基于先进数值模拟方法的复杂条件下土石坝渗流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水利工程中,水对工程设施的破坏是影响工程安全最主要的方面。其中尤以地下水对水利工程的作用不易观察,而且一经发现就难以挽回,常常引起严重的经济损失。因此水利工程对地下水渗流破坏的预防非常关键。
     土石坝作为世界坝工建筑中应用最广泛,发展最快的一种形式,结构简单,取材方便。这样的结构形式和材料特性,使得土石坝成为在各种形式的挡水建筑物中,与渗流关系最为密切的一种。渗流问题直接关系到土石坝工程的费用和安全,国内外许多溃决或破坏的土石坝工程,都是由渗流引发的。合理的渗流控制是保障土石坝安全运行的必要条件。
     本文选取土石坝中的粘土心墙坝作为典型研究对象,以辽宁柴河大坝为模板,建立了适于研究的三维数值模型。从土石坝渗流的机理出发,应用基于物理概念的先进水文数值模型InHM模型,通过对复杂条件下土石坝的渗流过程的模拟,得到不同状态工况下各时刻土石坝系统的浸润线位置、压强水头场、渗流量、流速场等要素并进行深入分析,从而探求土石坝渗流破坏的特性。
     本研究将土石坝渗流分为两类进行分析:包括稳定水位时不同作用水头、不同心墙、不同排水的情况,以及水位以不同方式变化时土石坝渗流的情况。重点针对水位变化条件下,土石坝内部渗流场的改变特性以及渗流危险位置和危险时间的发生做了考察。
     通过一系列针对性的研究,得出以下结论:
     1.水头差是土石坝渗流的驱动因素;
     2.大坝全局最危险的部位在坝趾出流处和心墙下游侧;
     3.心墙对渗流的作用与其厚度有关;
     4.排水体在土石坝渗流控制中有着两方面的综合作用;
     5.水位变化情况下,土石坝渗流危险区域和危险时间根据水位变化方式有所不同。
Hydraulic factors are always important in embankment engineering. Seepage is one of the most dangerous because it is difficult to monitor. As one of the most popular dam types, earth dam is very sensitive to seepage. It is extremely important for extra attention to be paid to this problem since most of the earth dam failures were caused by seepage.
     In this dissertation, the seepage processes of earth dams under complex conditions were simulated by using a physics-based hydrological model: Integrated Hydrology Model (InHM). Phreatic surface, seepage discharge, and seepage velocity were analyzed to study the characteristics and mechanism of earth dam seepage.
     Both the steady-state seepage and the transient seepage were simulated and analyzed in this dissertation. The simulation scenarios considered different steady water head, various thickness of the clay core, with/without drainage structure, and the rising/declining of the water level. The seepage in upslope under drawdown condition was investigated in detail since it is the most dangerous condition.
     Following conclusions were generated by this study:
     1. The water head is the driving force for the seepage in earth dams;
     2. Related to seepage, the most dangerous locations include 1) the seepage face near the dam toe and 2) in the dam, around the downstream side of clay core;
     3. The efficiency of the clay core is related to its thickness: not necessarily the thinner the better
     4. The drainage structure has both positive and negative effects in seepage control;
     5. The transient seepage caused by changing water level is extremely complex and need to be handled carefully.
引文
Abbott, M. B., J. C, Bathurst, J. A., Cunge, P. E., O'Connell, and J., Rasmussen,1986. An introduction to the European Hydrological System - Systeme Hydrologique European, SHE, 2: Structure of a physically based, distributed modeling system. J. Hydrol. 87: 61-77.
    Abbott, M. B., J. C, Bathurst, J. A., Cunge, P. E., O'Connell, and J., Rasmussen,1986. An introduction to the European Hydrological System - Systeme Hydrologique European, SHE, 1: History and philosophy of a physically based, distributed modeling system. J. Hydrol. 87: 45-59.
    Abdallah, I., H., Malkawi, and M., Al-Sheriadeh, 2000. Evaluation and rehabilitation of dam seepage problems. A case study: Kafrein dam. Engineering Geology 56.
