用户名: 密码: 验证码:
软岩瞬时及流变力学特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的快速发展,交通、矿山、水利水电等工程领域出现了大量的边坡、地下洞室、坝基等岩土工程,这些岩土工程中存在的岩体的稳定性问题通常是工程建设进程与安全的重要制约因素。影响岩体稳定性的因素众多,诸如岩体所处的应力状态、各向异性、尺寸效应、节理倾角以及随时间推移产生的流变效应等。地下工程的施工经常遇到软弱岩体,大规模的地下开挖及回填使得地下工程周围地基的稳定性和软岩地基的力学特性研究显得十分重要和迫切。本文以典型软岩-泥质粉砂岩和软弱夹层为主要研究对象,研究了考虑应力路径、节理倾角及卸荷速率等因素影响下的软岩瞬时力学特性及其在恒定外荷载长期作用下的流变力学特性,主要研究工作如下:
     (1)对完整软岩进行了瞬时三轴压缩试验,研究了不同围压下的软岩强度、变形及破坏特征。试样结果表明,软岩瞬时三轴压缩过程中表现出典型的延性破坏特征,随围压增高未出现明显的脆-延转化点。
     (2)对含三种不同倾角的断续节理软岩进行了瞬时三轴压缩试验,结果表明,节理软岩瞬时三轴压缩强度明显低于完整软岩,且节理倾角40°的试样强度最高,0°的其次,60°的最低,且随着围压的增高,节理对试样的应力应变特性影响程度降低。节理倾角60°的试样破坏时沿预制节理面端部扩展形成贯通破裂面,节理倾角分别为0°和40°的试样则从左右节理面端部开始沿近轴向应力方向扩展直至形成一组至两组贯通剪切破裂面,预制断续节理间并未贯通形成破坏面。
     (3)对完整软岩进行了不同卸围压速率下的恒轴压卸围压试验,试验结果表明,试样达到破坏所需的围压卸荷量随卸荷速率加快呈对数形态增大,且应力应变特性及破坏特征均受卸荷速率影响显著。根据试验结果,提出反映试样卸荷过程中的变形模量随围压卸荷量变化规律的公式E(σU)=a*e(b/σuc+d)并在其中引入参数c表征不同的卸荷速率。
     (4)对含不同倾角断续节理软岩进行恒轴压卸围压试验,试验结果表明,预制节理对试样强度影响显著,含节理试样破坏所需的围压卸荷量约为完整试样的58%-84%,且节理倾角为60°的试样强度降低最显著。节理试样卸荷破坏时,变形模量降低幅度较大,其降低程度为同条件下完整试样的2-3倍。与完整试样相比,节理倾角0°和40°的试样的峰值变形及残余变形和完整试样接近,而节理倾角60°的试样峰值及残余变形明显小于完整试样。节理倾角对试样破坏形态影响显著,节理倾角与试样剪切破坏角之间关系较为复杂,无明显规律可循。
     (5)根据亭子口水利枢纽坝基实际工程应力状态,进行了一组四级正应力水平下的软弱夹层剪切流变试验,试验结果表明,软弱夹层剪切流变变形特性显著,在各级剪应力水平下有较大的流变变形量。根据试验结果分析,提出用u=m×enτ的指数函数关系可以较好的表征试样的平均及稳态流变速率变化规律,并基于等时簇曲线法,提出利用u-△τ/△u曲线确定流变屈服拐点的新方法,结果证明该方法便捷直观,能准确的确定软弱夹层的长期抗剪强度,对工程实际具有一定的参考价值。
     (6)根据亭子口水利枢纽坝基实际工程应力状态,进行了一组四级正应力水平下的软岩剪切流变试验,试验结果表明软岩流变特性与软弱夹层基本相似,但软岩流变变形量远小于软弱夹层。根据软岩流变曲线特征提出了软岩剪切流变经验方程u=u0+A(1-exp(-Bt))+Ctn,拟合结果表明该经验方程能较好的反映软岩各阶段的流变变形特征。
     (7)通过瞬时三轴压缩试验确定了完整软岩在不同围压下的抗压强度,据此确定出软岩试样在不同围压下的三轴压缩流变试样的轴向应力水平分级方案。采用RLW-2000岩石三轴流变试验机对完整软岩进行了不同围压下的三轴流变力学试验,分析了不同围压条件下软岩试样的轴向及侧向变形随时间的变化规律;探讨了加速流变阶段软岩试样流变变形及速率的发展趋势和特征;分析了不同围压条件下的软岩试样三轴流变破裂形式与机制。
     (8)基于软岩三轴压缩流变试验结果,采用RLW-2000岩石三轴流变试验机对完整及节理软岩进行了不同应力水平及不同围压下的三轴卸荷流变力学试验,分析了不同应力水平及围压条件下完整及节理软岩试样的轴向及侧向变形随时间的变化规律;探讨了加速流变阶段完整及节理软岩试样流变变形及速率的发展趋势和特征。
     (9)基于软岩试样三轴流变全过程曲线,参考流变本构模型的选取及参数辨识流程,利用线性Burgers流变本构模型,通过Levenberg-Marquardt非线性优化最小二乘法对软岩试样流变模型参数进行了辨识,并分析了辨识所得的试样轴向及侧向流变参数随应力水平及围压的变化规律。
     (10)以线性Burgers流变模型为基础,将一个新的黏性元件与Burgers模型串联起来,并在该元件的黏滞系数ηD中引入损伤因子D,建立了一个新的非线性损伤流变模型,以便更好的描述流变全过程曲线中的非线性加速流变变形阶段。验证结果表明该模型能与流变试验曲线很好的吻合,反映了该模型的正确性与合理性。
     (11)采用提出的非线性损伤流变模型对亭子口水利枢纽坝基工程进行了数值模拟计算,研究了坝基岩体的流变力学特性及其长期稳定性,研究成果对亭子口水利枢纽坝基岩体的长期稳定与安全具有一定的参考价值和指导意义。
With rapid economic development, a great number of geotechnical engineering such as slope, underground cavern and dam foundation had appeared in engineering fields such as transportation, mine, water conservancy and hydropower engineering. It is noteworthy that the rock stability in these geotechnical engineering is usually the important restrictive factors of the construction process and safety. As we all know there are many factors which can affect the rock stability, such as stress state, anisotropy, size effect, joint inclination, the rheological effects appeared with time, and so on.
