聚氯乙烯电缆火灾特性及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,电缆在大型企业和民用建筑中的使用量大幅增长。电缆在给人们带来方便的同时也带来了火灾危险性。一旦电缆被引燃,所释放的大量有毒气体和腐蚀性气体对人员会造成危害,对环境物体会造成腐蚀,燃烧产生的大量烟雾,会降低能见度,妨碍人员逃生以及灭火救援,此外,在良好通风条件下,被引燃的电线电缆的燃烧火焰很容易沿着电缆的铺设方向快速蔓延,从而扩大火势,增大危害。
     聚氯乙烯电缆是目前电线电缆行业中用量最大且应用最广泛的一类电缆,这主要是因为聚氯乙烯具有低廉的价格和较高的阻燃性。因此本文以聚氯乙烯电缆作为研究对象,从微观分析入手,结合宏观实验,对其火灾特性及影响因素进行全面研究。
     本文首先从微观的角度对电缆可燃的外覆材料聚氯乙烯电缆料进行实验研究。利用热重-差热(TG-DTA)联用分析仪研究了PVC电缆料的热解行为,分析了材料在受热过程中结构和成分的变化,考虑了升温速率以及加热气氛对电缆料热解过程的影响,并与PVC树脂的热解过程进行了比较,采用不同方法对聚氯乙烯电缆料的热解动力学进行研究,为研究PVC电缆的火灾行为提供最基础的数据支持。
     由于传统的热分析方法不能提供火灾燃烧的真实条件,且PVC材料的热解性能与PVC电缆的燃烧性能还存在一定差异,因此利用锥形量热仪对成品PVC电缆的点燃、热释放速率、质量损失速率、烟气产生速率等火灾特性参数进行研究,重点考察了电缆的结构、电缆护套的厚度、外加热辐射强度等对这些火灾特性参数的影响。基于锥形量热仪初步建立了带有线芯层的简化电缆点燃模型,对电缆点燃性能的影响因素进行了分析,同时采用积分方法对电缆表面温度进行了推导,显式的反映了各有关参量对解的影响。
     全尺寸实验是研究电缆火灾特性的重要手段。电缆能否发生火蔓延,是评价电缆火灾危险性的一个重要指标。为了研究电缆的火蔓延过程,必须开展全尺寸的实验研究。因此,在原有全尺寸多功能热释放速率实验台的基础上,研制并建设了成束电缆火灾特性实验台,利用该实验台对成束PVC电缆的火蔓延炭化长度、热释放速率、烟气产生速率等火灾特性参数进行测量,分析成束PVC电缆的火灾行为,研究各参数之间的关系,考察了电缆护套厚度、电缆可燃体积、电缆排布方式、引火源功率等因素对成束PVC电缆火蔓延过程的影响。研究表明,若电缆能够蔓延至项部,则热释放速率在火蔓延过程中存在两个峰值,火蔓延速率存在一个先减速后加速的过程。引入热烟比的概念,即热释放速率峰值与烟气释放速率峰值之比,表征PVC的燃烧程度及反应方向,结果显示,在火蔓延的不同阶段,热烟比存在很大差距。此外通过理论推导,给出了PVC电缆维持向上火蔓延的两个临界判据,并用实验数据进行了验证。
With the development of the society, large amount of cables are being used in power plants and civil buildings. They bring us great convenience and fire hazard at the same time. Once ignited, they will release large amount of toxic gases and corrosive gases, which can lead to great damage to human beings and surrounding objects. Moreover, the heavy smoke will reduce the visibility and it's hard for people to evacuate and to put out a fire. In well-ventilated conditions, the flame of burning cables is easy to spread along the laying direction, which will enlarge the fire extent and increase the fire hazard.
     Polyvinyl chloride (PVC) cables are the most popular cables in wire and cable industry at present. This is mainly because of its low price and great fire performance. So in this paper, PVC cables were selected and tested on different scale experiments to explore their fire behavior and impact factors.
     First of all, PVC cable materials were tested in micro-scale experiments. Thermal decomposition characteristics were analysed with TG-DTA analyser instrucment. The structure and component change were studied. The effects of heat-up rate and atmosphere were analysed. The difference between PVC resin and PVC cable materials was compared. The kinetics of thermal decomposition was discussed, which provided foundermental support for fire performance research on PVC cables.