    Barenblatt G. I., I. P. Zheltov, and I. N. Kochina, 1960. Basic concepts in the theory of seepage of homogeneous liquids in the fractured rock. Journal of Applied Mathematics and Mechanics. 24.
    Beven, K. J., and Kirkby M. J., 1979. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Water Resour. Res. 24(1): 43-69.
    Beven, K. J., and R. T. Clarke, 1986. On the Variation of Infiltration Into a Homogeneous Soil Matrix Containing a Population of Macropores. Water Resour. Res. 22(3): 383-388.
    Beven, K. J., Calver, A., and Morris, E., 1987. The Institute of Hydrology distributed model. UK, Institute of Hydrology. Report No. 98.
    Beven, K. J., Calver, A., and Morris, E., 1989. Changing ideas in hydrology-the case of physically-based models. J. Hydrol. 105: 157-172.
    Binley, A. M., 1987. A three-dimensional numerical investigation of hillslope flow process. Dept. of Civil Eng. Birmingham, United Kingdom, Aston Univ. Ph.D.
    Binley, A. M., J., Elgy, and K. J., Beven, 1989. A physically based model of heterogeneous hillslopes. 1. Runoff production. Water Resour. Res. 25(6).
    Binley, A.M., K. J., Beven and J., Elgy, 1989. A physically based model of heterogeneous hillslopes. 2. effective hydraulic conductivities. Water Resour.Res. 25(6).
    
    Bligh, W., 1910. Dams, barrages and weirs on porous foundations. Engineering News.
    Borja, R. I., Oettl, G., Ebel, B. A., Loague, K., 2005. Hydrologically driven slope failure initiation in variably saturated porous media. International Workshop on Modern Trends in Geomechanics. Wu, W., and H. S., Yu, Vienna,AUSTRIA: 303-311.
    Bouma, J., and W. B. Hoogmoed, 1980. A Simulation Model for Predicting Infiltration into Cracked Clay Soil. Soil Sci. Soc. Am. J. 44: 458-461.
    Brooks, R. H., and A. T. Corey, 1964. Hydraulic properties of porous media. Hydrology Paper no. 3. Civil Engineering Dep., Colorado State Univ.. Fort Collins, Colo..
    Brown, D. L., 1995. An analysis of transient flow in upland watersheds: interactions between structure and process. Dept. of Soil Science. CA, Univ. of California,Berkeley. Ph. D.: 255.
    Calver, A., and Wood, W. L., 1995. The Institute of Hydrology distributed model, in:Computer models of watershed hydrology. V. P. Singh. USA, Water Resources Publications.
    Carr, A. E., 2006. Physics-based simulations of hydrologic response and cumulative watershed effects. Stanford, Stanford University. PhD.
    Chow, B.-Z., 1972. hydrodynamic modeling of two-dimensional watershed flow. journal of hydrology division.. ASCE 99(hy 11).
    Clough, R. W., and Woodward, R.J., 1966. The Earthquake Engineering Online Archive Analysis of embankment stresses and deformations. Journal of Soil Mechanics 37.
    Costa V. A. F., L. A., Oliveira, and A. R., Figueiredo, 2005. A control-volume based finite element method for three-dimensional incompressible turbulent fluid flow, heat transfer, and related phenomena. International Journal for Numerical Methods in Fluids. 21(7):591 -613.
    Courant, R., 1943. Variational methods for the solution of problems of equilibrium and vibrations.
    Crawford, N. H., and R. K., Linsley, 1966. Digital simulation of hydrology, Stanford water model IV. Palo Alto, CA, Stanford University. 39.
    Cunningham, A. B., and P. J., Sinclair, 1979. Application and analysis of a coupled surface and groundwater model. Contemporary hydrogeology: the George Burke Maxey memorial volume. W. B. George Burke Maxey, David A. Stephenson.
    Davidson, M. R., 1985. Numerical Calculation of Saturated-Unsaturated Infiltration in a Cracked Soil. Water Resour. Res. 21(5): 709-714.
    Di Giammarco, P., E., Todini, and P., Lamberti, 1996. A conservative finite elements approach to overland flow: the control volume finite element formulation.Journal of Hydrology 175( 1 -4): 267-291.