     In the construction of the underground works the weak rock are frequently encountered, the large-scale underground excavation and backfill make the research on the stability of surrounding rock foundation and mechanical properties of soft rock foundation become quite important and urgent. In this paper, the typical soft rock-muddy siltstone and soft interlayer were took as the main study objects to study the instantaneous mechanical properties of soft rock and the rheological mechanical properties under the long-term effect of constant external load, considering the influence of stress path, joint inclination, unloading rate and some other factors. The main research work is as follows:
     (1) The instantaneous triaxial compression test was carried out on the intact soft rock mass to study the strength, deformation and damage characteristics of soft rock mass under different confining pressures. Test results show that in the process of instantaneous triaxial compression the typical ductile failure features is obvious, however with increase of the confining pressures the obvious brittle-ductile transition points didn't appeared.
     (2) The instantaneous triaxial compression test has also been carried out on the soft rock masses with three different inclinational intermittent joints; the test results show that the instantaneous triaxial compression strength of the jointed soft rock is significantly lower than that of the intact soft rock. What's more the strength of rock mass with40°joint inclination is the highest, the strength of rock mass with0°joint inclination is the second, and the strength with60°joint inclination is the lowest. Moreover the influence of joints on rock stress-strain feature reduces with the increase of confining pressures. In the destruction process for rock mass with60° joint inclination, the penetrating failure surface was extended from the precast joint surface, for rock mass with0°and40°joint inclinations one or two set penetrating shear failure surfaces was finally formed from the end of the left and right precast joint surfaces along the direction of the axial stress, however the precast joint surface didn't run-through, and didn't form the failure surface.
     (3) The confining pressure unloading test with constant axial compression pressure was carried out on the intact soft rock which considered the different unloading rates, the test results show that the unloading confining pressure amount required in destruction increases in logarithmic form with the increase of the unloading rate, what's more both the stress-strain behavior and damage characteristics are influenced by the unloading rate significantly. According to the test results, the formula which can reflect the variation law formula E(σU)=a*e(b/σuc+d) of deformation modulus with the confining pressure unloading amount during unloading was proposed. In the formula, the parameter C represents the unloading rate.
