基于酶联免疫技术检测急性早幼细粒细胞白血病mRNA的多通道生物传芯片的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性早幼粒细胞白血病是急性髓细胞白血病(AML)FAB分型中的M3亚型,大约占成人AML的10%~15%。95%以上的APL患者具有PML/RARα融合基因。PML/RARα融合基因是急性早幼粒细胞白血病特异的分子学标志,检测PML-RARα融合基因不仅能够协助急性早幼粒细胞白血病诊断,而且对该融合基因定量对微小残留病(MRD)检测也有重要意义。由于传统形态学及常规PCR技术不能对其定量,所以本文设计了一种新的方法检测急性早幼粒细胞白血病PML/RARα融合基因。将电化学DNA生物传感器技术和多通道生物传感芯片技术结合构建出多通道电化学传感芯片对急性早幼粒细胞白血病PML/RARα融合基因进行检测。电化学DNA生物传感器是近几年迅速发展起来的一种全新的生物传感器,具有灵敏度高、响应快、微型化、价格低廉等优点。多通道生物传感芯片也是最近几年在生命科学研究领域崭露头角的一项新技术。多通道生物传感芯片是由16个通道构成,每一通道都是一个传感器的探头,包括一个工作电极,参比电极及辅助电极,因此每个通道都能构成一个独立的传感器。将二者结合能够实现一次操作多次检测,具有快速、高效及并行处理的能力,具有广泛的应用前景。
     脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。DNA是由许多脱氧核苷酸残基按一定顺序彼此用3’,5’-磷酸二酯键相连构成的长链。大部分DNA以双螺旋结构存在,为双链长分子。高温下,双链DNA变性成为两条单链能够重新杂交形成双链,从而会阻碍探针与目标DNA的杂交。核糖核酸(缩写为RNA,即Ribonucleic Acid),由核糖核苷酸经磷酯键缩合而成长链状分子。与DNA不同,RNA一般为单链长分子,不形成双螺旋结构。因此,不存在变性与复性,而能够与探针充分杂交。因此,本文以急性早幼粒细胞白血病PML/RARαmRNA为检测目标,希望能够提高灵敏度。
     本文设计了两种结构的电化学探针(茎环结构探针和“三明治”结构探针),并分别构建了两种不同的多通道电化学传感芯片,用于急性早幼粒细胞白血病PML/RARαmRNA的检测,同时考察了传感芯片的特异性、稳定性等性能。
     首先,根据急性早幼粒细胞白血病融合基因的碱基序列设计出“三明治”结构DNA探针。将电化学技术和酶联免疫分析技术相结合构建出的“三明治”结构的多通道电化学传感芯片可以识别和定量检测溶液中人工合成的PML/RARα融合基因片断。结果表明,在最佳条件下,测定mRNA的线性范围为0.1 pM- 200 pM,检测限为1.2×10-14 M。研究还发现该传感器能够很好地识别互补链与不匹配链,具有较好的特异性。可以实现对急性早幼粒细胞白血病中PML/RARα融合基因mRNA定性定量的测定。
     另外,根据急性早幼粒细胞白血病融合基因的碱基序列设计出茎环结构DNA探针并且采用电化学酶联免疫分析技术构建出发夹结构探针修饰的多通道电化学传感芯片对人工合成的PML/RARα融合基因片断进行检测。结果表明:在优化杂交条件下,该传感芯片测定mRNA的浓度线性范围为0.5 pM- 300 pM,检测限为5.0×10-14 M。能很好的识别杂交溶液中的完全互补序列与单碱基突变序列,甚至能够很好识别种类的单碱基不匹配序列(A碱基不匹配、G碱基不匹配、C碱基不匹配),可以实现对急性早幼粒细胞白血病中PML/RARα融合基因定性定量的测定。
Acute promyelocytic leukemia (APL) accounts for approximately 10% to15% of all cases of acute myeloid leukemia (AML). 95% of APL patients have PML/RARαfusion gene which is APL specific signal of the molecular biology. The detection of PML/RARαfusion gene not only assists the diagnosis of APL, but the quantitation of the fusion gene also has the important significance to the detection of minimal residual disease (MRD). Because the traditional morphology and routine PCR technology can’t quantitate, we designed a novel method to detect APL PML/RARαmRNA in this study. Based on electrochemical DNA biosensor and multi-channel biosensor chip, the multi-channel electrochemical chip was developed for detection of PML/RARαmRNA in APL. Electrochemical DNA biosensor is a novel biosensor which developed rapidly in recent years, with the advantages of fast detection, simplity, sensitivity, low price, and so on. The multi-channel biosensor chip is also a new technology which is coming to the forefront of life science in the recent years. There are 16 wells on the multi-channel biosensor chip, and every tunnel is a detecting head, including a working electrode, reference electrode and auxiliary electrode. Therefore, each tunnel could be a independent sensor. Combining the functions of both, the multichannel electrochemical chip can implement that once operation and multiple detection, which is of fast, high efficient and simultaneous treatment, which is of wide prospect.