     Since the way of tradational themal analysis can't provide burning conditions of real fire and there's a little difference between the burning behavior of PVC material and that of PVC cable, small scale experiments on PVC cables were carried out with cone calorimeter. Many fire performance parameters were discussed, such as time to ignition, heat release rate, mass loss rate, smoke production rate etc.. The effects of cable structure, thickness of cable jacket and irradiance level were studied. A simplified cable ignition model was established based on the cone calorimeter. The effects of different impact factors were analysed. Surface temperature of cable was deduced using integral method, it can reflect the effects of impact factors explicitly.
     Full-scale experiment is an important way to study the fire performance of cables. Whether or not flame spread happens will effect the evalution of cables' fire hazard . So a full-scale platform for fire performance of bundled cables based on the ISO 9705 heat release rate measurement platform has been established at USTC. The parameters such as char length, heat release rate, smoke production rate etc. were obtained. The fire performance of bundled PVC cables were analysed and the relationship among these parameters were studied. The effect of jacket thickness, combustible volume, installation type and burner output to the flame spread of PVC bundled cables were discussed. The results show that if flame spread happens, there are two peaks of heat release rate during the spread process. The spread rate decelerated first and then accelerated. The ratio of peak heat release rate and peak smoke release rate was used to reflect the burning extent and reaction direction. Two critical conditions were deduced to judge if the fire propogation could occur.
引文
郭颖,吴敬标.2002.降低聚氯乙烯电缆料在燃烧时氯化氢释放量的方法探讨[J].聚氯乙烯.2:34-42.
    黄一兰,杨春丽,黄显东.2004.影响电缆燃烧烟密度曲线因素的探讨[J].煤矿安全.35(7):36-38.
    康勇.2007.电力电缆防火措施[J].山西冶金.106(2):61-62.
    舒中俊,李晓南,李响.2007.聚合物材料火灾燃烧性能评价[M].第1版.北京:化学工业出版社.
    舒中俊,冯俊峰,陈南等.2006.PVC电缆及其护套原料燃烧性能的对比[J].消防科学与技术.25(2):247-249.
    徐天瑞,王信群,金湘.1996.电厂电缆火灾火因分析及预防措施[J].劳动保护.8(9):35-36.
    尤飞,L in JZ,周建军等.2002.夹层电缆引发火灾的实验研究[J].安全与环境学报.2(6):29-33.
    袁洪军,旷天申,富宝灿等.2005.煤矿用低烟低毒(卤)阻燃电缆的性能测试[J].煤矿安全.36(12):1-3.
    张尔梅,项健,王怡如等.1995.电缆用低烟低卤阻燃聚氯乙烯塑料[J].电线电缆.5:20-23.
    Aksit IM,Moss JB,Rubini PA.2001.CFD Simulation of cable tray fires[C].Interflam 2001.1129-1140.
    Alvares N,Fernandez-Pello AC.2000.Fire initiation and spread in overloaded communication system cable trays[J].Experimental Thermal and Fluid Science.21:51-57.
    Andersson P,Rosell L,Simonson M.2004.Small and Large Scale Fire Experiments with Electric Cables under Well-Ventilated and Vitiated Conditions[J].Fire Technology.40:247-262.
    Andersson P,Van Hees P.2005.Performance of cables subjected to elevated temperatures[C].IAFSS:1121-1132.
    Babrauskas V.2006.Mechanisms and modes for ignition of low-voltage,PVC-insulated electrotechnical products[J].Fire and Materials.30:151-174.
    Barnes MA,Briggs P J,Hirschler MM et al.1996.A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part I Tests on Materials and Insulated Wires[J], Fire and Materials. 20(1): 1-16.
    Barnes MA, Briggs PJ, Hirschler MM et al. 1996. A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part II Tests on Cables[J]. Fire and Materials. 20(1): 17-37.
    Bertrand R, Chaussard M, Gonzalez R et al. 2002. Behaviour of electrical cables under fire conditions. Kerntechnik. 67(2-3): 116-120.
    Beyer G, Breulet H, Crott M et al. 1999. New advances in assessing the fire performance of non-halogenated cables by means of the cone calorimeter[C]. Interflam 1999. 1305-1309.