     (4) The confining pressure unloading test with constant axial compression pressure was also carried out on the soft rock masses with three different inclinational intermittent joints; the test results show that the sample strength were significantly affected by the precast joint. For rock samples with joints, the confining pressure unloading amount required in destruction is about58%-84%the amount of the intact rock mass, what's more for rock samples with60°joint inclination the strength decrease is the most significant. For joint rock samples, the deformation modulus dropped with large amplitude in destruction, and the decrease extent is2-3times of the intact rock samples in same condition. CoMPared with the intact rock samples, the peak deformation and residual deformation of rock samples with0°or40°joint inclination is close to that of the intact rock mass, while the value of rock samples with60°joint inclination is significantly less than that of the intact rock mass. All in all, the influence of the joint inclination on failure mode is remarkable; however the relationship between the joint inclination and the shear failure angle is quite complex without obvious pattern.
     (5) According to the actual engineering stress state of the dam foundation in Tingzikou project, a group of shear rheological tests on the weak intercalation under four normal stress levels was carried out, the test results show that the shear rheological deformation properties of the weak intercalation is significant, and the rheological deformation amount at all shear stress levels is large. According to the test results analysis, the exponential function u=m×enτ was proposed to express the change law of the average and state rheological rate, and on base of the isochronous curve method a new method which use the curves u-Δ τ/Δ u to certify the yield inflection point was proposed. Finally the calculation results show that the method is quite convenient and intuitive, and can calculate the long-term shear strength of the weak intercalation accurately, what's more the method has a certain reference value for the actual engineering.
     (6) According to the actual engineering stress state of the dam foundation in Tingzikou project, a group of shear rheological tests on the soft rock mass under four normal stress levels was also carried out, the test results show that the rheological deformation properties of the soft rock is similar to that of the weak intercalation, but the rheological deformation of the soft rock is far less than that of the weak intercalation. According to the rheological curve of the soft rock, the shear rheological empirical equation u=u0+A (1-exp (-Bt))+Ctπ was proposed, and the fitting results show that the empirical equation can reflect the rheological deformation characteristic of soft rock in various stages better.
     (7) According to the compressive strength of the intact soft rock at different confining pressures which were got in the instantaneous triaxial compression test, the axial stress level classification scheme of triaxial compression rheological samples under different confining pressures was set up. The triaxial compression rheological test of the intact soft rock under different confining pressures was conducted with RLW-2000, the change law of the axial and lateral deformation with time under different confining pressures was analyzed, the develop trend and characteristics of the rheological deformation and rate in rheological deformation accelerated phase was researched, and the triaxial rheological rupture form and mechanism under different confining pressures was analyzed.
     (8) Based on the triaxial compression rheological experimental results of soft rock, the triaxial unloading rheological test of the intact and joint soft rock under different confining pressures was conducted with RLW-2000, the change law of the axial and lateral deformation with time under different confining pressures was analyzed, the develop trend and characteristics of the rheological deformation and rate in rheological deformation accelerated phase was researched.
     (9) On base of the triaxial rheological complete curve of the soft rock samples, and refer to the selection and the parameter identification process of the rheological constitutive model, the linear rheological constitutive model Burgers was used to identify the soft rock parameters by the nonlinear optimize least squares Levenberg-Marquardt, what's more the change law of the identified axial and lateral rheological parameters with the variation of stress level and confining pressure was also been analyzed.
     (10) On base of the linear rheological model Burgers, A new viscous element was cascaded with Burgers model, and a damage factor D was introduced to the element viscosity coefficient ηD, and then a new non-linear rheological damage model was established, which can better describe the nonlinear accelerated rheological deformation stage in the rheological complete curves. The verification results show that the model can close fit to the rheological test curves, reflecting the accuracy and reasonableness of the model.
     (11) The nonlinear damage rheological model was used to simulate the dam foundation of Tingzikou project, and the rheological mechanical characteristics and long-term stability of the rock mass in dam foundation were analyzed, the research results have an a certain reference value and guiding significance to the long-term stability and security of the rock mass in Tingzikou project.
引文
[001]周维恒.高等岩石力学.北京:水利电力出版社,1990:25.
    [002]中华人民共和国水利部.工程岩体分级标准(GB 50218-94).北京:中国计划出版社,1994:1-50.
    [003]李建林著.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [004]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29.
    [005]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报,1998,26(3):330-334.
    [006]徐平,周火明.高边坡岩体开挖卸荷效应流变数值分析[J].岩石力学与工程学报,2000,19(4):481-485.
    [007]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报,2003,25(3):336-338.
    [008]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16.
    [009]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3):270-275.