     Deoxyribonucleic acid, or DNA, is a nucleic acid molecule that contains the genetic instructions used in the development and functioning of all known living organisms. Many deoxynucleotide residues which are linked together with 3’, 5’-phosphodiester bond in turn make up the long strands, named DNA . Bulk of DNA, as a long-chain molecule, were discovered to be a double helix. Under high temperature, the DNA duplex is melting into the single-strand DNA(ssDNA) which can rehybridize into double strands(dsDNA) thus to interfere the target DNA hybridization between and DNA probe. Ribonucleic Acid, or RNA, is a long chain molecule which forms by the condensation of ribonucleotide through phosphate ester linkage. RNA is general a long-chain molecule not a double helix, which is different with DNA. Accordingly, RNA could hybridize fully with DNA probe withou denaturation and renaturation. Therefore, we take for APL PML/RARαmRNA as the testing targets.
     Two novel DNA electrochemical probes (hairpin probe and Sandwich-type probe) were respectively designed and developed the multichannel electrochemical chips for detection of PML/RARαmRNA in acute promyelocytic leukemia (APL) in this article. The stability and the specificity of these multichannel electrochemical chips were also been investigated.
     Therein, Sandwich-type DNA electrochemical probe was designed according to APL PML/RARαmRNA fragment in this study. And then, based on the electrochemical enzyme immunoassay, the relationship between amperometric current and the concentration of synthetic target mRNA complementary strand is linear in the range of 0.1 pM to 200 pM with the detection limit of 1.2×10-14 M. At the same time, the method that demonstrates its simple and good specificity to distinguish the target sequences, single-base mismatched sequences, PML sequences, RARαsequences and non-complementary sequences. It is possible to qualitatively and quantitatively detect PML/RARαmRNA in APL.
     Besides, hairpin DNA electrochemical probe (HP) was designed according to APL PML/RARαmRNA fragment. And then, based on the electrochemical enzyme immunoassay, the hairpin probe modified multichannel electrochemica chip was developed for detection of PML/RARαfusion gene in APL in this study. The results indicate that, under the optimal conditions, the relationship between amperometric current and the concentration of synthetic target mRNA complementary strand is linear in the range of 0.5 pM to 300 pM with the detection limit of 5.0×10-14 M. Otherwise, the biosensor shows a good specificity to distinguish the complementary sequences and the different mismatched sequences, even the different kinds of the single-base mutation sequences (A-base mismatch, G-base mismatch and C-base mismatch). The obvious difference of results after hybridization demonstrated this multichannel electrochemical chip could detect PML/RARαmRNA qualitatively and quantitatively.
引文
[1] Bennett J, Catovsky D, Daniel M, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976, 33 (4): 451–458.
    [2] Tallman MS, Nabhan C, Feusner J H, et al. Acute promyelocytic leukemia: evolving therapeutic strategies[J]. Blood, 2002, 99(3):759-767.
    [3]梁雪,第三军医大学学报,2005, 171807.
    [4] Larry D C. Adult acute leukemia[J]. Current Problems in Cancer, 1997, 21(1): 1-64.
    [5] Seishi O, Kinuko M, Yuko S, et al. Detection of the PML/RARαfusion gene in acute promyelocytic leukemia with a complex translocation involving chromosomes 15, 17, and 18[J]. Cancer Genetics and Cytogenetics, 1993, 69(2): 113-117.
    [6] Jin Y H, Kyong E K, Kyeong H K, et al. Identification of PML–RARA rearrangement by RT-PCR and sequencing in an acute promyelocytic leukemia without t(15;17) on G-banding and FISH[J]. Leukemia Research, 2007, 31(2): 239-243.
    [7] Mokany E, Todd AV, Fuery C J, et al. Diagnosis and monitoring of PML-RARalpha-positive acute promyelocytic leukemia by quantitative RT-PCR[J]. Methods. Mol. Med., 2006, 125: 127-147.
    [8] Updike S J, Hicks G P. The enzyme electrode[J]. Nature, 1967, 214(6): 986–988.
    [9] J Wang, M Jiang, B Mukherjee, Flow Detection of Nucleic Acids at a Conducting Polymer-Modified Electrode[J]. Anal. Chem. 1999, 71(18):4095-4099.