    Blomqvist P, Simonson M, Van Hees P. 1999. Study of fire behaviour and toxic gas production of cables in real-scale fire tests[C]. Interflam 1999.1393-1401.
    Breulet H, Steenhuizen T. 2005.Fire testing of cables: comparison of SBI with FIPEC/Europacable tests[J]. Polymer Degradation and Stability.88:150-158.
    Brown DW. 1997. Development of electric cables for fire situations[J]. Power Engineering Journal. 11(3): 101-106.
    Coaker AW. 2003. Fire and flame retardants for PVC[J]. Journal of Vinyl & Additive Technology. 9(3): 108-115.
    Coaker AW, Hirschler MM, Shoemaker C. 1992. Rate of Heat Release Testing for Vinyl Wire and Cable Materials with reduced Flammability and Smoke - Full-Scale Cable Tray Tests and Small-Scale Tests[J]. Fire Safety Journal. 19(1): 19-53.
    Coaker AW, Hirschler MM. 1990. New Low Fire Hazard Vinyl Wire and Cable Compounds[J]. Fire Safety Journal. 16: 171-196.
    Dervos CT, Vassiliou P. 1998. Effects of fire combustion products on degradation of cable insulation. Journal of Fire Science. 16(3): 206-221.
    Elliot PJ, Whiteley RH. 2000. The Measurement of Smoke Production From Electrical Wires Under Conditions of Current Overload[J]. Fire and Materials. 24: 259-263.
    Fardell PJ, Colwell R, Hoare D. 2001. Communication cable fires- A study to assist the development of improved fire tests [C]. Interflam 2001. 1141-1151.
    Grayson SJ, Van Hees P, Green AM et al. 2001. Assessing the Fire Performance of Electric Cables (FIPEC)[J]. Fire and Materials. 25: 49-60.
    Hakkarainen T. 2001. Correlation studies of SBI and cone calorimeter test results[C]. Interflam 2001. 519-530.
    Hakkarainen T, Kokkala MA. 2001. Application of a One-dimensional Thermal Flame Spread Model on Predicting the Rate of Heat Release in the SBI Test[J]. Fire and Materials. 25: 61-70.
    Hansen AS. 2002. Prediction of heat release in the Single Burning Item test. Fire and Materials. 26: 87-97.
    Hansen AS, Hovde PJ. 2001. Prediction of smoke production based on statistical analyses and mathematical modeling[C]. Interflam 2001. 113-124.
    Hirschler MM, Shakir S. 1992. Measurements of Cable Fire Properties by using Heat Release Equipment[C]. Flame Retardants 92. 77-99.
    Hirschler MM. 1992. Survey of fire testing of electrical cables. Fire and Materials. 16: 107-118.
    Hirschler MM. 1994. Comparison of large- and small-scale heat release tests with electrical cables. Fire and Materials. 18(2): 61-76.
    Hirschler MM. 1997. Analysis of and Potential Correlations Between Fire Tests for Electrical Cables, and How to Use This Information for Fire Hazard Assessment[J]. Fire Technology. 33:291-315.
    Hirschler MM. 2001. Can the cone calorimeter be used to predict full scale heat and smoke release cable tray results from a full scale test protocol[C]. Interflam 2001. 137-143.
    Khan MM, Bill RG, Alpert RL. 2006. Screening of plenum cables using a small-scale fire test protocol[J]. Fire and Materials. 30:65-76.
    Lang HG, Huber E. 1991. Experiments on Development, Spreading and Detection of Cable Fires[J]. Nuclear Engineering and Design. 125(3): 325-328.
    Lougheed GD, McCartney C, Kanabus-Kaminska M. 2004. Full-scale fire tests for cables in plenums[C]. NRCC-47360. 652-665.
    Matheson AF, Charge R, Corneliussen T. 1992. Properties of PVC Compounds with Improved Fire Performance for Electrical Cables[J]. Fire Safety Journal. 19(1): 55-72.
    Messerschmidt B, Van Hees P, Wickstrom U. 1999. Prediction of SBI test results by means of Cone Calorimeter test results[C]. Interflam 1999. 11-22.
