用户名: 密码: 验证码:
循环载荷作用下岩石与孔隙水耦合作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展对循环载荷作用下岩石变形破坏特性及损伤演化规律的研究既是岩石力学与工程领域的前沿课题之一,同时也有助于正确认识岩体在循环载荷作用下的失稳破坏机理进而科学地评价工程岩体的长期稳定性。选择三峡库区常见的细粒砂岩、泥岩及灰岩作为研究对象,利用煤矿灾害动力学与控制国家重点实验室(重庆大学)的MTS815岩石力学实验系统、RLW-2000M微机控制煤岩流变仪等设备,基于渗流力学、损伤力学、岩石水力学等科学理论进行了系列有益的探讨,在以下8个方面取得了进展:
     1)通过单调加载强度破坏实验中不同含水率的单轴压缩荷载实验、不同围压条件下三轴压缩荷载实验、不同孔隙水压力条件下的三轴压缩荷载实验的各应力—应变曲线进行的对比,分析了其破坏强度与含水率的关系、破坏强度与围压大小的关系以及破坏强度与孔隙水压力大小关系。
     2)不同孔隙水压力恒定时轴向应变和横向应变的蠕变过程为四阶段,表现为初始蠕变阶段水流量速率下降较快,稳定蠕变阶段水流量速率较平缓,加速蠕变阶段水流量速率逐渐增大,急速蠕变破坏阶段水流量速率突然增大。
     3)单轴循环轴向应力实验中进行了不同含水状态(饱和、自然风干、烘干)、不同应力水平、不同加载速率条件下的实验;三轴循环轴向应力实验中进行了不同围压条件下的实验,并分别分析了循环应力—应变滞回曲线的演化规律及其岩石的循环硬化和软化特征。
     4)循环围压实验中主要分析了等幅值和变幅值循环围压作用下岩石的变形演化规律、循环硬化和软化特征、破坏特征及其疲劳损伤特性;孔隙水压力作用下等幅值和变幅值循环围压实验中主要分析了岩石的变形演化规律、水流量演化规律、循环硬化和软化、破坏特征和疲劳损伤特性。
     5)周期充水实验中进行了不同轴向应力、不同围压、不同孔隙水压力上下限、不同孔隙水压力变幅值、不同周期充水加载速率、不同周期充水恒定作用时间、不同岩石材料条件下的实验,较为系统地探讨了周期充水作用下岩石的变形损伤演化规律、循环硬化和软化特征、应变滞后特性、破坏特征及其疲劳损伤特性。
     6)岩石与孔隙水耦合作用机理方面,分析了周期充水条件下岩石的变形机制,并将其划分为孔隙充水微孔隙压密阶段、弹性耦合阶段、屈服耦合阶段、疲劳破坏阶段等四个阶段,并探讨了颗粒与孔隙水耦合机制,也将其划分为初始应力及饱水状态、孔隙水压力加载状态、卸载状态及疲劳破坏前状态等四种状态。
     7)运用等效应变假设和岩石损伤力学理论,假设岩石微元强度服从Weibull分布,将割线泊松比作为岩石统计损伤模型的变量,提出了一种简单通用的单调压缩条件下岩石材料的损伤统计本构模型。
     8)通过对周期充水条件下细粒砂岩疲劳损伤变形实验曲线对比,分析了岩石变形曲线的演化规律、循环硬化和软化特征以及应变滞后特性,探讨了岩石在周期充水作用下的损伤变量演化规律及损伤演化方程,初步构建了周期充水作用下岩石疲劳损伤模型。
The research on the characteristics of rock deformation failure and the damage evolution under cyclic loading is one of the frontier topics of rock mechanics and engineering. It also contributes to the correct understanding of the rock failure mechanism under cyclic loading, thus the long-term stability of engineering rock mass is scientificly evaluated. The fine sandstone, mudstone and limestone that are common in the Three Gorges reservoir area are taken as the study objects, among which the fine sandstone is the major object. The MTS815 Rock Mechanics Test System, RLW-2000M Coal and Rock Computer Controlled Rheological Testing Machine from State Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University) are applied to carry out these experiments, and the theories, such as seepage mechanics, damage mechanics, rock hydraulics and so on, are applied to do a helpful research. The results are gained as follows:
     1) In the experiment of monotonic loading strength failure, different stress-strain curves, from the test of uniaxial compression under different moisture content, the test of triaxial compression under different pore pressurem, and the test of triaxial compression under different confining pressure, are analyzed. The failure effects on rock strength by moisture content, confining pressure and pore pressure are studied.
