南水北调中线明渠段事故污染特性模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南水北调中线明渠段一旦发生水污染突发事故,必须快速揭示不同运行条件下污染物的输移扩散规律,提出事故处置对策。论文通过建立纵向一维和水深平均二维水流-水质数值模型,对事故污染特性的模拟方法进行了深入研究,并开展了针对南水北调中线典型明渠段突发事故污染的模拟分析。
     论文建立了高精度的一维水流-水质数值模型,模型中分别采用Preissman和Preissman-Holly格式离散水流及水质方程,保证了数值离散具有良好的精度和稳定性。首次将最大信息熵原理应用于梯形明渠,确定了纵向流速的断面分布公式,基于Fischer的三重积分方法,提出了精确的纵向离散系数计算公式。
     论文还建立了水深平均二维水流-水质模型,选用通量差分裂格式求解方程组的对流项,能有效处理各种复杂流态,并高分辨率模拟污染物的输移扩散。通过构造离散单元内部流动变量分布,间接求解底坡项,考虑了底坡项作用的迎风特性并简化了边界条件。提出了淹没节点法和守恒型人工渗透法,用以处理动边界问题;采用网格局部加密技术和当地时间步长法,提高模型的精度和效率。论文通过多个典型算例对建立的二维模型进行了验证,表明模型可以处理溃坝波、急流和缓流过渡、间断浓度场等流场和浓度场突变的问题。
     论文利用一维和二维模型研究了正常运行情况下南水北调中线典型明渠段水体流动和污染物输移的规律。两种模型都能准确地模拟污染云团的平均移动速度,一维模拟具有快速、及时的优点,但是,由于忽略了射流核心区和扩散区的影响,模拟结果中将污染云团的偏态分布形式近似为正态分布,错估了最大浓度点的移动速度,并夸大了污染云团的纵向长度;二维模型不仅能更准确地模拟污染云团的纵向分布特征,还能反映污染物进入水体的横向位置对浓度场的影响,污染物进入水体越快、横向混合系数越小,越有必要采用二维模型准确模拟污染物的输移规律。在恒定流模拟的基础上,论文利用二维模型对事故处置过程中,采用闸前定水位控制运行方式下的非恒定流场和浓度场进行了模拟研究,研究表明上游节制闸门的关闭历时应大于两倍渠道长度与渠道中浅水长波波速的比值,关闭闸门不仅会减缓污染云团的平均运动速度,还将改变云团的浓度分布情况,关闭速度越快影响越大。论文成果为深入分析南水北调中线明渠段水污染事故的特性和进一步研究事故处理措施,提供了坚实的理论和技术基础。
Once a water pollution accident breaks out in the middle route open channel of the South-to-North Water Transfer(SNWT), the characteristics and developing mechanism of the flow fields and pollutant concentration distributions caused by the accident must be quickly determined and effective measures are eventually taken against the accident. In this dissertation a 1-D and a 2-D numerical models are developed. Assumed accidents in a typical segment of the middle route main canal of SNWT are studied by the models.
     A 1-D numerical model with high accuracy and stability is developed in which the hydrodynamic and water quality equations are solved based on Preissman and Pressman-Holly schemes respectively. Based on the maximum entropy principle, a formula is originally derived to describe the longitudinal velocity distribution in the cross-section of a trapezoidal open channel. From the formula an equation to predict the longitudinal dispersion coefficient is proposed based on Fischer’s triple integral relation for dispersion coefficient.
     A depth-averaged 2-D model is also developed. Employing a high-resolution scheme of flux difference splitting scheme (FDS) to deal with the advective terms of hydrodynamic and water quality equations, the model can handle various complicated flow fields and pollutant concentration distributions accruately. A novel upwind method by means of reconstructing vaiables in cells is designed to avoid handling the bed slope term directly. The boundary conditions can easily be specified. To model wetting and drying of 2-D shallow-water flows two novel methods called the submerged node method(SNM) and the conservational artificial porosity method are proposed. Hierarchy meshes and local time-step scheme are combined in the 2-D model to improve the model’s acurracy and efficiency. Several typical problems are employed to verify the 2-D model and excellent results indicate that the model can accurately and efficiently simulate discontinuous flows such as dambreak flood, transcritical flow, or discontinuous pollutant concentration distributions.