    [10] E Palecek, M Fojta, Detecting DNA hybridization and damage[J]. Anal. Chem. 2001,73:74A.
    [11] KM Millan, A Saraullo, SR Mikkelsen, Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode[J]. Anal. Chem. 1994,66 (18):2943-2948.
    [12] K. Hashimoto, K. Ito, Y. Ishimori, Sequence-selective gene detection with a gold electrode modified with DNA probes and an electrochemically active dye[J]. Anal. Chem. 1994,66(21):3830-3833.
    [13] Peter T, Kissinger. Biosensors—a perspective. Biosensors and Bioelectronics, 2005, 20: 2512-2516.
    [14] Eric Bakker. Electrochemical sensors. Anal. Chem., 2004, 76: 3285-3298.
    [15] Xinhua Lin*, Qian Zhuang, Jinghua Chen, Shaobo Zhang, Yanjie Zheng. Electrocatalytic property of poly-chromotrope 2B modified glassy carbon electrode on dopamine and its application, Sensors and Actuators B:Chemical, 2007, 125(1): 240-245.
    [16] Qian Zhuang, Jinghua Chen, Jing Chen, Xinhua Lin*. Electrocatalytical Properties of bergenin on a multi-wall carbon nanotubes modified carbon paste electrode and its determination in tablets, Sensors and Actuators B:Chemical, 2008, 128(2): 500-506.
    [17] Jinghua Chen, Jing Zhang, Qian Zhuang,Jing Chen, Xinhua Lin, Hybridization biosensor using Sodium tanshinone IIA sulfonate as electrochemical indicator for detection of Short DNA Species of Chronic Myelogenous Leukemia . Electrochimica Acta, 2008, 53: 2716-2723.
    [18] Kun Wang, Jinghua Chen, Jing Chen, Ailin Liu, Guangwen Li, Xinhua Lin, Yuanzhong Chen, A sandwich-type electrochemical biosensor for detection of BCR/ABL fusion gene using locked nucleic acids on gold electrode[J]. Electroanalysis, 2009, 21(10): 1159-1166.
    [19] Alfonta, L.; Singh, A. K.; Willner, I., Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal. Chem. 2001, 73 (1), 91-102.
    [20] Patolsky, F.; Lichtenstein, A.; Willner, I., Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 2001, 19 (3), 253-257.
    [21] Xie, H.; Yu, Y. H.; Mao, P. L.; Gao, Z. Q., Highly sensitive amperometric detectionof genomic DNA in animal tissues. Nucleic Acids Res. 2004, 32 (2), -.
    [22] Kavanagh, P.; Leech, D., Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. Anal. Chem. 2006, 78 (8), 2710-2716.
    [23] C Fan, KW Plaxco, AJ Heeger. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA[J]. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(16): 9134-9137.
    [1]蒲海燕,刘春芬,贺稚非。生物芯片及其在食品中的应用[J].食品工业, 2005, 1: 55.
    [2]刘国宏.荧光素及罗丹明类衍生物荧光探针及其应用[ J] .长治学院学报, 2006 ,23 (5) :17.
    [3]葛凤燕,闫喜龙,潘惠英,等.荧光素类探针在生物分析中的研究进展[ J] .分析化学, 2005 ,33 (8) :1199.
    [4]谭余良,勤伟. RNAi在癌症治疗中的应用[ J] .药学学报, 2005 ,40 (3) :193.
    [5]王新宇,尹有宽,张继明. RNA干扰抑制丙型肝炎病毒复制的研究进展[ J] .肝脏, 2005, 10 (1) : 48.
    [6] Fang Wei, Jianghua wang, Wei Liao, et al.. Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe[J]. Nucleic Acids Research., 2008, 36, 118-124.
    [7] Hahn S, Mergenthaler S, Zimmermann B, Holzgreve W. Nucleic acid based biosensors: the desires of the user. Bioelectrochemistry , 2005, 67:151-154.
    [8] Liao W, Cui XT. Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF. Biosens. Bioelectron, 2007, 23:218-224.
    [9] Wei F, Chen CL, Zhai L, Zhang N, Zhao XS. Recognition of single nucleotide polymorphisms using scanning potential hairpin denaturation. J. Am. Chem. Soc., 2005, 127:5306-5307.
    [10] Wei F, Qu P, Zhai L, Chen CL, Wang HF, Zhao XS. Electric potential induced dissociation of hybridized DNA with hairpin motif immobilized on silicon surface. Langmuir, 2006, 22:6280-6285.