     2) When different pore pressures keep constant, the creep process of axial and transverse strain can be divided into four stages. At the beginning stage, the rate of water flow reduces relatively quickly; at the steady stage, it becomes stable, and increases gradually at the accelerating stage; finally at the stage of creep destruction, it increases suddently at a high speed.
     3) The uniaxial cyclic axial stress experiments were carried out in different circumstances, including different water state (saturated, dry, drying), different stress levels, and different loading rate; meanwhile, the triaxial cyclic axial stress were performed in different confining pressure. Based on experimental results, the evolution laws of the cyclic axial stress -strain hysteresis curve are respectively analyzed, and the cyclic hardening and softening of rock are further studied.
     4) In the experiments of cyclic confining pressure under constant and variable amplitude conditions, the evolution law of rock deformation, cyclic hardening and softening, destruction features and fatigue damage characteristics are analyzed. Affected by pore water pressure, evolution law of water flow, together with the evolution law of rock deformation, cyclic hardening and softening, destruction features and fatigue damage characteristics, are analyzed in the experiments of cyclic confining pressure under constant and variable amplitude conditions.
     5) Cyclic hardening and softening behaviors, hysteretic characteristics, failure characteristics, fatigue damage characteristics, and the evolution law of rock deformation are researched in cyclic pore pressure tests, under different axial stress, different confining pressure, different range of pore pressure, different pore pressure amplitude, different cyclic pore pressure rates, different cyclic pore pressure constant time, and different rock materials.
     6) Through rock and pore-water coupling mechanism, four deformation stages can be distinguished, which are stage of water filling in pores and compression of pores, stage of elastic coupling effect, stage of yielding coupling effect and stage of fatigue failure. Through rock articles and pore-water coupling mechanism, four states appear, which are state of initial stress and water saturation, state of loading pore pressure, state of unloading pore pressure, and state of pre-fatigue failure.
     7) A statistical damage constitutive model of rock in axial compression, which is more simple and more universal, is put forward by using equivalent strain hypothesis, rock damage mechanics and weibull distribution of micro-unit strength. The secant poisson ratio is taken as variable of the model.
     8) The curve of fine sandstone deformation evolution law, cyclic hardening and softening, and strain hysteresis are analyzed in the experiments of fine sandstone fatigue damage deformation under cyclic pore-water pressure. Simultaneously,the fatigue damage variable evolution rule and cycle fatigue damage evolution equation are investigated, therefore fatigue damage model of rock under cyclic pore pressure is established based on the above parameters.
引文
[1]许江,鲜学福,唐建新等.论三峡库区地质灾害的非线性科学理论与控制[J].重庆大学学报,2002,25(5):119-123.
    [2]彭良泉,王钊.对边坡稳定性分析中危险水力学条件的研究[[J].人民长江,2003,34(5):39-41.
    [3]仵彦卿,张悼元.岩体水力学导论.西南交通大学出版社.1995.12.
    [4]许江,杨秀贵,王鸿,等.周期性载荷作用下岩石滞回曲线的演化规律[J].西南交通大学学报,2005.40(6):754-758.
    [5] Kármán von. T. . Festigkeitsversuche unter allseitigem Druck. Zeitschrift des Vereines deutscher Ingenieure, 1911,55(42):1749—1757.
    [6] HUDSON J. A.,CROUCH S. L.,FAIRHURST C. Soft,stiff and servo-controlled testing machines: a review with reference to rock failure[J]. Engineering Geology. 1972, 6(3):155-189.
    [7] WAWERSIK W. R..,FAIRHURST C. A study of brittle rock fracture in laboratory compression experiments[J]. International Journal of Rock Mechanics and Mining Sciences.1970,7(4):561-575.
    [8]葛修润,周百海.对岩石峰值后区特性的新见解[[J].中国矿业.1992,1(2):57-60.
    [9]尤明庆,苏承东,缑勇.大理岩孔道试样的强度及变形特性的试验研究[J].岩石力学与工程学报,2007,26(12):2420-2429.