     Assumed water pollution accidents in steady flows in a typical segment of the middle route main canal of SNWT are simulated using the two models. It is found that either 1-D or 2-D model can predict mean velocity of polltant clouds. The 1-D model is pretty suitable for rapid simulation. However, because mixing process in near field is not taken in account, the skewness of section-averaged pollutant concentration distribution can not be reproduced, and the velocity of the point of maxium section-averaged concentration is misvalued by the 1-D model. The 1-D model will also overvalue the length of pollutant clouds. The 2-D model can not only discribe the longitudinal pollutant distributions more exactly but account for the difference of the pollutant distribution resulting from the differennce among tranverse positions where pollutants enter flows. The faster pollutants enter waters and smaller is the transverse mixing coefficient, the more superior is the 2-D model. From the above results the characteristics of flow fields and pollutant transport in unsteady flows with fixed water level before downstream gate during pollution accident treating processes are simulated by the 2-D model. The simulations demonstrate that the upstream controlling gate should be shut during a period longer than twice travelling the channel length at shallow-water wave speed, and not only the mean velocity but the distribution of pollutant clouds are changed during shutting controlling gates. The study carried out in this dissertation has set a concrete basis for analyzing characteristics of water pollution accidents in the middle route open channel of SNWT and pursuing treatment to the accidents.
引文
[1]长江水利委员会长江勘测规划设计研究院.南水北调中线一期工程总干渠总体设计(内部资料). 2003.
    [2]长江水利委员会长江勘测规划设计研究院.南水北调中线一期工程总干渠总体设计附表集(内部资料). 2003.
    [3] http://www.nsbd.mwr.gov.cn
    [4]中国环境科学研究院等.引水总干渠水质预测及保护.南水北调中线工程环境影响评价专题之四, 1994.
    [5]曾光明,卓利,钟政林等.突发性水环境风险评价模型事故泄漏行为的模拟分析.中国环境科学, 1998, 18(5):403-406.
    [6] http://env.people.com.cn/GB/8220/5052755.html.
    [7] Zeng Weihua, Cheng Shengtong. Risk forecasting and evaluating model of environmental pollution accident. Journal of Environmental Sciences, 2005, 17(2):263-267.
    [8]王敏,王忠平.突发性环境污染事故的应急处置,减灾技术与方法, 2006, 6: 19-21.
    [9]罗国根,王文初.流动污染源突发污染事故应急处理范例.工业安全与环保, 2006, 32(12):53-55.
    [10]裘春晗.关于河流污染事故的若干数学估计.环境污染与防治, 2006, 28(11):876-878.
    [11]张国宁,李伟,冯兆东.非正常排污下的河流污染可视化数值模拟研究.甘肃科技, 2005, 21(9):86-87.
    [12]吴小刚,尹定轩,宋洁人等.我国突发性水资源污染事故应急机制的若干问题评述.水资源保护, 2006, 22(2):76-79.
    [13]何进朝,李嘉.河流突发性污染事故风险评价方法的探讨.水道港口, 2006, 27(4):269-272.
    [14]汤晗燕.内河交通污染事故的类型及管理措施.中国水运(学术版), 2006,6(2):47-49.
    [15]刘国东,宋国平,丁晶.高速公路交通污染事故对河流水质影响的风险评价方法探讨.环境科学学报, 1999, 19(5):572-575.
    [16] H.B.Fischer, E.J.List, R.C.Y.Koh, et al. Mixing in inland and coastal waters. Orlando: Academic press,Inc.1979.
    [17]余常昭.环境流体力学导论.北京:清华大学出版社, 1992.
    [18]余常昭, M.马尔柯夫斯基,李玉梁.水环境中污染物扩散输移原理与水质模型.北京:中国环境科学出版社, 1989.
    [19]格拉夫,阿廷卡拉著.赵文谦,万兆惠译.河川水力学.成都:成都科技大学出版社,1997.
    [20]李炜主编.环境水力学进展.武汉:武汉水利电力大学出版社, 1999.
    [21]长江水资源保护科学研究所.三峡水库水污染控制对策研究,2002.
    [22]程国梁.丹江明珠丹江口水库-中线南水北调最理想的水源.大坝观测与土工测试, 1994, 18(5).
    [23] MacDonald I. Analysis and computation of steady open channel flow[Ph.D. Thesis]. Department of Mathematics, University of Reading, UK, 1996.
    [24]武周虎.恒定条件下物质输移扩散方程几种解析解.中国水力学2000:217-222.