    Ebel, B. A., 2007. Process-based characterization of near-surface hydrologic response and hydrologically driven slope instability. Stanford, Stanford University.PhD.
    Ebel, B. A., Loague, K., Montgomery, D. R., Dietrich, W. E., 2008. Physics-based continuous simulation of long-term near-surface hydrologic response for the Coos Bay experimental catchment. Water Resour. Res. 44.
    Ebel, B. A., Loague, K., Vanderkwaak, J. E., Dietrich, W. E., Montgomery, D. R.,Torres, R., Anderson, S. P., 2007. Near-surface hydrologic response for a steep, unchanneled catchment near coos bay, Oregon: 2. physics-based simulations. American Journal of Science 307(4): 709-748.
    Ebel, M. A., Loaaue, K., 2008. Rapid simulated hydrologic response within the variably saturated near surface. Hydrological Processes 22(3): 464-471.
    Edwards, W. M., R. R., van der Ploeg, and W., Ehlers, 1979. A Numerical Study of the Effects of Noncapillary-Sized Pores Upon Infiltration. Soil Sci. Soc. Am. J.43: 851-856.
    Forchheimer, P., 1886. Ueber die ergiebigkeit von brunnen-anlagen und sickerschlitzen. Hannover.
    Forsyth,P.A.,1991.A control volume finite element approach to NAPL groundwater contamination.SIAM Journal on Scientific and Statistical Computing.12(5):1029-1057.
    Forsyth,P.A.,and R.B.,Simpson,1991.A two phase,two component model for natural convection in a porous media.Journal for Numerical Methods in Fluids.12(7).
    Freeze,R.A.,and P.A.,Witherspoon,1968.Theoretical Analysis of Regional Ground Water Flow 3.Quantitative Interpretations.Water Resour.Res.4(3):581-590.
    Freeze,R.A.,and R.L.,Harlan,1969.Blueprint for a physically-based,digitally-simulated hydrologic response model.Journal of Hydrology 9:237-258.
    Freeze,R.A.,1972.Role of surface flow in generating surface runoff:2.Upstream source areas.Water Resour.Res.8(5):1272-1283.
    Freeze,R.A.,1974.Streamflow Generation.Reviews of Geophysics 12(4):627-647.
    Gerke,H.H.,and M.T.,van Genuchten,1993.A Dual-Porosity Model for Simulating the Preferential Movement of Water and Solutes in Structured Porous Media.Water Resour.Res.29(2):305-319.
    Gerke,H.H.,and M.T.,van Genuchten,1993.Evaluation of a First-Order Water Transfer Term for Variably Saturated Dual-Porosity Flow Models.water Resour.Res.29(4):1225-1238.
    Gerke,H.H.,and M.T.,van Genuchten,1996.Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media.Advances in Water Resources 19(6):343-357.
    Germann,P.F.,and K.J.,Beven,1985.Kinematic Wave Approximation to Infiltration Into Soils With Sorbing Macropores.Water Resour.Res.21(7):990-996.
    Gottardi,G.,and M.,Venutelli,1993.Richards:computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil.Computers &Geosciences 19(9):1239-1266.
    Govindaraju, R. S., and M. L., Kavvas, 1991. Dynamics of Moving Boundary Overland Flows Over Infiltrating Surfaces at Hillslopes. Water Resour. Res.27(8): 1885-1898.
    Gwo, J. P., P. M., Jardine, G. T., Yeh, G. V., Wilson, 1994. MURF USER'S GUIDE: A finite element model of multiple-pore region flow through variably saturated subsurface media.
    Heppner, C. S., 2007. A dam problem: Characterizing the upstream hydrologic and geomorphologic impact of dams. Stanford, Stanford University. PhD.
    Heppner, C. S., and Loague, K., 2008. Characterizing Long-Term Hydrologic-Response and Sediment-Transport for the R-5 Catchment. Journal of Environmental Quality 37(6): 2181-2191.
    Heppner, C. S., and Loague, K., 2008. A dam problem: simulated upstream impacts for a Searsville-like watershed. Ecohydrology 1(4): 408-424.