    [10]徐林生,王兰生.岩爆形成机理研究[J].重庆大学学报(自然科学版),2001, 24(2):115-117.
    [11]高春玉,徐进,何鹏,等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [12]喻勇,尹健民.三峡花岗岩在不同加载方式下的能耗特征[[J].岩石力学与工程学报,2004,23(2):205-208.
    [13]沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征[[J].岩石力学与工程学报,2003,22(12):2028-2031.
    [14]徐松林,吴文,王广印等.大理岩等围压三轴压缩全过程研究I:三轴压缩全过程和峰前、峰后卸围压全过程试验[[J].岩石力学与工程学报,2001,20(6):763-767.
    [15]沈明荣,石振明,张雷等.不同加载路径对岩石变形特性的影响[[J].岩石力学与工程学报,2003,22(8):1234-1238.
    [16]卢应发,田斌,余天堂等.不同加载路径饱和岩石力学特征的试验研究[J].岩石力学与工程学报,2005,24(A01):5065-5071.
    [17]周青春,李海波,杨春和,等.南水北调西线一期工程砂岩温度、围压和水压耦合试验研究[J].岩石力学与工程学报,2005,24(20):3639-3645.
    [18]邢福东,朱珍德,刘汉龙,等.高围压高水压作用下脆性岩石强度变形特性试验研究[J].河海大学学报:自然科学版,2004,23(2):184-187.
    [19]陈颙,姚孝新,耿乃光.应力途径,岩石的强度和体积膨胀[[J].中国科学.1979(11):1093-1100.
    [20]许东俊,耿乃光.岩体变形和破坏的各种应力路径[[J].岩土力学.1986,7(2):17-25.
    [21]哈秋聆.加载岩体力学与卸荷岩体力学[[J].岩土工程学报.1998,20(1):114.
    [22]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[[J].岩石力学与工程学报.1993,12(4):321-327.
    [23]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[[J].岩石力学与工程学报.1998,17(6):615-621.
    [24]周小平,哈秋聆,张永兴,等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报.2005,24(18):3236-3245.
    [25]陈卫忠,刘豆豆,杨建平,等.大理岩卸围压幂函数型Mohr强度特性研究[[J].岩石力学与工程学报.2008, 27(11):2214-2220.
    [26]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报.2007, 26(10):2104-2109.
    [27]尤明庆.岩石的力学性质[M].北京:地质出版社,2007.
    [28]汪斌,朱杰兵,邬爱清,等.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,27(10):2138-2145.
    [29]陈秀铜,李璐.高围压、高水压条件下岩石卸荷力学性质试验研究[J].岩石力学与工程学报,2008,27(S1):2694-2699.
    [30] Maranini E,Brignoli M.Creep behaviour of a weak rock: experimental characterization [J].Int J.Rock Mech.Mine Sci.,1999,36(1):127-138.
    [31] Li Yongsheng,Xia Caichu.Time-dependent tests on intact rocks in uniaxial compression[J].Int J.Rock Mech.Mine Sci.and Geomech.Abstr.,2000,37:467-475.
    [32]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):63-67.
    [33]许洪发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997(16):246-251.
    [34]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版设,1999.
    [35] Fujii Y,Kiyama T.Cricumferential strain behavior during creep tests of brittle rocks[J].Int J.Rock Mech.Mine Sci.,1999,6:323-337.
    [36]崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,25(5): 1021-1024.
    [37]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报,2005,27(11):1273-1276.
    [38]赵永辉,何之民,沈明荣.润扬大桥北锚旋岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586.
    [39] JU Y,YANG Y M,SONG Z D,et al.A statistical model for porous structure of rocks[J]. Science in China(Series E),2008,51(11):2 040-2 058.
    [40] JU Y,YANG Y M,MAO Y Z,et al.Laboratory investigation on mechanisms of stress wave propagations in porous media[J].Science in China(Series E),2009,52(5):1 374-1 389.
    [41]侯广君.孔隙结构与渗流特征研究现状与发展趋势[J].内蒙古石油化工,2009(17):73-75.
    [42] Zeng Lianbo, Qi Jiafu, Li Yuegang. Therelationship between fractures and tectonic stress Field in the extra low-permeability sandstone reservoir at the south of western Sichuan depression [J]. Journal of China University of Geosciences, 2007,18(3):223-231.