    [25] Thacker W.C. Some Exact Solutions to the Nonlinear Shallow-Water Wave Equations. J.Fluid Mech, 1981, 107:499-508.
    [26] H.A.Basha. Analytical model of two-dimensional dispersion in laterally nonuniform axial velocity distributions. Journal of Hydraulic Egineering, 1997, 123(10):853-862.
    [27] K.W. Chau. Transverse mixing coefficient measurements in an open rectangular channel. Advances in Environmental Research,2000, 4:287-294.
    [28]李玲,李玉梁,陈嘉范.梯形断面水槽中横向扩散系数的实验,清华大学学报:自然科学版, 2003, 43(8):1124-1126,1152.
    [29]梁东方,李玉梁,江春波等.岛屿尾流近区浓度的分布特性.清华大学学报:自然科学版, 2001.
    [30] G.M. Tarekul Islam, Nobuyuki Tamai, Kenichiro Kobayashi, Hydraulic characteristics of a doubly meandering compound channel. Water Resources 2000.
    [31] Daoyi Chen, Gerhard H. Jirka. Experimental study of flow turbulent wakes in a shallow water layer. Fluid Dynamics Research, 1995, 16:11-41.
    [32] Boxall J.B., Guymer I., Marion A.. Locating outfalls on meandering channels to optimise transverse mixing. Journal of the Chartered Institution of Water and Environmental Management, 2002, 16(3):194-198.
    [33] H.B.Fischer. Transport models for inland and coastal waters. New York: Academic press,Inc, 1980.
    [34]谢永明.环境水质模型概论.中国科技大学出版社, 1996.
    [35]廖振良,宋卫锋.应用水质模型方法研究河流污染控制.环境与开发, 2000, 15(4).
    [36]郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展.重庆建筑大学学报, 2002.
    [37]孙颖等.河流及水库水质模型与通用软件综述.水资源保护, 2001.
    [38]陈永灿,周雪漪,李玉梁.潮汐河流中污染物质垂向排放的整区计算模型.水利学报, 1992.
    [39]清华大学水利水电工程系.库区主要城市排污口及重要支流汇流口附近污染混合区计算. 2001.
    [40]陈永灿,刘昭伟,李闯.三峡库区岸边污染混合区数值模拟与分析.水力学2000,四川大学出版社, 2000:201-208.
    [41] Chen Y., Liu Z. & Shen M.. The numerical simulation of pollutant mixing zone from riverside discharge outlet in three gorges reservoir. Proceedings of the 6th international conference on hydrodynamics, HydrodynamicsⅥ, Perth, 2004:401-408.
    [42]王道增,林卫青.苏州河纵向离散系数的分析研究.上海环境科学, 2003, 22(1): 12-15.
    [43] I.Guymer. Longitudinal dispersion in sinuous channel with changes in shape . Journal of Hydraulic Egineering, 1998, 124(1):33-40.
    [44] I.W.Seo and T.S.Cheong. Predicting longitudinal dispersion coefficient in natural streams. Journal of Hydraulic Egineering. 1998, 124(1):25-32.
    [45] I.W.Seo, and Kyong Oh Baek. Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams. Journal of Hydraulic Egineering, 2004, 130(3):227-236.
    [46] Z.Q. Deng, L.Bengtsson, V. P. Singh, and D. D. Adrian. Longitudinal dispersion coefficient in single-channel streams. Journal of Hydraulic Egineering. 2002, 128(10):901-916.
    [47] Gilbert V. Bogle. Stream velocity profiles and longitudinal dispersion. Journal of Hydraulic Egineering, 1997, 123(9):816-820.
    [48]李锦秀,黄真理,吕平毓.三峡库区江段纵向离散系数研究.水利学报, 2000, 8:84-87.
    [49] Meredith L. Carr, and Chris R. Rehmann. Estimating the dispersion coefficient with an acoustic doppler current profiler. In:Proceedings of the ASCE EWRI 2005 World Water & Environmental Resources Congress. ASCE, 2005:1-10.
    [50]邓志强,褚君达.河流纵向分散系数.水科学进展, 2001, 12(2):137-142.
    [51]丁玲,逄勇,吴建强,等.模拟水质突跃问题的三种二阶高性能格式,水利学报, 2004, 9:50-55.
    [52] Tae Hoon Yoon, F.ASCE, and Seok-Koo Kang. Finite volume model for two-dimensional shallow water flows on unstructured grids. Journal of Hydraulic Egineering, 2004, 130(7):678-688.