    [11] Wei F, Sun B, Guo Y, Zhao XS. Monitoring DNA hybridization on alkyl modified silicon surface through capacitance measurement. Biosens. Bioelectron, 2003, 18:1157-1163.
    [12] Wei F, Sun B, Liao W, Ouyang JH, Zhao XS. Achieving differentiation of single-base mutations through hairpin oligonucleotide and electric potential control. Biosens. Bioelectron, 2003, 18:1149-1155.
    [13]李玉新.人类DNA小卫星区域RNA探针制备及应用的研究_pGEM_4Z_MYO亚克隆的构建[J].中国法医学杂志,1994, 9 (3) :148.
    [14] K. M. Millan, S. R.Mikkelsen. Sequence-selective biosensor for DNA based on electroactive hybridization indicators[J]. Anal. Chem., 1993, 65(17): 2317-2323.
    [15] K. M. Millan, A. Saraullo, S. R. Mikkelsen. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode[J]. Anal. Chem., 1994, 66(18): 2943-2948.
    [16] QX. Wang, F Gao, K Jiao. Voltammetric Studies on the recognition of a copper complex to single- and double-stranded DNA and its application in gene biosensor[J]. Electroanalysis, 2008, 20(19):2096-2101.
    [17] JH Chen, J Zhang, K Wang et al. Electrochemical biosensor for detection of BCR/ABL fusion gene using locked nucleic acids on 4-aminobenzenesulfonic acid-modified glassy carbon electrode[J]. Analytical Chemistry 2008, 80(21): 8028-8034.
    [18] J. Zhang, S. P. Song, L.Y. Zhang, L.H. Wang, H.P. Wu, D. Pan, C.H. Fan, J. Am. Chem. Soc. 2006, 128, 8575-8580.
    [19] DETHE H, LAVAU C, MARCHIO A, et al. The PML/ RARαlpha fusion mRNA generated by the t (15;17) translocation in acute promyelocytic leukemia encodes afunctionally altered RAR[J]. Cell, 1991, 66: 675-684.
    [20] JH Chen, J Zhang, K Wang et al. Electrochemical biosensor for detection of BCR/ABL fusion gene using locked nucleic acids on 4-aminobenzenesulfonic acid-modified glassy carbon electrode[J]. Analytical Chemistry, 2008, 80(21): 8028-8034.
    [21] C Fan, KW Plaxco, AJ Heeger. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA[J]. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(16): 9134-9137.
    [22] OKAHATA Y, KAWASE M, NIIKURA K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide immobilized 27-MHz quartz crystal microbalance[J]. Anal Chem, 1998, 70: 1288-1296.
    [23] ANZAI J K, SUZUKI Y, TAKESHITA H, et al. Enzyme sensors prepared by layer-by-layer deposition of enzymes on a platinum electrode through avidin-biotin interaction[J]. Sensors and Actuators, 1998, 52: 3-9.
    [24] VOLPE G, COMPAGNONE D, DRAISCI R, et al. 3, 3 , 5, 5-Tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based enzyme immunoassays. A comparative study[J]. Analyst, 1998, 123(6): 1303-1307.
    [25] WANG Kun, CHEN Jing-hua, CHEN Jing, et al. A sandwich-type electrochemical biosensor for detection of BCR/ABL fusion gene using locked nucleic acids on gold electrode[J]. Electroanalysis, 2009, 21(10): 1159-1166.
    [26] STEEL A B, LEVICKY R L, HERNE T M. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly[J]. Biophysical Journal 2000, 79(2): 975-981.
    [27] STEEL A B, HERNE T M, TARLOV M J. Electrochemical quantitation of DNA immobilized on gold[J]. Anal. Chem., 1998, 70(22): 4670-4677.
    [28] Steel, A. B.; Herne, T. M.; Tarlov, M. J., Electrochemical quantitation of DNA immobilized on gold. Anal. Chem., 1998, 70 (22), 4670-4677.
    [29] A. B. Steel, T. M. Herne, M. J. Tarlov. Electrochemical Quantitation of DNA Immobilized on Gold. Anal. Chem., 1998, 70, 4670.
    [30] Southern, E.; Mir, K.; Shchepinov, M. Molecular interactions on microarrays. Nat. Genet. 1999, 21, 5-9.
    [31] Peterson, A. W.; Heaton, R. J.; Georgiadis, R. M. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 2001, 29, 163-5168. [25] Alexander W. Peterson, Lauren K. Wolf, and Rosina M. Georgiadis. Hybridization of Mismatched or Partially Matched DNA at Surfaces[J]. J. Am. Chem. Soc., 2002, 124 (49), pp 14601-14607.