    Nakagawa Y. 1998. Comparative study of bench-scale flammability properties of electric cables with different covering materials[J]. Journal of Fire Science. 16(3): 179-205.
    Nam S, Ris JD, Wu P, et al.2005. From bench-scale test data to predictors of full-scale fire test results[C]. IAFSS: 469-480.
    Simonson M, Andersson P, Emanuelsson V et al. 2003. A life-cycle assessment (LCA) model for cables based on the fire-LCA model[J]. Fire and Materials. 27:71-89.
    Sundstrom B, Axelsson J, Hees PV. 2004. A new European system for fire testing and classification of cables[C]. Interfiam 2004, 5-17.
    Tewarson A. Khan MM. 1992. A new standard test method for the quantification of fire propagation behavior of electrical cables using Factory Mutual Research Corporation's small-scale flammability apparatus[J], Fire Technology. 28(3): 215-227.
    Thibert E, Gautier B. 1999. Combustion of an electrical cable insulation: thermal study and modelling at EDF[J]. Polymer Degradation and Stability. 64: 585-593.
    Tzu-Sheng Shen. 2006. Will the Second Cable Tray Be Ignited In a Nuclear Power Plant[J]. Journal of Fire Science. 24(4):265-274.
    Van Hees P, Breulet H, Vercellotti U et al. 1999. An overview of the real scale tests in the FIPEC project (fire performance of electrical cables)[C]. Interfiam 1999. 379-392.
    Van Hees P, Axelsson J, Green AM et al. 2001. Mathematical Modelling of Fire Development in Cable Installations[J]. Fire and Materials. 25: 169-178.
    Van Hees P, Axelsson J, Green AM. 2001. Development of a composite pyrolysis model for prediction of the heat release rate from cables by means of material testing in the cone calorimeter[C]. Interfiam 2001. 1107-1116.
    Will J, Hosser D. 2000. Comparison of the burning behaviour of electric cables with intumescent coating in different test methods[J]. Kemtechnik. 65(2-3): 125-129.
    You F, Zhou JJ, Zou YH et al. 2003. Preliminary real-scale experimental studies on cable fires in plenum[J]. Journal of Fire Science. 21(6): 465-484.
    胡源,尤飞,宋磊等.2007.聚合物材料火灾危险性分析与评估[M].第1版.北京:化学工业出版社.
    李爱民等.1999.废旧高分子材料在回转窑内热解的研究[J].燃料化学学报.8:340-346
    李斌.2000.聚氯乙烯(PVC)的抑烟与阻燃[M].第1版.哈尔滨:东北林业大学出版社.
    孙尊亚,李省岐.2000.2000年我国聚氯乙稀树脂现状和发展建议[J].聚氯乙稀,5:1-5
    谢建玲,桂祖桐,蔡绪福等.2007.聚氯乙烯树脂及其应用[M].第1版.北京:化学工业出版社.
    赵劲松,李宁.1999.PVC微观结构及颗粒形态[J].聚氯乙烯,4:46-58
    Baun B,Wartman LH.1958.Structure and mechanism of dehydrochlorination of polyvinyl chloride[J].Journal of Polymer Science.28:537-546
    Bengough WI,Onozuka M.1965.Abnormal structures in polyvinylchloride I--A method of estimating labile chloride groups in polyvinylchloride[J].Polymer.6:625-634
    Bengough WI,Varma IK.1966.The thermal degradation of polyvinylchloride in solution--Ⅲ.The effect of solvent on the kinetics of dehydrochlorination[J].European Polymer Journal,2:49-59
    Cotman JD.1953.Studies on polyvinyl chloride.Ⅱ.Branching.Annals of the New York Academy of Sciences,57:417-431
    Garcia-Quesada JC,Marcilla A,Gilbert M.2001.Study of the pyrolysis behavior of peroxide crosslinked unplasticized PVC[J].Journal of analytical and applied pyrolysis.58:651-666.
    Oudhuis Abj,Dewit R 1991.An exploratory-study of the processing of plastics,by means of pyrolysis,with the emphasis on PVC aluminum combinations[J].Journal of analytical and applied pyrolysis.20:321-336.