    [43] Zhao Mingguo, Zhou Haifei, Chen Dingfeng. Investigation and application on gas drive development in ultra-low permeability reservoirs [J]. Journal of Hydrodynamics, 2008, 20 (2): 254 -260.
    [44]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003:3-8.
    [45]胡志明,把智波,熊伟,等.低渗透油藏微观孔隙结构分析[J].大庆石油学院学报,2006,30(3):51-53.
    [46] Katz A J , Thompsonah. Fractal sandstone Pores implication for conductivity and formation[J]. Phys ReLett, 1985, 54(3):1325-1328.
    [47] Krohn.C.E. Sandstone fractal and Euelidean pore voume distribution [J].Geophys Res,1988, 93(B4): 328-3296.
    [48] Lina T.L, Radhakrishnan.P, Sagar B.S.D.Morphological decomposition of sandstonePore -space:Fractal power -laws.Chaos[J].Solitons and Faretals,2004,19(2):339-346.
    [49]廖明光,夏宏全.孔隙结构新参数、点及其应用[J].石油勘探与开发,1997,24(3):78-81.
    [50]刘子晋.对砂岩油藏水洗后岩石孔隙结构变化的探讨[J].沉积学报,1984,2(1):1-14.
    [51]林玉保,张江,刘先贵等.喇嘛甸油田高含水后期储集层孔隙结构特征[J].石油勘探与开发,2008,35(2):215-219.
    [52]罗蛰谭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:21-43.
    [53] Pape.H, Clauser C, Iffinad, J. Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal Pores space model [J]. Pure and Applied Geophysics, 2000, 157(4):603-619.
    [54] Steven D.Hood, Campbell S. Nelson. And peter J.J.KamP. Modification of fracture porosityby multiphase vein mineralization in an Oligocene nontropical carbonate reservoir, Taranaki Basin New Zealand[J]. AAPG Bulletin,2003,87(10):1575-1597.
    [55]王传禹,杨普华,马永海等.大庆油田注水开发过程中油层岩石的润湿性和孔隙结构的变化[J].石油勘探与开发,1981(1):54-67.
    [56]谢武仁,杨威,杨光,等.川中地区上三叠统须家河组砂岩储层孔隙结构特征[J].天然气地球科学,2010,21(3):435-440.
    [57]杨晓萍,邹才能,李伟,等.四川盆地中部三叠系香溪群储层特征及成岩孔隙演化[J].矿物岩石地球化学通报,2006,25(1):55-59.
    [58]蒋裕强,郭贵安,陈辉,等.川中地区上三叠统须家河组二段和四段砂岩优质储层成因探讨[J].油气地质与采收率,2007,14(1):18-21.
    [59]胡明毅,李士祥,魏国齐,等.川西前陆盆地上三叠统须家河组致密砂岩储层评价[J].天然气地球科学,2006,17(4):456-458.
    [60]杨天鸿,唐春安,谭志宏,等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.
    [61] BRACE W F.A note on permeability change in geologic materials due to stress[J].Pure Appl.Geophys.,1978,116:627-633.
    [62] SCHULZE O,POPP T,KERN H.Development of damage and permeability in deforming rock salt[J].Engineering Geology,2001,61(1):163-180.
    [63] ODA M T,TAKEMURA A,AOKI T.Damage growth and permeability change in triaxial compression tests of Inada granite[J].Mechanics of Materials,2002,34(2):313-331.
    [64]韩宝平,冯启言,于礼山,等.全应力-应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8(2):127-128.
    [65] WANG J A,PARK H D.Fluid permeability of sedimentary rocks in a complete stress-strain process[J].Engineering Geology,2002,63(2):291-300.
    [66] ZHU W,WONG T F.The transition from brittle faulting to cataclastic flow:permeability evolution[J].J.Geophysics.Res.,1997,102(B2):3 027-3 041.
    [67] BIOT M A.General theory of three-dimensional consolidation[J]. J.Appl.Phys.,1941,12:155-164.
    [68] BAI M , ELSWORTH D.Coupled processes in subsurface deformation , flow , and transport[M].[S.l.]:American Society of Civil Engineers,2000.
    [69] BRUNO M S,NAKAGAWA F M.Pore pressure influence on tensile fracture propagation in sedimentary rock[J].International Journal of Rock Mechanics and Mining Sciences,1991,28(4):261-273.