    [32] Ping Gong, Chi-Ying Lee, Lara J. Gamble, David G. Castner, and David W. Grainger. Hybridization Behavior of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by Surface Plasmon Resonance and 32P Radiometric Assay[J]. Anal. Chem., 2006, 78 (10), pp 3326-3334.
    [33] Rastislav Levicky, Tonya M. Herne, Michael J. Tarlov, and Sushil K. Satija. Using Self-Assembly To Control the Structure of DNA Monolayers on Gold: A Neutron Reflectivity Study[J]. J. Am. Chem. Soc., 1998, 120 (38), pp 9787-9792.
    [34] Alexander W. Peterson, Lauren K. Wolf, and Rosina M. Georgiadis. Hybridization of Mismatched or Partially Matched DNA at Surfaces[J]. J. Am. Chem. Soc., 2002, 124 (49), pp 14601-14607.
    [35] Chi-Ying Lee, Ping Gong, Gregory M. Harbers, David W. Grainger, David G. Castner, and Lara J. Gamble. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements[J]. Anal. Chem., 2006, 78 (10), pp 3316-3325.
    [36] Tsuruoka, M.; Yano, K.; Ikebukuro, K.; Nakayama, H.; Masuda, Y.; Karube, I. Optimization of the rate of DNA hybridization and rapid detection of methicillin resistant Staphylococcus aureus DNA using fluorescence polarization. J. Biotechnol. 1996, 48, 201-208.
    [37] ITO K, HASHIMOTO K, ISHIMORI Y, et al. Quantitative analysis for solid-phase hybridization reaction and binding reaction of DNA binder to hybrids using a quartz crystal microbalance[J]. Anal. Chim. Acta, 1996, 327(1): 29-35.
    [1]蔡宏,徐颖,何品刚,方禹之.分析化学,2004,6:815.
    [2] Peter T, Kissinger.Biosensors- a perspective[J]. Biosens. Bioelectron., 2005, 20(12): 2512-2516.
    [3] E Bakker. Electrochemical sensors[J]. Anal. Chem., 2004, 76(12): 3285-3298.
    [4] X H Lin, H Y Wan, Y F Zhang, at el. Studies of the interaction betweenAloe-emodin and DNA and preparation of DNA biosensor for detection of PML-RARαfusion gene in acute promyelocytic leukemia [J]. Talanta, 2008, 74(4): 944-950.
    [5] J H Chen, J Zhang, Q Zhuang, at el. Hybridization biosensor using sodium tanshinone IIA sulfonate as electrochemical indicator for detection of short DNA species of chronic myelogenous leukemia[J]. Electrochimica Acta, 2008, 53(6): 2716-2723.
    [6] HL Qi,CX Zhang. Applications of nanoparticles in electrochemical DNA biosensors [J]. Progress In Chemistry, 2005, 17(5):911-915.
    [7] Q Zhang,Y Wan,LH Wang, et al.. The electrochemical DNA biosensor [J]. Progress In Chemistry, 2007, 19(10): 1576-1584.
    [8] S Tyagi, FR Kramer. Molecular beacons: probes that fluoresce upon hybridization[J].Nat.Biotechnol, 1996,14(3): 303-308.
    [9] LF He, HX Tang, KM Wang, et al.. Quantitative detection of p53 mRNA by molecular beacons in vitro [J]. Acta Chimica Sinica, 2006, 64(11): 1116-1120.
    [10] S A E Marras, S Tyagi, F R Kramer. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes [J]. Clinica Chimica Acta,2006, 363(1): 48-60.
    [11] W H Tan, K M Wang , T J Drake. Molecular beacons [J]. Current Opinion in Chemical Biology, 2004, 8 (5): 547-553.
    [12] Y. Jin, X. Yao, Q. Liu, et al. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator[J]. Biosens. Bioelectron., 2007, 22 (6): 1126-1130.
    [13] F. Ricci, RY. Lai, AJ. Heeger, at el. Effect of molecular crowding on the response of an electrochemical DNA sensor[J]. Langmuir, 2007, 23(12): 6827-6834.
    [14] Y. Lu, XC. Li, L.M. Zhang, at el. Aptamer-Based Electrochemical Sensors with Aptamer?Complementary DNA Oligonucleotides as Probe[J]. Anal. Chem., 2008, 80(6): 1883-1890.
    [15] W RussAlgar, M Massey, UJ Krull. The application of quantumdots, gold nanoparticles and molecular switche stooptical nucleic-acid diagnostics[J].Trends in Analytical Chemistry, 2009, 28(3): 292-360.