    Heppner, C. S., Loague, K., and VanderKwaak, J. E., 2007. Long-term InHM simulations of hydrologic response and sediment transport for the R-5 catchment. Earth Surface Processes and Landforms 32(9): 1273-1292.
    Heppner, C. S., Ran, Q. H., VanderKwaak, J. E., Loague, K., 2006. Adding sediment transport to the integrated hydrology model (InHM): Development and testing.Advances in Water Resources 29(6): 930-943.
    Hromadka, T. V., 1985. Determining relative error bounds for the CVBEM (Complex Variable Boundary Element Method) Engineering Analysis 2: 75-80.
    Hromadka, T. V., R. H. McCuen, and C. C, Yen. 1987. Comparison of Overland Flow Hydrograph Models. J. Hydr. Engrg. 113(11): 1422-1440.
    Huang, T. k., 1996. Stability Analysis of art earth dam under steady state seepage.Computer & Structure 58(6).
    Huyakorn, P. S., S. D., Tomas, and B. M., Tompson, 1984. techniques for making finite elements competitive in modeling flow in variably saturated media.Water Resour. Res. 20: 1099-1115.
    Huyakorn, P. S., E. P., Springer, V., Guvanasen, and T. D., Wadsworth, 1986. a three-dimensional finite-element model for simulating water flow in variably saturated porous media. Water Resour. Res. 22: 1790-1808.
    Jarvis, N. J., P.-E., Jasson, P. E., DIK, and I.. Messing, 1991. Modelling water and solute transport in macroporous soil. I. Model description and sensitivity analysis. European Journal of Soil Science 42(1): 59-70.
    Jones, J. P., Sudicky, E. A., and McLaren, R. G., 2008. Application of a fully-integrated surface-subsurface flow model at the watershed-scale: A case study. Water Resour. Res. 44.
    Ke Feng, and F. J., Molz, 1997. A 2-D, diffusion-based, wetland flow model. Journal of Hydrology 196(1-4): 230-250.
    Lam, L., and Fredlund, D. G., 1984. Saturated-Unsaturated Transient Finite Element seepage Model for Geotechnical. Advances in Water Resources 7(3).
    Loague, K., Heppner, C. S., Abrams, R. H., Carr, A. E., VanderKwaak, J. E., Ebel, B.A., 2005. Further testing of the Integrated Hydrology Model (InHM):event-based simulations for a small rangeland catchment located near Chickasha, Oklahoma. Hydrological Processes 19(7): 1373-1398.
    Loague, K., Heppner, C. S., Mirus, B. B., Ebel, B. A., Ran, Q. H., Carr, A. E., BeVille,S. H., VanderKwaak, J. E., 2006. Physics-based hydrologic-response simulation: foundation for hydroecology and hydrogeomorphology.Hydrological Processes 20(5): 1231 -1237.
    Loague, K., and Vanderkwaak, J. E., 2002. Simulating hydrological response for the R-5 catchment: comparison of two models and the impact of the roads.Hydrological Processes 16(5): 1015-1032.
    Loague, K., and VanderKwaak, J. E., 2004. Physics-based hydrologic response simulation: platinum bridge, 1958 Edsel, or useful tool. Hydrological Processes 18(15): 2949-2956.
    Manning, R., 1891. On the flow of water in open channels and pipes. Transactions of the Institution of Civil engineers of Ireland 20:161 -207.
    Meselhe, E.A., and F.M., Holly, J., 1993. Simulation of Unsteady Flow in Irrigation Canals with Dry Bed. Journal of Hydraulic Engineering 119(9): 1021-1039.
    Mirus, B. B., Ebel, B. A., Loague, K., Wemple, B. C., 2007. Simulated effect of a forest road on near-surface hydrologic response: redux. Earth Surface Processes and Landforms 32(1): 126-142.
    Mirus, B. B., Loague, K., VanderKwaak, J. E., Kampf, S. K., Burges, S. J., 2009. A hypothetical reality of Tarrawarra-like hydrologic response. Hydrological Processes 23(7): 1093-1103.