    [70] BRIDGEMAN P W.Breaking tests under hydrostatic pressure and conditions of rupture[J].Phil.Mag.,1912,24:63-80.
    [71] RICE J R,CLEARY M P.Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J].Rev.Geophys.Space Phys.,1976,14:227-241.
    [72] BERNABE Y.The effective pressure law for permeability in Chelmsford granite and bare granite[J].International Journal of Rock Mechanics and Mining Sciences and Geomech.Abstr.,1986,23(3):267-275.
    [73]赵阳升.煤岩流体力学[M].北京:煤炭工业出版社,1993.
    [74] XING Z,SANDERSON D J,BARKER A J.Numerical study of fluid flow of deforming fractured rocks using dual permeability model[J].Geophys.J.Int.,2002,151:452-468.
    [75]徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践,2001, 23(4):42-45.
    [76]李传亮,孔祥言,徐献芝,李培超.多孔介质的双重有效应力[J].自然杂志,1999, 21(5): 288-297.
    [77] Zhang S, Cox S F, Paterson M S. The influence of room temperature deformation on porosity and permeability in calcite aggregates[J]. J. Geophys. Res. 1994,99(B8): 15761-15775.
    [78] Modecai M, Morris L H. An investigation into the changes of permeability occurring in a sandstone when failed under triaxial stress conditions. Proc. U.S. Rock Mech. Symp. 1971,12:221-239.
    [79] Peach C J, Spiers C J. Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock[J]. Tectonophysics. 1996,256(1—4):101-128.
    [80] Stoemont J C, Daemen J.J.K. Laboratory study of gas permeability changes in rock salt during deformation[J]. International Journal of Rock Mechanics and Mining Sciences, 1992, 29(4):323-342.
    [81]李世平,李玉寿.吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):231-235.
    [82]韩宝平,冯启言等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8 (2):127-128.
    [83] Jincai Zhang, Mao Bai, Roegiers J C, Wang Jianxue, Liu Tianquan. Experimental determination of stress-permeability relationship.Paciffic Rock 2000 , Girard , Liebman, Breeds&Doe, Balkema,Rotterdam:817-822.
    [84]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23 (1) :68-70.
    [85]姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J].岩土工程学报,2001,23 (2) :153-156.
    [86] Zhu W, Wong T F. The transition from brittle faulting to cataclastic flow: permeability evolution. J. Geophys.Res. 1997, 102 (B2): 3027- 3041.
    [87] Zoback M D, Byerlee J D. The effect of microcrack dilatancy on the permeability of Westerly granite. J.Geophys. Res. 1975,80:752-755.
    [88] Gatto H G. The effect of various states of stress the permeability of Berea sandstone, M.S. thesis, Texas A&M 1Jniv., College Station,1984.
    [89] Otto Schulze, Till Popp, Hartmut Kern. Development of damage and permeability in deforming rock salt[J].Engineering Geology ,2001,61(2—3):163-180.
    [90] Cristescu N, Hunsche U. Time effects in rock mechnics. [C]// Series, Materials,Modelling and Computation. Chichester:Wiley,1998:342-438.
    [91] Somerton W H, Soylemezoglu I M, Dudley R C. Effect of stress on permeability of coal. Int. Rock Mech.Min.Sci.,1975,12:129-145.
    [92] Oda M., Fabric tensor for discontinuous geological materials[J].Soils and Foundations 22(4):1982,96-108.
    [93] Rhett, D.W., Teufel, L.W,, Stress path dependence of matrix permeability of North Sea sandstone reservoir rock. Proc. U.S. Symp. Rock Mechan,1992,33:345-354.
    [94] Kejin Wang, Daniel C. Jansen, Surendra P. Shah, Permeability study of cracked concrete. Cement and Concrete Research, 1997,27(3):381-393.
    [95] Kemeny J M, Cook NGW,Micromechanics of deformation in rocks. In: Sheh SP, editor,Toughening mechanics in quasi-brittle materials, Dordrecht:Kluwer Academic Publishers, 1991:155-188.
    [96] Ju J W, Lee X. Micromechanical damage model for brittle solids, partl: tensile loadings. J of Engineering Mechanics. 1991,117(7):1495-1514.