    [53] EF Toro. Shock-capturing methods for free-surface shallow flows. Chichester: JohnWiley&Sons, 2001:15-165.
    [54] Randall J. LeVeque. Wave propagation algorithms for multidimensional hyperbolic systems. J. of Comput. Phys., 1997, 131: 327–353.
    [55]赵棣华,戚晨,等.平面二维水流-水质有限体积法及黎曼近似解模型.水科学进展, 2000,11(4):368-374.
    [56] Zhou J.G., D.M.Causon, C.G.Mingham, and D.M.Ingram.The surface gradient method for the treatment of source terms in the shallow-water equations. J of Comput Phys, 2001,168:1-25.
    [57] Vazquez-Cendon ME. Improved treatment of source terms in upwind schemes for shallow water equations in channel with irregular geometry. J Computat Phys., 1999, 148:497–526.
    [58] P. Garcia-Navarro, M.E. Vazquez-Cendon. On numerical treatment of the source terms in the shallow water equations.Computers & Fluids, 2000.29:951-979.
    [59] Ming-Hseng Tseng, The improved surface gradient method for flows simulation in variable bed topography channel using TVD-MacCormack scheme. Int. J. Numer. Meth. Fluids, 2003,43:71-91.
    [60] Ming-Hseng Tseng,Improved treatment of source terms in TVD scheme for shallow water equations.Advances in Water Resources,2004, 27:617-629.
    [61] Randall J. LeVeque. Balancing source terms and flux gradients in high-resolution godunov methods: The quasi-steady wave-propagation algorithm. J. of Comput. Phys., 1998, 146: 346-365.
    [62] J. Murillo, J. Burguete, P. Brufau and P. Garca-Navarro. Coupling between shallow water and solute flow equations:analysis and management of source terms in 2D . Int. J. Numer. Meth. Fluids, 2005, 49:267-299.
    [63] Hubbard ME, Garcia-Navarro P. Flux difference splitting and the balancing of source terms and flux gradients. J Computat Phys., 2000, 165:89-125.
    [64] Andrea Balzano. Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coastal Engineering, 1998, 34: 83-107.
    [65] Van’t Hof and E. A. H. Vollebregt. Modelling of wetting and drying of shallow water using artificial porosity. Int. J. Numer. Meth. Fluids, 2005, 48:1199-1217.
    [66]宋志尧,薛鸿超,严以新.线边界法在潮流模拟中的应用.海洋工程, 2000, 18(4):49-54.
    [67]杨连武,韩康等.辽东湾顶极浅海潮流数值计算.水动力学研究与进展: A辑, 1994, 9(2):170-181.
    [68]史峰岩,孔亚珍,丁平兴.潮滩海域边界适应网格潮流数值模型.海洋工程, 1998, 16(3):68-75.
    [69]辛文杰.河口海湾平面潮流数值计算中的几个问题.水动力研究与进展:A辑, 1993, 8(3):348-353.
    [70]彭凯,等.在二维流动计算中应用“河床切削”技术处理动边界问题.水动力学研究与进展, 1992, 7(2):200-205.
    [71]孙琪,孙效功,李瑞杰.窄缝法在河口区悬沙输运数值计算中的应用.海洋与湖沼, 2001, 32(3):296-301.
    [72] P.Brufau, M.E.Vazquez-Cendon, P.Garcia-Navarro. A numerical model for the floodingand drying of irregular domains. Int. J. Numer. Meth. Fluids, 2002, 39:247-275.
    [73] F.Marche, P.Bonneton, P.Fabrie,et al. Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes. Int. J. Numer. Meth. Fluids, 2006, (in press).
    [74] Nicholas Dodd, Numerical Model of Wave Run-up, overtopping, and Regeneration. Journal of waterway, port, coastal, and ocean egineering. 1998,124(2):73-81.
    [75] Ben Chie Yen. Open Channel Flow Resistance. J.Hy.ASCE, 2002, 128(1):20-39.
    [76]何建京,王惠民.流动型态对曼宁糙率系数的影响研究.水文, 2002, 22(6):22-24.
    [77] D.T. Soong. Estimating Manning’s Roughness Coefficients for Illinois Streams.广州:第八届海峡两岸水利科技交流研讨会, 2004:230-237.
    [78] Thomas Molls, Cang Zhao, and Frank Molls. Friction Slope in Depth-Averaged Flow. J.Hy.ASCE, 1998, 124(1):81-85.