    Mualem Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Re sour. Res. .12:513-522.
    Narasimhan, T. N., Witherspoon, P.A. and Edwards, A.L., 1978. Numerical model for saturated-unsaturated flow in deformable porous media. 2. The algorithm.Water Resour. Res. 14(2).
    Narasimhan, T. N., and Witherspoon, P. A., 1976. An Integrated Finite Difference Method for Analyzing Fluid Flow in Porous Media. Water Resour. Res. 12(1):57-64.
    Neretnieks, I., and A., Rasmuson, 1983. An approach to modelling radionuclide migration in a medium with strongly varying velocity and block sizes along the flow path. Stockholm, Sweden, Royal Institute of Technology.
    Neuman, S. P., 1973. Saturated-Unsaturated Seepage by Finite Elements. Journal of the Hydraulics Division 99(12): 2233-2250.
    Paniconi, C, and E. F., Wood, 1992. A Detailed Model for Simulation of Catchment Scale Subsurface Hydrologic Processes. Water Resour. Res. 29(6): 1601-1620.
    Perkins, S. P., and A. D., Koussis, 1996. Stream-Aquifer Interaction Model with Diffusive Wave Routing.J. Hydr. Engrg. 122(4): 210-218.
    Plate, A. B. a. E. J., 1997. Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments. Journal of Hydrology 198: 177-195.
    Play(?)n, E., W. R., Walker, and G. P., Merkley, 1994. Two-Dimensional Simulation of Basin Irrigation. I: Theory. J. Irrig. and Drain. Engrg. 120(5): 837-856.
    Pohlla, G. M., J. J., Warwicka, and S. W., Tyler, 1996. Coupled surface—subsurface hydrologic model of a nuclear subsidence crater at the Nevada test site.Journal of Hydrology 186(1-4): 43-62.
    Ponce, V. M., R. M., Li, and D. B., Simons, 1978. applicability of kinematic and diffusion models. J. Hyd. Div. ASCE 104: 353-360.
    Pruess, K., 1991. TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow. CA (United States), Lawrence Berkeley Lab.
    Querner, E. P., and H. A. J., van Lanen, 2001. Impact assessment of drought mitigation measures in two adjacent Dutch basins using simulation modeling.Journal of Hydrology 252(1-4): 51 -64.
    Ran, Q. H., 2006. Regional scale landscape evolution: Physics-based simulation of hydrologically-driven surface erosion. Stanford, Stanford University. PhD.
    Ran, Q. H., Heppner, C. S., VanderKwaak, J. E., Loague, K., 2007. Further testing of the integrated hydrology model (InHM): multiple-species sediment transport.Hydrological Processes 21(11): 1522-1531.
    Refsgaard, J. C, and B., Storm, 1996. Construction, calibration and validation of hydrological models. Distributed hydrological modelling. J. C. R. Michael B.Abbott.
    Richards, L. A., 1931. Capillary conduction of liquids through porous mediums.Physics 1(5): 318-333.
    Richardson, L. F., 1910. The Approximate Solution of Various Boundary Problems by Surface Integration combined with Freehand Graphs. Proc. Phys. Soc.Londonli: 75-85.
    Sherard, J. L., 1984. Trends and Debatable Aspect in embankment dam engineering.Water Power and Dam Construction 12.
    Simunek, J., K., Huang, and M. Th. van Genuchten, 1985. the SWMS3D code for simulating water flow and solute transport in three-dimensional variably-saturated media, version 1.0. Riverside, CA, U.S Salinity Laboratory,USDA. 139.
    Smerdon, B. D., Mendoza, C. A., Devito, K. J., 2007. Simulations of fully coupled lake-groundwater exchange in a subhumid climate with an integrated hydrologic model. Water Re sour. Res. 43.
    Smettem, K. R. J., D. J., Chittleborough, B. G., Richards, and F. W., Leaney. 1991.Influence of macropores on runoff generation from a hillslope soil with a contrasting textural class.Journal of Hydrology 122(11):235-252.
    Smith,R.E.,and Woolhiser,D.A.,1971.OVERLAND FLOW ON AN INFILTRATING SURFACE.Water Resour.Res.7(4):899-913.