    [010]范广勤.岩土工程流变力学[M].北京:煤矿工业出版社,1993,8.
    [011]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [012]刘雄.岩石流变学概论[M].北京:地质出版社,19.94,6.
    [013]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(5):99-103.
    [014]赵永辉,何之民,沈明荣.润扬大桥北锚旋岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586.
    [015]金丰年,范华林,浦奎源.岩石蠕变损伤模型研究[J].工程力学,2001(supp):227-231.
    [016]王红伟,王希良,彭苏萍.软岩巷道围岩流变特性试验研究[J].地下空间,2001,21(5):361-363.
    [017]孟召平,彭苏萍,凌标灿.不同侧压下沉积岩石变形与强度特征[J].煤炭 学报,2000,25(1):15-18.
    [018]王国民.软质粉砂岩变形与强度的试验分析[J].岩土力学,2000,21(4):340-342.
    [019]赵法锁,张伯友,卢全中等.某工程边坡软岩三轴试验研究[]J.辽宁工程技术大学学报,2001,20(4):478-480.
    [020]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报,2006,31(2):150-153.
    [021]于德海,彭建兵.三轴压缩下水影响绿泥石片岩力学性质试验研究[J].岩石力学与工程学报,2009,28(1):205-211.
    [022]哈秋舲,李建林,张永兴,等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998.
    [023]梅剑云,付冰骏,康文法.中国岩石力学的发展与现状[J].岩石力学与工程学报,1983,1(2):22-32.
    [024]陈颙,姚孝新,耿乃光.应力途径,岩石的强度和体积膨胀[J].中国科学,1979,(11):1093-1100.
    [025]周济芳,李建林,陈兴周.卸荷岩体力学特性研究的试验条件[J].三峡大学学报(自然科学版),2004,26(6):514-516.
    [026]许东俊,耿乃光.岩体变形和破坏的各种应力路径[J].岩土力学,1986,7(2):17-25.
    [027]周小平,哈秋聆,张永兴等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3245.
    [028]FENG Xia-ting,PAN Peng-zhi,ZHOU Hui.Simulationof the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1091-1108.
    [029]PAN Peng-zhi,FENG Xia-ting,HUDSON J A.Numerical simulations of class I and class Ⅱ uniaxial compression curves using an elasto-plastic cellular automaton and a linear combination of stress and strain as the control method[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1109-1117.
    [030]李建林,哈秋舲.三峡卸荷岩体宏观力学参数三维数值模拟[J].武汉水利电力大学宜昌学报,1997,19(3):1-6.
    [031]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2): 13-16.
    [032]沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031.
    [033]张黎明,王在泉,王建新等.岩石卸荷破坏的试验研究[J].四川大学学报(工程科学版),2006,38(3):34-37.
    [034]汪斌,朱杰兵,邬爱清等.锦屏大理岩加、卸荷应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,27(10):2138-2145.
    [035]王元汉,苗雨,李银平.预制裂纹岩石压剪试验数值模拟分析[J].岩石力学与工程学报,2004,23(18):3113-3116.
    [036]黄凯珠,林鹏,唐春安,等.双轴加载下断续预置裂纹贯通机制的研究[J].岩石力学与工程学报,2002,21(6):808-816.
    [037]WONG R H C, CHAU K T. Crack coalescence in a rock-like material containing two cracks[J].International Journal of Rock Mechanics and Mining Sciences, 1998,35(2):147-164.
    [038]NASSERI M H, RAO K S, RAMAMURTHY T. Failure mechanism in schistose rocks[J].International Journal of Rock Mechanics and Mining Sciences,1997, 34(3/4):219-223.
    [039]SINGH M,RAO K S,RAMAMURTHY T. Strength and deformational behaviour of a jointed rock mass[J].Rock Mechanics and Rock Engineering,2002,35(1): 45-64.
    [040]Koichi Akai. Plate loading testing on multi-played sedimentary rocks[A]. The 5th national rock mechanics conference. Australia,1983.1
    [041]HOMAND F,MOREL E,HENRY J P,et al. Characterization of the moduli of elasticity of an anisotropic rock using dynamic and static methods [J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1993,30(5):527-535.
    [042]张平,李宁,贺若兰等.动载下两条断续预制裂隙贯通机制研究[J].岩石力学与工程学报,2006,25(6):1210-1217.
    [043]李银平,杨春和.裂纹几何特征对压剪复合断裂的影响分析[J].岩石力学与工程学报,2006,25(3):462-466.
