005,15(8):1278-1282
    [69]郑国渠,支波,陈进中.五氯化锑的水解过程[J].中国有色金属学报,2006,16(9):1628-1633
    [70]支波.高锑铅阳极泥制备五氯化锑及其水解过程的研究[D].浙江:浙江工 业大学,2006:
    [71]Zhang Chuanfu and Pengfu.Physic-Chemical Data Manual of Elements NO.VA[M].Changsha:Central South University of Technology Press,1993:52-54
    [72]Yao Yunbin,Xietao,Gao Yingmin.The Manual of physic2 chemical[M].Shanghai:Shanghai Science and Technology Press,1985:230
    [73]迪安(Dean,J.A.)主编,尚久方译.兰氏化学手册[M].北京:科学出版社,1991:515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700