    [97] Shao J F, Hoxha D, Batr M, Homand F, Duveau G, Souley M, Hoteit N. Continuous modeling of induced anisotropic damage in granite. Int. J. Rock Mech. Min. Sci. 1999,36: 1001-1012.
    [98]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22 (10):1581-1585.
    [99]蒋宇.周期荷载作用下岩石疲劳破坏及变形发展规律[硕士学位论文][D].上海:上海交通大学,2003.
    [100]山下秀,杉木文男,今井忠南,等.岩石蠕变及疲劳破坏过程和破坏极限研究[J].辽宁工程技术大学学报(自然科学版),1999,18(5):452-455.
    [101] McCall K R,Guyer R A. Equation of state and wave propagation in hysteretic nonlinear elastic material[J]. Journal of Geophysical Research,1994,99(B12):23-30.
    [102] Memory,Holcomb D J. Relaxation and microfracturing in dilatant rock[J]. Journal of Geophysical Research,1981,86(B7):6-11.
    [103] Tutuncu A N,Podio A L,Sharma M M. Nonlinear viscoelastic behavior of sedimentary rocks, Part II: Hysteresis effects and influence of type of fluid on elastic moduli[J]. Geophysics,63, n 1,Jan-Feb,1998,195-203.
    [104]刘云平,席道瑛,张程远等.循环应力作用下大理岩砂岩的动态响应[J].岩石力学与工程学报,2001,20(2):216-219.
    [105]席道瑛,王春雷,田象燕.滞回曲线对应力振幅和频率的响应[J].物探化探计算技术, 2001,23(2):121-124.
    [106]陈运平,席道瑛,薛彦伟.循环载荷下饱和岩石的应力-应变动态响应[J].石油地球物理勘探,2003,38(4):409-413.
    [107]陈运平,席道瑛,薛彦伟.循环荷载下饱和岩石的滞后和衰减[J].地球物理学报,2004,47(4):672-679.
    [108] Bagde.M.N.,Petros.V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences,v42,n2,February,2005. 237-250.
    [109]许江,王维忠,杨秀贵,等.细粒砂岩在周期性循环荷载作用下变形实验[J].重庆大学学报(自然科学版),2004,27(12):60-62.
    [110]许江,鲜学福,王鸿,等.循环加、卸载条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报,2006,25(s.1):3040-3045.
    [111]周尚志,党发宁,陈厚群,等.岩石类材料疲劳破坏裂纹扩展分析的数值方法[J].岩土力学,2008,29(3):769-774
    [112]樊秀峰,简文彬.砂岩疲劳特性的超声波速法试验研究[J].岩石力学与工程学报,2008,27(3):557-563
    [113]王德玲,沈疆海,葛修润.岩石疲劳扰动模型的研究[J].水利与建筑工程学报,2006,4(2):32-33+58.
    [114] ZHANG Ping,XU Jian-guang,LI Ning. Fatigue properties analysis of cracked rock based on fracture evolution process[J]. Journal of Central South University of Technology,2008,15(1):95?99
    [115] W. C. Kowalski .MECHANICAL FATIGUE OF ROCKS AND ATMOSPHERIC PRESSURE CHANGES[J]. Bulletin of Engineering Geology and the Environment,1993,48(1):77-82.
    [116] T. Wichtmann, A. Niemunis, Th. Triantafyllidis. Strain accumulation in sand due to cyclic loading: Drained cyclic tests with triaxial extension[J]. Soil Dynamics and Earthquake Engineering, 2007,27(1):42-48.
    [117] T. Wichtmann, A. Niemunis, Th. Triantafyllidis. On the influence of the polarization and the shape of the strain loop on strain accumulation in sand under high-cyclic loading[J]. Soil Dynamics and Earthquake Engineering,2007,27(1):14-28.
    [118]王桂萱,桑野二郎,竹村次朗.砂质混合粘土的孔隙水压力和残余变形特性研究[J].岩土力,2005,26(3):62-68.
    [119]邵龙潭,洪帅,郑卫锋.循环孔隙水压力作用下饱和砂土变形的试验研究[J].岩土工程学报, 2006,28(4):428-431.
    [120]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [121] S.C. Yuan, J.P. Harrison. A review of the state of the art in modelling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rocks[J].International Journal of Rock Mechanics & Mining Sciences,2006,(43) :1001-1022.