    [16] J Wu, C Huang, G Cheng, at el. Electrochemically active-inactive switching molecular beacon for direct detectio of DNA in homogenous solution[J]. Electrochemistry Communications, 2009, 11(1): 177-180.
    [17] X Mao, J Jiang, X Xu, at el. Enzymatic amplification detection of DNA based on“molecularbeacon”biosensors [J]. Biosens. Bioelectron., 2008, 23(10): 1555-1561.
    [18] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. (2003) 31:3406–3415.
    [19] SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA (1998) 95:1460–1465.
    [20] DETHE H, LAVAU C, MARCHIO A, et al. The PML/ RARαlpha fusion mRNA generated by the t (15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR[J]. Cell, 1991, 66: 675 - 684.
    [21] C Fan, KW Plaxco, AJ Heeger. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA[J]. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(16): 9134-9137.
    [22] STEEL A B, LEVICKY R L, HERNE T M. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly[J]. Biophysical Journal 2000, 79(2): 975-981.
    [23] STEEL A B, HERNE T M, TARLOV M J. Electrochemical quantitation of DNA immobilized on gold[J]. Anal. Chem., 1998, 70(22): 4670-4677.
    [1] Watson J D , Crick F H. Nature , 1953, 171 : 737-738.
    [2] Lander E S , Linton L M, Birren B , et al . Nature , 2001, 409: 860-921.
    [3] Venter J C , Adams M D , Myers E W, et al . Science , 2001, 291 : 1304-1351.
    [4] Marshall A , Hodgson J . Nat . Biotechnol ., 1998, 16: 27 -31.
    [5] Broude N E. Trends Biotechnol . , 2002, 20: 249 -256.
    [6] Epstein J R , Leung A P , Lee K H , et al . Biosens. Bioelectron., 2003, 18: 541 -546.
    [7]柯朴.生物芯片[J].当代矿工, 2001, 12: 21.
    [8]邵威,程京.生物芯片技术及其应用[J].电子世界, 2000, 10: 4.
    [9]蒲海燕,刘春芬,贺稚非。生物芯片及其在食品中的应用[J].食品工业, 2005, 1: 55.
    [10]刘晓智,陈騉,王睿等。生物芯片技术研究进展及其应用前景[J].中国药学杂志,2005,40(22): 1684.
    [11] Dmneing DW. Invasive aspergillosis [J]. Clin. Infect Dis., 1997, 26: 781.
    [12] Wang Joseph. Survey and summary from DNA biosensors to gene chips[J ] . Nucleic Acids Research , 2000, 28 (16):3011 - 3016.
    [13]杨明星,高志贤,王升启.基因芯片及其应用[J].传感器技术,2002, 21(6): 54.
    [14]王华.基因芯片在白血病研究中的应用[J].国际内科学杂志, 2008, 35(2): 74.
    [15] Haferlach T, Kohlmann A, Bacher U, et al. Gene exp ression profiling for the diagnosis of acute leukemia.Br J Cancer, 2007, 96 (4) : 535-540.
    [16] Bullinger L, Rücker FG, Kurz S, et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood, 2007, 110 (4) : 1291-1300.
    [17] Strefford JC, Worley H, Barber K, et al. Genome comp lexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization1 Oncogene, 2007, 26(29) : 4306-4318.
    [18] Liu Y., Ma W.L., Meng FY, et al. Microarray gene expression profiling in acute myeloid leukemia. Med J Chin PLA, 2006, 31(4): 312.
    [19]王华.基因芯片在白血病研究中的应用[J].国际内科学杂志, 2008, 35(2): 74
    [20] Zheng C, L iL, HaakM, et al. Gene expression profiling of CD34 + cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia, 2006, 20 ( 6 ): 1028-1034.
    [21] MerkerovaM, Bruchova H, Brdicka R. Exp ression analysis of PCNA gene in chronic myelogenous leukemia-combined application of siRNA silencing andexpression arrays. LeukRes, 2007, 31 (5): 661-672.
    [22] Mullighan CG, Kennedy A, Zhou X, et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene exp ression distinct form MLL-rearranged leukemias1 Leukemia, 2007, 21 (9): 2000-2009.
    [23] YING S haoxu, L IN Guowei,L I X iao1, et al. cDNA m icroarray in the research of lymphomagenesis of NHL. Journal of Clinical Hematology, 2006, 19(1): 14. [24 ] De Benedetti V M, Biglia N, Sismondi P, et al. Int J BidMarkers, 2000, 15 (1): 1. [25 ] Zhang Heng, Liu Zhihua. Chinese Journal of Clinical Oncology, 2001, 28(3): 172.
    [26] Fuller GN, Rhee C H, Hess K R, et al. Cancer Res, 1999, 59(17): 4 228.