    [79]胡旭跃,曾光明,黄国和,等.矩形明渠边界平均剪切应力变化规律研究.泥沙研究, 2002, 4:42-47.
    [80] Yan Ding, Yafei Jia, and Sam S. Y. Wang. Identification of manning’s roughness coefficients in shallow water flows. J.Hy.ASCE. 2004, 130(6): 501-510.
    [81] Ben Chie Yen. Discussion on identification problem of open-channel friction parameters . J.Hy.ASCE. 1999, 5:552-553.
    [82] R. Ramesh, Bithin Datta, S. Murty Bhallamudi, and A. Narayana. Optimal estimation of roughness in open-channel flows. J.Hy.ASCE, 2000,126(4): 299-303.
    [83] Ellen E. Wohl. Uncertainty in flood estimates associated with roughness coefficient. J.Hy.ASCE, 1998, 124(2):219-223.
    [84] Raymond W. Schaffranck, Chintu Lai. Friction-term response to boundary-condition type in flow models. J.Hy.ASCE, 1996, 122(2): 73-81.
    [85]中国水利水电科学研究院水环境研究所.三峡水库一维水流水质数学模拟研究:三峡水库水污染控制研究专题报告, 2001.
    [86] M. Wasantha Lal, Randy Van Zee, and Mark Belnap. Case study: Model to simulate regional flow in south Florida. J.Hy.ASCE, 2005: 131(4):247-258.
    [87] Raymond Walton. Developing a regional engineering model for ecosystem restoration. World Water and Environmental Resources Congress 2005, May 15–19, 2005, Anchorage, Alaska, USA.
    [88] M.S. Horritt, P.D. Bates. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 2002, 268:87-99.
    [89] James L. Martin, Tim Wool, Handbook of EPD Riv1.
    [90]谢作涛,张小峰,谈广鸣. Holly-Preissmann格式的改进.水利水运工程学报, 2002:12-17.
    [91] Zhiwei Li, S.G.Buchberger, and V.Tzatchkov. Importance of dispersion in network water quality modelling. EWRI 2005.
    [92] D.H.Axworthy, B.W.Karney. Modeling low velociity/high dispersion flow in water distribution systems. Journal of water resources planning and management, 1996, 122(3):218-221.
    [93] Gregory V. Wilkerson, and Jessica L. McGahan. Depth-averaged velocity distribution in straight trapezoidal channels. Journal of Hydraulic Egineering, 2005, 131(6):509-512.
    [94] Kanhu Charan Patra, Srijib K. Kar, and Amartya K. Bhattacharya. Flow and velocity distribution in meandering compound channels. Journal of Hydraulic Egineering, 2004, 130(5):398-411.
    [95] Chao Lin Chiu. Entropy and probability concepts in hydraulics. Journal of Hydraulic Egineering, 1987, 113(5):583-600.
    [96] Chao Lin Chiu. Entropy and 2-D Velocity distribition in open channels. Journal of Hydraulic Egineering, 1988, 114(7):738-756.
    [97] Chao Lin Chiu and Jyh Dong Chiou. Structure of 3-D in rectangular open channels. Journal of Hydraulic Egineering, 1986, 112(11):1050-1068.
    [98]王木兰,朱克纯等.明渠断面流速分布的信息熵理论分析.水动力学研究与进展: A辑, 1994, 9(3):276-283.
    [99] X.Y. Zhang, E. Eric Adams. Predition of near field plume characteristics using far field circulation model. J.Hy.ASCE. 1999, 125(3):233-241.
    [100] Se-Woong Chung, and Ruochuan Gu. Two-dimensional simulations of contaminant currents in stratified reservoir. J.Hy.ASCE, 1998, 124(7): 704-711.
    [101]韩国其,汪德爟,许协庆.三维明渠流动数值模拟.水动力学研究与进展, 1990,5(3).
    [102] A.K.Rastogi,W.Rodi. Predictions of Heat and mass transfer in open channels. Journal of the hydraulics division, 1978, 104(HY3):397-420.
    [103] J.J.McGuirk, W.Rodi. A depth-averaged mathematical model for the near field of side discharges into open-channel flow. J.Fluid Mech., 1978, 86(4):761-781.
    [104]董耀华.河道温度及浓度场的平面二维数值模拟.长江科学院院报, 1997, 14(2):23-26.