    [122]韦立德.岩石力学损伤和流变本构模型研究[博士学位论文][D].南京:河海大学,2003.
    [123]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1992.
    [124]刘红岩,王根旺,刘国振.以损伤变量为特征的岩石损伤理论研究进展[J].爆破器材,2004(6):25-29.
    [125] Krajcinovic D. Continuum Damage Theory of Brittle Meterials[J]. Appl. Mech. Rev.,1981,48(4):809 -815.
    [126] ORTIZ M. A constitutive theory for the inelastic behavior of concrete[J]. Mechanics of Materials,1985,4(1):67-93.
    [127] YAZDANI S,SCHREYER H L. An anisotropic damage model with dilatation for concrete[J]. Mech. Mater.,1988,7(3):231-244.
    [128] COSTIN L S. Damage mechanics in the post-failure regime[J]. Mech. Mater.,1985,4:149-160.
    [129] LU Y F,SHAO J F. Modelling of anisotropic damage in brittle rocks under compression dominated stresses[J]. Int. J. Numer. Anal. Meth. Geomech.,2002,26(2):230-247.
    [130]卢应发,刘德富,吴延春,等.岩石与水相互作用的正交各向异性损伤数值模拟[J].岩石力学与工程学报,2007,26(2):323-330.
    [131] Gurson A .L .Theory of ductile rupture by void nucleation and growth: Part I yield criteria and flow rules for porous ductile media[J].J. of Eng.Materials and Tech.,1977,Vol.99:2-15.
    [132] Horii H and Nemat-Nasser S. Overall modul of solids with microcracks: load-induced anisotropy[J]. J. Mech. Phys. So lids,1983,31:315-330.
    [133] Nemat-Nasser S and Obata M. A microcrack model of dilatancy in britle materials[J]. Transaction of the A SME,1988,March,55:24-35.
    [134] Tu J.W and Lee X.. Micromechanical damage models for britle solids,part I Aensileloadings[J]. J. Engng. Mech.,1991,117(7):1495-1514.
    [135] Tu J. W and Lee X.. Micromechanical damage models for britle solids, part II:compressive loadings[J].J. Engng.Mech,1991,Vol.11 7,NO.7:1515-1536.
    [136] Fang Z,Harrison JP. Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions[J]. Int J Rock Mech Min Sci, 2002,39:459-476.
    [137] Hazzard JF,Collins DS,Pettitt WS,Young RP. Simulation of unstable fault slip in granite using a bond-particle model[J]. Pure Appl Geophys,2002,159:221-45.
    [138] Katsman R,Aharonov E,Scher H. Numerical simulation of coMPaction bands in high-porosity sedimentary rock[J]. Mechanics of Materials,2005,37:143-162.
    [139]严春风.岩体强度准则概率模型及其应用[M].重庆:重庆大学出版社,1999.
    [140]刘力.层状复合岩石损伤本构关系与断裂破坏准则及其工程应用[博士学位论文][D].重庆:重庆大学建筑工程学院,1999.
    [141]李树春.周期荷载作用下岩石变形与损伤规律及其非线性特征[博士学位论文][D].重庆:重庆大学,2008.
    [142]刘雄.岩石流变学[M].北京:地质出版社,1994.
    [143]蔡美峰主编.岩石力学与工程[M].北京:科学出版社,2002.
    [144] H.A.W.CORNELISSEN,Fatigue Failure of concrete in Tension[J]. HERSON,1984,29(4): 68.
    [145]林燕清.混凝土疲劳累计损伤与力学性能劣化研究[博士学位论文][D].哈尔滨建筑大学.1998.
    [146]林燕清,欧进萍.混凝土疲劳剩余寿命预测的变形演变决定法[J].工业建筑,1999,29(9): 46-52.
    [147]林燕清,欧进萍.混凝土多级等幅疲劳的变形发展规律试验研究[J].哈尔滨建筑大学学报,1999,32(1):11-17.
    [148]张有天.岩石水力学与工程[M].北京:中国水利水电出版社.2005.
    [149] Singh, Neeraj Kumar,Snoussi, Hichem,Hewson, David,et al. Wavelet transform analysis of the power spectrum of centre of pressure signals to detect the critical point interval of postural control[J]. Communications in Computer and Information Science, 2010,52:235-244 .