    [27] Li J inheng, Chen Bin. Jouranl ofMedical Postgraduates, 2005, 18 (1): 56.
    [28]顾大勇,鲁卫平,王华,等.纳米金基因芯片结合通用引物1次PCR法同时检测多个病原菌的研究[J].中华医院感染学杂志, 2008, 18(1): 29.
    [29] Irving JA, Bloodworth L, Bown NP, et al. Loss of heterozygosity in childhood acute lympoblastic leukemia detected by genome-wide microarray single nucleotide polymorphism analysis. Cancer Res, 2005, 65(8):3053-8.
    [30] Frears ER,Stephens DJ,Waiters CE, et al. The role of cholesterol in the biosynthesis of amyloid[J]. Neuroreport, 1999,10(8): 1699-1705.
    [31] Lucking A, Horn M, Eickho_ H, et al. Protein microarrays for gene expression and antibody screening[J].Analy Biochem, 1999, 270: 103-111.
    [32]黄啸.蛋白质芯片的研究与应用[J].临沂师范学院学报, 2007, 29(3): 49.
    [33] MacBeath G, Nature Genet supple , 2002 , 32 : 526.
    [34] Jones R B , Gordus A , Krall J A et al . Nature , 2006 , 439 : 168. [35 ] Lange S A , Benes V , Kern D P et al.. 2004, 76: 1641.
    [36] Yu X, Xu D , Cheng Q. Proteomics , 2006, 6: 5493.
    [37]韩欢欢,于晓波,吕任极等。一种蛋白质阵列芯片新技术的研究[J].分析试验室, 2008, 27(2): 107.
    [38] Zhu H, Snyder M. Protein arrays and microarrays[J].Curr Opin Chem Biol, 2001, 5(1): 40-45.
    [39]陈玮莹,温博贵.蛋白芯片的基本原理及技术研究现状[J ] .国外医学临床生物化学与检验分册, 2002 ,23 (1): 5 - 6.
    [40]董江庆陈中芹许小华。蛋白质芯片技术的研究及前景[J ]江西化工,2002, 2: 50.
    [41] Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated proteinⅠas a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res, 2002, 62(6): 1868-1875.
    [42]张建中,郑燕华,冯凯,等. SELD I蛋白指纹技术在肿瘤早期诊断中的应用[ J ].世界华人消化杂志, 2004, 12 ( 12 ): 2773 -2777.
    [43] Pang YL, Zhang B,Wang JX, et al. App lication of p rotein finger- print patternmodels in liver cancer diagnosis[J]. JZhengzhou University, 2006, 5: 69 - 76.
    [44]许杨,万亮,胡娜.蛋白质芯片技术在食品安全检测中的应用[J].食品安全与检测, 2008, (1): 204.
    [45] Zhu JY, L i YF. Prote in b ioch ip technology and its applica tion in testing food pa thogenic microbe [J]. Chinese Journal of Health Laboratory Technology, 2006, 16(7): 780.
    [46] Howell S W, Inerowicz H D, Regnier F E,et al. Patterned Protein Microarrays for Bacterial Detection. Langmuir, 2003,19:436- 439
    [47] Knecht B G, Strasser A, Dietrich R, et al. Automated Microarray System for the Simultaneous Detection of Antibiotics in Milk. Analytical Chemistry, 2004,76:646- 654
    [48] Belleville E, Dufva M, Aamand J et al. Quantitative assessment of factors affecting the sensitivity of a competitive immunomicroarray for pesticide detection. BioTechniques, 2003, 35(5): 1044- 1051。
    [49] Belleville E, Dufva M, Aamand J et al. Quantitative microarray pesticideanalysis. Journal of Immunological Methods, 2004,286:219- 229。
    [50] Lueking A ,Horn M,Eickhoff H,et al . Protein microarrays for gene expression and antibody screening[J] .Analytical Biochemistry ,1999, 270 :103.
    [51]王燕,刘昕,缪金明,等.细胞膜表面标志CD系列抗体蛋白芯片制备及应用的研究[J ] .第三军医大学学报, 2002 ,24 (1) :34.
    [52]顾军,刘作易,张春秀等。细胞芯片的研究进展[J].细胞与分子免疫学杂志,2007,23(3): 287
    [53] Houlihan JM, Biro PA, Fergar-Payne A, et al. Evidence for the expression of non-HLA-A, -B, -C class I genes in the human fetal liver [ J ]. J Imm unol, 1992, 149 (2) : 668 - 675.
    [53]毛静涛.组织芯片技术研究进展及应用[J].中国医药技术经济与管理, 2008, 2(4:): 60.