    Rasuvaev GA,Troitskaya LS,Troitskii BB.1971.Mechanism of action of some stabilizers in the thermal degradation of poly(vinyl chloride)[J].Journal of Polymer Science Part A-1:Polymer Chemistry,9:2673-2688
    Salovey R,Bair HE.1970.Degradation of poly(vinyl chloride)[J].Journal of Applied Polymer Science.14:713-721
    Stromberg RR,Straus S,Achhammer BG.1959.Thermal decomposition of poly(vinyl chloride) [J]. Journal of Polymer Science. 35:355-368
    Winkler DE. 1959. Mechanism of polyviny] chloride degradation and stabilization [J]. Journal of Polymer Science. 35:3-16
    Zafar MM, Mahmood R. 1976. Poly (vinyl chloride) decomposition in solution [J]. European Polymer Journal,12:333-335
    蔡正千.1993.热分析[M].北京:高等教育出版社.
    陈镜泓,李传儒.1985.热分析及其应用[M].北京:科学出版社.
    胡荣祖,史启祯.2001.热分析动力学[M].北京:科学出版社.
    刘振海.1991.热分析导论[M].北京:化学工业出版社.
    于伯龄,姜胶东.1990.实用热分析[M].北京:纺织工业出版社.
    郑学刚,唐黎华,俞丰等.2003.PVC的热失重和热解动力学[J].华东理工大学学报,29(4):346-350.
    钟世云,许乾慰,王公.2002.聚合物降解与稳定化[M].北京:化学工业出版社.
    Aracil I,Font R,Conesa JA.2005.Thermo-oxidative decomposition ofpolyvinyl chloride[J].J.Anal.Appl.Pyrolysis.,74(1-2):215-223.
    Antal M J,Varhegyi G,Jakab E.1998.Cellulose pyrolysis kinetics:revisited[J].Ind.Eng.Chem.Res.,37(4):1267-1275.
    Bacaloglu R,Fisch M.1995.Degradation and stabilization of poly(vinyl chloride).V:Reaction mechanism of poly(vinyl chloride)degradation[J].Polym.Degrad.Stab.,47(1):33-57.
    Brown ME,Dollmore D,Galwey AK.1980.Reactions in the Solid State.Comprehensive Chemical Kinetics[M].Elsevier:Amsterdam
    Coats AW,Redfern JP.1964.Kinetic parameters from thermogravimetric data[J].Nature,201(4914):68-69.
    Galwey AK,Brown ME.1995.A theoretical justification for the application of the Arrhemius equation to kinetics of solid state reactions(mainly ioniccrystals)[C],Proc.R.Soc.Lond.A,450:501-512.
    Knumann R,Bockhorn H.1994.Investigation of the kinetics of pyrolysis of PVC by TG-M S-analysis[J].Combust.Sci.Technol.,101(1-6):285-299.
    Marongiu A,Faravelli T,Bozzano G,et al.2003.Thermal degradation of poly(vinyl chloride)[J].J.Anal.Appl.Pyrolysis.,70(2):519-553.
    Mcneill IC,Memetea L.1994.Pyrolysis products of poly(vinyi chloride),dioctyl phthalate and their mixture[J].Polymer Degradation and Stability,43(1):9-25.
    Nandini C.1994.Thermal decomposition of poly(vinyl chloride)[J].Journal of Polymer Science A, Polymer Chemistry, 32(7): 1225-1237.
    Saeed L, Tonka A, Haapala M, et al. 2004. Pyrolysis and combustion of PVC, PVC-wood and PVC-coal mixtures in a two-stage fluidized bed process[J]. Fuel Process. Technol., 85(14): 1565-1583.
    Vyazovkin S, Dollimore D. 1996. Linear and nonlinear procedures in isconversional computations of the activation energy of non isothermal reactions in solids[J]. J. Chem. Inf. Comput. Sci., 36(1): 42-45.
    Wang ZZ, Wang Y, Metcalfe E. 1998. Thermo-gravimetric analysis of polyvinyl chloride materials[J]. Journal of University of Science and Technology of China, 28(5): 598-604.
    Wu CH, Chang CY , Hor JL, t al. 1994. Two-stage pyrolysis model of PVC[J]. Chemical Engineering, 72(4):644-650.