    [150] Li Hui,Lin Qi-Zhong,Wang, Qin-Jun,et al. Research on spectrum denoising methods based on the combination of wavelet package transformation and mathematical morphology[J]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis. 2010,30(3): 644-648.
    [151]万红,姜凤茹.心电信号的小波阈值去噪算法研究[J].微计算机信息,2008,7(3):156-158.
    [152]王大凯,彭进业.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006.
    [153]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [154] Krajcinovic D.Continuous damage mechanics[J].Applied Mech.Rev.,1984,37(1):1-5.
    [155]李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[博士学位论文][D].徐州:中国矿业大学,1995.
    [156]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [157]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [158]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [159]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187.
    [160]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [161]曾亚武,赵震英,朱以文.岩石材料破坏形式的分叉分析[J].岩石力学与工程学报,2002,21(7):948-952.
    [162]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.16-19.
    [163]魏佳.孔隙压力对深部岩体蠕变影响的理论研究[硕士学位论文][D].辽宁:辽宁工程技术大学,2006.
    [164]程育仁,缪龙秀,侯炳麟.疲劳强度[M].北京:中国铁道出版社,1990.
    [165]章清叙,葛修润,黄铭,等.周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J].岩石力学与工程学报,2006,25(3):473-478.
    [166]席道瑛,刘小燕,张程远.应力控制疲劳载荷作用下循环硬化的应变响应[J].岩石力学与工程学报,2003,22(11):1807-1810.
    [167]秦四清.初论岩体失稳过程中耗散结构的形成机制[J].岩石力学与工程学报,2000,19(3):265-269.
    [168]潘华,邱洪兴.基于损伤力学的混凝土疲劳损伤模型[J].东南大学学报(自然科学版), 2006,36(4):605-608.
    [169]殷有泉.岩石的塑性、损伤及其本构表述[J].地质科学,1995,30(1):64-70.
    [170]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1992.
    [171]许江,李树春,刘延保.基于Drucker-Prager准则的岩石损伤本构模型研究[J].西南交通大学学报,2007,42(3):278-282.
    [172]席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性黏弹性响应[J].地球物理学报,2002,45(1):109-118.
    [173] Holcomb D J.Memory relaxation,microfracturing in dilatant rock[J].J.Geophys.Res.,1981,86(B7):6 235-6 248.
    [174] Cook, N. G. W,K. Hodgson. Some Detailed Stress-Strain Curves for Rock[J]. J. Geophys. Res.,1965,70(12),2883-2888.
    [175] Tutuncu A N,Podio A L,Sharma M M.Nonlinear viscoelastic behavior of sedimentary rock,part I:effect of frequency and strain amplitude[J].Geophysics,1998,63(1):184-190.
    [176] Tutuncu A N,Podio A L,Sharma M M.Nonlinear viscoelastic behavior of sedimentary rock,part II:hysteresis effects and influence of type of fluid on elastic moduli[J].Geophysics,1998,63(1):195-203.
    [177]张国新,李广信,郭瑞平.不连续变形分析与土的应力应变关系[J].清华大学学报,,2000,40(8):102-105.
    [178]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [179]葛修润,任建喜,蒲毅彬,等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [180] Morrow,JoDean.In Internal Friction,Damping,and Cyclic Plasticity[J].ASTM STP 378,American Society for Testing and Materials,1965,45-87.
    [181] Koichi Akai. Plate Loading Tests on Multi-played Sedimentary Rocks. The 5th National Rock Mechanics Conference,Australia,1983,l:121-124
    [182]赵忠虎,鲁睿,张国庆.岩石失稳破裂的能量原理分析[J].金属矿山,2006,364(10): 17-20+37.
    [183]许江,杨红伟,李树春,姜永东.循环加、卸载孔隙水压力对砂岩变形特性影响实验研究[J] .岩石力学与工程学报,2009,28(5):892-899.
    [184]许江,杨红伟,彭守建,张媛;李道娟,姜永东.孔隙水压力与恒定时间对砂岩变形的实验研究[J].土木建筑与环境工程,2010,32(2):19-25.
    [185] Grover H.J.,Dehlinger P.,and McClure G.M..Investigation of Fatigue Characteristics of Rock.Reported by Battelle Memorial Institute to Drilling Research,Incorporated,Nov.30,1950.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700