    [54] Belov L, dela Vega O, dos Remedios CG, et al. Immunophenotyping of leukemias using a cluster of differentiation antibodymicroarray[ J ].Cancer Res, 2001, 61 (11) : 4483 - 4489.
    [55]孟潘庆.组织芯片技术及其应用进展[J].山东医药, 2008, 48(30): 115.
    [56] Kallioniemi OP ,Wagner U ,Kononen J ,et al1Tissue microarray technology for high-throughput molecular prlfiling of cancer[J ]1Hum mol Genet, 2001,10 (7): 657 - 6621.
    [57]王翠芝,周小鸽,黄受方,等.组织芯片在免疫组织化学质量控制中的应用[J].诊断病理学杂志, 2006, 13 (1) : 34-36.
    [58] Simon R, Mirlacher M, Sauter G. Tissue microarrays in cancer diagnosis. Expert Rev Mol Diagn., 2003, 3(4): 421-30.
    [59]张呈菊,钱蓓丽.组织芯片技术及其在新药毒理学研究中的应用[J].中国新药与临床杂志,2007, 26(6):495.
    [60] Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughputmolecular profiling of tumor specimens[ J ]. Nat Med, 1998, 4 (7) : 844-847.
    [61]高艳红,郭丽娟,赵治国.采用组织芯片技术研究APE/Ref21在胃癌中的表达及其意义[J].河南科技大学学报, 2008, 26(2):91.
    [62]刘勇,路名芝.组织芯片技术的初步应用[ J ].中国组织化学与细胞化学杂志, 2003, 12 (1): 112-114.
    [63]杜媛,冯一中,李峰. Livin在胰腺癌组织芯片中的表达及其临床意义[J].苏州大学学报, 2008; 28(2): 244.
    [64]路名芝,刘勇,涂琦.采用组织芯片技术检测肺癌中泛素、Skp2、p27的表达[J].江西医药, 2008, 43(3): 198.
    [65]张呈菊,钱蓓丽.组织芯片技术及其在新药毒理学研究中的应用[J].中国新药与临床杂志,2007, 26(6):495.
    [66]薛彦峰,王秀奎,侯信等.糖芯片研究[J]. 2008, 20(1): 148.
    [67] Song Qi. Carbohydrate Microarray [J]. Nat Biotechnol, 2002, 20: 275.
    [68] Stevens J , Blixt O , Glaser L , et al . J . Mol . Bio. , 2006, 355 (5): 1143-1155.
    [69] Shipp E L , Hsieh2Wilson L C. Chem. Biol . , 2007, 14 (2) : 195 -208
    [70] Oyelaran O , Gildersleeve J C. Expert Rev. Vaccines , 2007, 6 (6): 957-969.
    [71] Ngundi M M, Taitt C R , McMurry S A , et al . Biosens.Bioelectron. , 2006, 21 (7): 1195 -1201.
    [72] Manimala J C , Roach T A , Li Z T, et al . Glycobiology , 2007, 17(8): 17C-23C.
    [73] Shin I, Park S, Lee M R. Catrbohydrate microarrays: an advanced technology for functional studies of glycans. Chem Eur J, 2005, 11(10): 2894-2901
    [74] Lampanero-Rhodes MA , Childs R A , Kiso M, et al . Biochemical and Biophysical Research Communications , 2006, 344: 1141 -1146.
    [75] Adams E W, Ratner D M, Bokesch H R , et al . Chemistry & Biology , 2004, 11 : 875-881.
    [76] Huang G L , Mei X Y, Zhang H X, et al . Appl . Microbiol .Biotechnol . , 2006, 10: 1007.
    [77] Burns MA ,Johnson BN ,Brahmasandra SN ,et aI. An inte- grated nanoliter DNA analysis device. Science , 1998, 282 (5388): 484-487.
    [78]房彦军,高志贤.芯片实验室技术及其研究进展[J].国外医学.临床生物化学与检验学分册, 2005, 26(2): 117.
    [79]刘长春,崔大付.电化学传感器及其在芯片实验室中的应用[J].传感器技术, 2003, 07(22): 01.
    [80] Chou HP ,Spence C ,Scherer A ,et al. Microfabricated device for sizing and sorting DNA molecules. Proc Nat. Acead Sci USA ,1999, 96 (1): 11-13.
    [81] Mao XL ,Du YG,Wang KY,et al. Chemical analysis of gly-coproteins by chip-based capillary elect rophoresis. The 4th Asia-pacific international symposium on microscale separa-tions and analysis, book of abstracts. Shanghai , 2002, 65-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700