    [105]谭维炎.计算浅水动力学——有限体积法的应用.北京:清华大学出版社, 1998.
    [106]周雪漪.计算流体力学.北京:清华大学出版社, 1994.
    [107]苑明顺.计算流体动力学.清华大学水利水电工程系研究生课讲稿, 2003.
    [108]陶文铨.数值传热学(第2版).西安:西安交通大学出版社, 2001.
    [109] Langtangen Hans Petter, Mardal Kent-Andre, Winther Ragnar. Numerical Methods for Incompressible Viscous Flow. Advances in Water Resources, 2002, 25:1125-1146.
    [110] P.L.Roe. Approximate Riemann Solvers, Parameter Vectors, and Defference Schemes. J ofComput Phys, 1981, 43:357-372.
    [111] B.D.Rogers, A.G.L.Borthwick,and P.H.Taylor.Godunov-type adaptive grid model of wave-current interaction at cuspate beaches. Int. J. Numer. Meth. Fluids 2004, 46:569–606.
    [112] Amanda J. Crossley, Nigel G. Wright, and Chris D. Whitlow. Local time stepping for modeling open channel flows. J.Hy.ASCE, 2003, 129(6):455-462.
    [113] Christophe Fumeaux, Dirk Baumann, Pascal Leuchtmann,et al. A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(3): 1067-1076.
    [114] Jean-Francois Remacle, Katia Pinchedez, Joseph E. Flaherty, et al. An efficient local time stepping-Discontinuous Galerkin scheme for adaptive transient computations. Preprint submitted to Elsevier Science, 2003.
    [115]刘昭伟.三峡水库岸边水域水环境特性及承载能力研究[博士学位论文].北京:清华大学水利水电工程系, 2005.
    [116] Aureli F, Mignosa P, Tomirotti M. Numerical simulation and experimental verification of dam-break flows with shocks. J Hydraulic Res, 2000, 38:197-206.
    [117] Mikhail, R., et al. The reattachment of a two-dimensioanal turbulent jet in a confined cross flow. Proc. 16th Cong., San Paulo, Brazil, 1975, 414-419.
    [118]丁炎.完全深度平均紊流模型与非恒定天然河流中岸边排污口计算[博士学位论文].北京:清华大学水利水电工程系, 1993.
    [119]洪益平.交汇河段的紊流模型及其在三峡库区水污染控制中的应用[博士学位论文].北京:清华大学水利水电工程系, 2000.
    [120] J.G.Duan. Simulation of flow and mass dispersion in meandering channels. Journal of Hydraulic Egineering, 2004, 130(10):964-976.
    [121] K.Anastasiou and C.T.Chan. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Inter J for numer methods in fluids, 1997, 24:1225-1245.
    [122] Alcrudo F and Garcia-Navarro P. A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. Inter J for numer methods in fluids. 1993, 16:489-505.
    [123]汪继文,刘儒勋.间断解问题的有限体积法.计算物理, 2001, 18(2):97-105.
    [124]王涛,杨开林.调水工程明渠水力控制线性化数学模型. 2005, 3(3):52-55.
    [125]吴泽宇,周斌.南水北调中线渠道控制计算模型.人民长江, 2000, 31(5):10-12.
    [126]丁志良,谈广鸣,陈立等.输水渠道中闸门调节速度与水面线变化研究.南水北调与水利科技, 2005, 3(6):46-50.
    [127]王长德,阮新建.南水北调中线总干渠控制运行设计.人民长江, 1999, 30(1):19-21.
    [128]章晋雄,牛争鸣.南水北调中线输水渠道系统的仿真研究.系统仿真学报, 2002, 14(12):1588-1594.
    [129]黄天禾,方焱郴.南水北调中线工程全线调水的动态调节控制.人民长江, 2000, 31(增刊):85-87.
    [130]张尚弘,王兴奎,唐立模等.南水北调中线工程节制闸间距研究.应用基础与工程科学学报, 2001, 9(4):354-359.
    [131]冯德顺,石伯勋.美国加利福尼亚州调水工程成功的启示.水利水电快报, 2003, 24(4):1-2.
    [132]吕宏兴,宋松柏,马孝义等.灌溉渠道闸门调控过程中的非恒定流研究.农业工程学报, 2002, 18(6):18-22.
    [133]任华堂,陈永灿,冯卫兵.河流流场数值模拟初始场误差发展研究.水科学进展, 2007, 18(1):58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700