    [044]林鹏,黄凯珠,王仁坤等.不同角度单裂纹缺陷试样的裂纹扩展与破坏行为[J].岩石力学与工程学报,2005,24(增2):5652-5657.
    [045]SAMMIS C G,ASHBY M F.The failure of brittle porous solids under compressive stress states[J]. Acta Metallurgy,1986,34(3):511-526.
    [046]BOBET A.The initiation of secondary cracks in compression[J]. Engineering Fracture Mechanics,2000,66(2):187-219.
    [047]CAI M,KAISER P K,TASAKA Y,et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5): 833-847.
    [048]李术才,朱维申.复杂应力状态下断续节理岩体断裂损伤机制研究及其应用[J].岩石力学与工程学报,1999,18(2):142-146.
    [049]BOBET A,EINSTEIN H H.Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(7):863-888.
    [050]EBERHARDT E,STEAD D,STIMPSON B,et al.The effect of neighbouring cracks on elliptical crack initiation and propagation in uniaxial and triaxial stress fields[J].Engineering Fracture Mechanics,1998,59(2):103-115.
    [051]王士民,刘丰军,叶飞等.含预制裂纹脆性岩石破坏数值模拟研究[J].岩土力学,2006,27(增):235-238.
    [052]Wawersik W R,Brace W F.Post failure behavior of a granite and diabase [J]. Rock Mechanics,1971,3(2):61-85.
    [053]YANG Z F,CHEN J M,HUANG T H.Effect of joint sets on the strength and deformation of rock mass models[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(1):75-84.
    [054]李建林,王乐华.节理岩体卸荷非线性力学特性研究[J].岩石力学与工程学报,2007,26(10):1968-1975.
    [055]杨圣奇,温森,李良权.不同围压下断续预制裂纹粗晶大理岩变形和强度特性的试验研究[J].岩石力学与工程学报,2007,26(8):1572-1587.
    [056]李宏哲,夏才初,王晓东,周济芳,张春生.含节理大理岩变形和强度特性的试验研究[J].岩石力学与工程学报,2008,27(10):2118-2123.
    [057]东兆星,单仁亮.高应变率下岩石本构特性的研究[J].工程爆破,1999,6(2):5-9.
    [058]李永盛.加载速率对红砂岩力学效应的试验研究[J].同济大学学报,1995,23(3):265-269.
    [059]郭中华,朱珍德,花剑岚等.灰岩强度特性的试验分析与数学模拟[J].地下空间,2001,12(4):280-286.
    [060]国际岩石力学学会实验和现场试验标准化委员会.岩石力学实验建议方法(上集)[M].郑雨天,傅冰骏,卢世宗,等译.北京:煤炭工业出版社,1982,5—15.
    [061]沈明荣.岩体力学[M].上海:同济大学出版社,1999,12-16.
    [062]陶振宇.岩石力学的理论与实践[M].北京:水利出版社1981,6-60.
    [063]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621.
    [064]王飞,杜建坡,李秀芬.节理岩体卸荷强度特性的试验研究[J].地质灾害与环境保护,2008,19(3):104-108.
    [065]黄润秋,黄达.高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律的试验研究[J].岩石力学与工程学报,2010,29(1):21-33.
    [066]张凯,周辉等.不同卸荷速率下岩石强度特性研究[J].岩土力学,2010,31(7):2072-2078.
    [067]何满潮,景海河,孙晓明.软岩工程力学[MI.北京:科学出版社,2002,5.
    [068]刘特洪,林天健.软岩工程设计理论与施工实践[M1.北京:中国建筑工业出版社,2001,5.
    [069]Griggs D T. Creep of rocks[J]. Journal of Geology,1939,47:225-251.
    [070]Maranini E,Brignoli M.Creep behaviour of a weak rock:experimental characterization[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(1):127-138.
    [071]Li Yongsheng, Xia Caiehu.Time-dependent tests on intact rocks in unixaial compression[J].Int.J.Rock.Mech. Min.Sci. and Geomech. Abstr.2000,37(3): 467-475.
    [072]Gasc-Barbier M, Chanchole S, Berest P. Creep behavior of Bure clayey rock[J]. Applied Clay Science,2004,26:449-458.
    [073]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):300-312.
    [074]许宏发.软岩强度和弹模的时间效应研究[]J.岩石力学与工程学报,1997,16(3):246-251.