    Smith,R.E.,and Hebbert,R.H.B.,1983.Mathematical Simulation of Interdependent Surface and Subsurface Hydrologic Processes.Water Resour.Res.19(4):987-1001.
    Therrien,R.,and E.A.,Sudicky,1996.Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media.Journal of Contaminant Hydrology.23(1-2):1-44.
    Turkmen,S.,2003.Treatment of the seepage problems at the Kalecik Dam(Turkey).Engineering Geology 68:159-169.
    Updegraff,C.D.,C.E.,Lee,and D.P.,Gallegos,1994.DCM3D:A dual-continuum,three-dimensional,ground-water flow code for unsaturated,fractured,porous media.Washington,DC Nuclear Regulatory Commission.
    Uromeihy,A.,and G.,Barzegari,2007.Evaluation and treatment of seepage problems at Chapar-Abad Dam,Iran.Engineering Geology 91:219-228.
    van Genuchten M.Th.,1980.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Sci.Soc.Am.J..44:892-898.
    VanderKwaak,J.E.,1999.Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems.Stanford,University of Waterloo.PhD.
    VanderKwaak,J.E.,and Loague,K.,2001.Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model.Water Resour.Res.37(4):999-1013.
    Vieira,J.H.D.,1983.Conditions governing the use of approximations for the Saint-Venant equations for shallow surface water flow.J.hydrol.40:43-58.
    Wang,G.Q.,F.,Liu,X.D.,Fu,and T.J.,Li,2009.Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China.Science in China Series E:Technological Sciences 51:82-94.
    Warren J.E.,and P.J.,Root,1963.The Behavior of Naturally Fractured Reservoirs. Trans.
    Wicksa,J.M.,and J.C.,Bathurst,1996.SHESED:a physically based,distributed erosion and sediment yield component for the SHE hydrological modelling system.Journal of Hydrology 175:213-238.
    Wooding,1966.a hydraulic model for the catchment-stream problem.1.kinematic wave theory.Journal of hydrology 3:254-267.
    Wooding,1966.a hydraulic model for the catchment-stream problem.2.numerical solution.Journal of hydrology 3.
    Woolhiser,D.A.,R.E.,Simith,and D.C.,Goodrich,1990.KINEROS,a kinematic runoff and erosion model:documentation and user manual.USDA,ars.ars-77.
    Woolhiser,D.A.,R.E.,Simith,and J.V.,Giraldez,1996.effects of spatial variability of saturated hudraulic conductivity on Hortonian overland flow.Water Resour.Res.32(3):671-678.
    Xanthopoulos,K.,1976.numerical simulation of a two dimensional flood wave propagation due to dam failure.J.Hyd.Res.14(4).
    Xiang S.L.,H.Y.Ming,2004.Seepage driving effect on deformations of San Fernando dams.Soil Dynamics and Earthquake Engineering 24:979-992.
    Xu,Y.Q.,K.,Unarni,and T.,Kawaehi,2003.Optimal hydraulic design of earth dam cross section using saturated-unsaturated seepage flow model.Advances in Water Resources 26.
    Yen,B.C.,and A.O.,Akan,1981.Diffusion-Wave Flood Routing in Channel Networks.Journal of the Hydraulics Division 107(6):719-732.
    Zhang,W.,and T.W.,Cundy,1989.Modeling of Two-Dimensional Overland Flow.Water Resour.Res.25(9):2019-2035.
    丁树云,蔡正银,2008.土石坝渗流研究综述.人民长江39(2).
    刘杰.1979.土石坝渗透破坏原因及控制措施.水利水电技术3.
    刘杰,1990.柴河土坝心墙渗流控制安全分析.岩土工程学报12(1).
    刘杰.2006.土石坝渗流控制理论基础及工程经验教训.北京,中国水利水电出 版社.
    毛昶熙,1990.渗流计算分析与控制.北京,中国水利水电出版社.
    倪小东,王媛,2006.运用离散单元法研究土体管涌机理初探.水工渗流研究与应用进展.
    张继昌,2008.中国的水库大坝安全管理.中国水利20:10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700