    [075]陈渠,西田和范,岩本健等.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报,2003,22(6):905-912.
    [076]刘光廷,胡显,陈凤岐等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [077]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报,2001,20(增):1882-1885.
    [078]徐卫亚,杨圣奇.节理岩石剪切流变特性试验与模型研究[J].岩石力学与工程学报,2005,24(Supp.2):5536-5542.
    [079]闫子舰,夏才初,王晓东,张春生.岩石节理流变力学特性及其本构模型[J].同济大学学报(自然科学版),2009,37(5):602-606.
    [080]Chan K S, Munson D E, FossumAF,etal. Inelastic flow behaviour of argillaceous salt[J]. Int.J. of Damage Mechanics,1996,(5):293314.
    [081]Chan K S, Munson D E, Bodner S R. Creep deformation and fracture in rock salt[A]. Aliabadi M H. Fracture of Rock[C]. Boston:Southampton WIT press, 1999.
    [082]Yahya O M L, Aubertin M, Julien M R. A unified representation of the plasticity creep and relaxation behavior of rock salt[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(5):787-800.
    [083]吴立新, 王金庄, 孟胜利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997,3(31):29-35.
    [084]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999(12):33-37.
    [085]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报,2002,25(7):96-98.
    [086]杨春和, 陈锋, 曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [087]陈沅江,潘长良,曹平等.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,13(3):735-742.
    [088]张向东, 李永靖, 张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [089]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].岩石力学与工程学报,2005,24(23):4253-4258.
    [090]刘江,杨春和,吴文,等.盐岩蠕变特性和本构关系研究[J].岩土力学,2006,27(8):1267-1271.
    [091]范庆忠,高延法,崔希海等.软岩非线性蠕变模型研究[J].岩土工程学报,2007,29(4):505-509.
    [092]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J]. 岩石力学与工程学报,2007,26(2):391-396.
    [093]赵延林, 曹平, 陈沅江等.分级加卸载下节理软岩流变试验及模型[J].煤炭学报,2008,33(7):748-753.
    [094]陈炳瑞,冯夏庭,丁秀丽等.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报,2005,24(2):207-211.
    [095]陈炳瑞,冯夏庭,丁秀丽等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报,2005,24(4):553-558.
    [096]杨林德,颜建平,王悦照等.围岩变形的时效特征与预测研究[J].岩石力学与工程学报,2005,24(2):212-216.
    [097]刘世君,高德军,徐卫亚.复杂岩体地应力场的随机反演及遗传优化[J].三 峡大学学报,2005,27(2):123-127.
    [098]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中国科学院研究生院博士论文,2005
    [099]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008,27(4):832-839.
    [100]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1): 136-142.
    [101]卢允德,葛修润,蒋宇,任建喜.大理岩常规三轴压缩全过程试验和本构方程的研究[J].岩石力学与工程学报,2004,23(15): 2489-2493.
    [102]王瑞红.砂岩卸荷力学特性研究[D].武汉大学研究生博士学位论文.武汉:2009:18-22.
    [103]王国民.软质粉砂岩变形与强度的试验分析[J].岩土力学,2000,21(4):340-342.
    [104]尤明庆.围压对杨氏模量的影响与裂隙摩擦的关系[J].岩土力学,2003,24(增):167-170.
    [105]赖勇.围压对杨氏模量的影响分析[J].重庆交通大学学报(自然科学版),2009,28(2):246-249.
    [106]尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报,2003,22(1):53-60.
    [107]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报,2006,31(2):150-153.
    [108]Wawersik W R,BraceW F.Post failure behavior of a granite and diabase [J].Rock Mechanics,1971,3 (2):61-85.
    [109]吴玉山.应力路径对凝灰岩力学特性的影响[J].岩土工程学报,1983,5(1):112-120.
    [110]朱杰兵.高应力下岩石卸荷及其流变特性研究[D].中国科学院研究生院博士学位论文.武汉:2009:27-30.
    [111]邓华锋.库水变幅带水-岩作用机理和作用效应研究[D].武汉大学研究生博士学位论文.武汉:2010:102-107.
    [112]尤明庆.基于粘结和摩擦特性的岩石变形与破坏的研究[J].地质力学学报,2005,11(3):286-292.
    [113]Bles J, Feuga B. The Fracture of Rocks [M]. London:North Oxford Academic, 1988,50-64.
    [114]钱鸣高,刘听成.矿山压力及其控制.北京:煤炭工业出版社,1991.
    [115]邱士利,冯夏庭,张传庆.不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(9):1807-1817.
    [116]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    [117]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报(自然科学版),1998,26(3):330-334.
    [118]高春玉,徐进,何鹏.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [119]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报,2003,25(3):336-338.
    [120]黄润秋,黄达.高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J].岩石力学与工程学报,2010,29(1):21-33.
    [121]李宏哲,夏才初,闫子舰,蒋坤,杨林德.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [122]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11):2205-2213.
    [123]庞正江,胡建敏.结构面剪切流变及其长期强度试验研究[J].岩土力学,2006,27(增):1179-1182.
    [124]程强,周德培,封志军.典型红层软岩软弱夹层剪切蠕变性质研究[J].岩石力学与工程学报,2009,28(增1):3176-3180.
    [125]张永安,李峰.红层泥岩的剪切蠕变试验研究[J].工程勘察,2010,4:23-26.
    [126]LAMA R D,VUTUKURI V S. Handbook on mechanical properties of rocks, testing techniques and results(Vol. Ⅱ) [M]. Clausthal:Trans. Tech. Publications, 1978.
    [127]孙均.岩土材料流变及其工程应用.
    [128]水利水电工程岩石试验规程SL264-2001.
    [129]罗润林,阮怀宁,朱珍德等.锦屏二级水电站岩石夹层非定常参数剪切蠕变模及参数识别研究[J].岩土力学,2006,27(supp2):239-243.
    [130]蒋昱州,徐卫亚,王瑞红.角闪斜长片麻岩流变力学特性研究[J].岩土力学,2011,32(增1):339-345.
    [131]柴波,殷坤龙,简文星,代云霞.层水岩作用特征及库岸失稳过程分析[J],中南大学学报(自然科学版),2009,40(4): 1092-1098.
    [132]沈明荣,张清照.绿片岩软弱结构面的剪切蠕变特性研究[J].岩石力学与工程学报,2010,29(6):1149-1155.
    [133]刘学增,苏京伟,王晓形.不同围岩级别凝灰熔岩剪切流变特性的试验研究[J].岩石力学与工程学报,2009,28(1):190-197.
    [134]朱杰兵,汪斌,邬爱清.锦屏水电站绿砂岩三轴卸荷流变试验及非线性损伤蠕变本构模型研究[J].岩石力学与工程学报,2010,29(3):528-534.
    [135]尤明庆,华安增.岩样三轴压缩过程中的环向变形[J].中国矿业大学学报,1997,26(1):1-4.
    [136]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537.
    [137]Wang Yu,Deng Huafeng.Research on shear creep property of soft rock in dam foundation,Advances in Building Materials,2011:2744-2747.
    [138]YANG Chun-he,Daemen J J K,YIN Jian-hua.Experimental investigation of creep behavior of salt rock[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(3):233-242.
    [139]Enrico Maranini,Tsutomu Yamaguchi.A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J].Mechanics of Materials, 2001,33(5):283-293.
    [140]SHAO J F,ZHU Q Z,SU K.Modeling of creep in rock materials in terms of material degradation[J].Computers and Geotechnics,2003,30(7):549-555.
    [141]Wang Yu,Li Jianlin.Investigation on shear creep mechanical properties of soft rock.Advances in Building Materials,2011:1024-1028.
    [142]王芝银,李云鹏岩体流变理论及其数值模拟[M].北京科学出版社,2008.
    [143]陈宝林.最优化理论与方法[M].北京:清华大学出版社,1989.
    [144]朱珍德,邢福东,王军等.基于灰色理论的脆性岩石抗压强度尺寸效应的试验研究[J].岩土力学,2004,25(8): 1234-1238.
    [145]蒋昱州,徐卫亚,王瑞红等.水电站大型地下洞室长期稳定性数值分析[J].岩土力学,2008,29(supp):52-58.
    [146]苑希民,李鸿雁,刘树坤等.神经网络和遗传算法在水科学领域的应用[M].北京:中国水利水电出版社,2002.
    [147]杨圣奇,徐卫亚,苏承东.考虑尺寸效应的岩石损伤统计本构模型研究[J].岩石力学与工程学报,2005,24(24):4484-4490.
    [148]蒋煜州,徐卫亚,王瑞红等.拱坝坝肩岩石流变力学特性试验研究及其长期稳定性分析[J].岩石力学与工程学报,2010,29(增2):3699-3709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700