    郭宽良. 1988. 计算传热学[M].中国科技大学出版社.
    American Society for Testing and Materials. 2004. ASTM E 1354-04. Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter[S]. West Conshohocken: ASTM International.
    Chen Y, Delichatsios MA, Motecalli V. 1993. Material pyrolysis properties, Part I: an integral model for one-dimensional transient pyrolysis of charring and non-charring materials[J]. Combustion Science and Technology, 88(5-6): 309-328.
    Delichatsios MA, Panagiotou TH, Kiley F. 1991. The Use of Time to Ignition Data for Characterizing the Thermal Inertia and the Minimum (Critical) Heat Flux for Ignition of Pyrolysis. Combustion and Flame, 84(4): 323-332.
    International Organization for Standardization. 1993. ISO 5660-1. Fire tests-Reaction to fire-Rate of heat release from building products[S]. Switzerland: International Organization for Standardization.
    Mikkola E, Wichman IS. 1989. On the Thermal Ignition of Combustible Materials[J]. Fire and Materials, 14(3): 87-96.
    Moghtaderi B, Novozhilov V, Fletcher D, et al. 1997. An Integral Model for the Transient Pyrolysis of Solid Materials[J]. Fire and Materials, 21(1): 7-16.
    Quintiere J, Iqbal N. 1994. An approximate integral model for the burning rate of a themoplastic-like material[J]. Fire and Materials, 18(2): 89-98.
    Shields TJ, Silcock GWH, Murray JJ. 1994. Evaluating Ignition Data Using the Flux Time Product[J]. Fire and Materials, 18(4): 243-254.
    Silcock GWH, Shields TJ. 1995. A Protocol for Analysis of Time-to-ignition Data from Bench Scale Tests[J]. Fire Safety Journal, 24(1): 75-95.
    Spearpoint MJ, Quintiere JG. 2000. Predicting the Burning of Wood Using an Integral Model[J]. Combustion and Flame. 123(3): 308-325.
    Spearpoint MJ, Quintiere JG. 2001. Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, Grain Orientation and heat flux[J]. Fire Safety Journal, 36(4): 391-415.
    Srinivasan K, Murthy KMV. 1990. An Integral Method of Solution for Unsteady Heat-Conduction in Cylindrical Insulations[J]. Mathematical and Computer Modelling, 13(2): 15-21.
    Toal BR, Sikock GWH, Shields TJ. 1989. An Examination of Piloted Ignition Characteristics of Cellulosic Materials Using the ISO Ignitability Test[J]. Fire and Materials, 14(3): 97-106.
    郦华兴,陈长青,彭少贤等.1994.建筑塑料的阻燃和抑烟[J].中国塑料,8(3):1-7.
    李引擎.2004.建筑防火工程[M].第1版.北京:化学工业出版社.
    季经纬,杨立中,范维澄.2003.外部热辐射对材料燃烧性能影响的实验研究[J].燃烧科学与技术,9(2):139-143.
    舒中俊,冯俊峰,陈南等.2006.PVC电缆及其护套原料燃烧性能的对比[J].消防科学与技术.25(2):247-249.
    舒中俊,李晓南,李响.2007.聚合物材料火灾燃烧性能评价[M].北京:化学工业出版社.
    王庆国,张军,张峰.2003.锥形量热仪的工作原理及应用[J].现代科学仪器,6:36-39.
    American Society for Testing and Materials.2004.ASTM E 1354-04.Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter[S].West Conshohocken:ASTM International.
    Babrauskas V,Peacock RD.1992.Heat Release Rate:The Single Most Important Variable in Fire Hazard[J].Fire Safety Journal,18(3):255-272.
    Delichatsios MA.1993.Basic polymer material properties for flame spread[J].Journal of Fire Science,11(4):287-295.
    Drysdale D.1987.An introduction to fire dynamics[M].London:John Wiley & Sons.
    Hopkins JD,Quintiere JG.1996.Material fire properties and predictions for thermoplastics[J].Fire Safety Journal,26(3):241-268.
    Huggett C.1980.Estimation of rate of heat release by means of oxygen consumption measurements[J].Fire and Materials,4(2):61-65.
    International Standards Organization.1993.ISO 5660-1 Fire tests-reaction to fire-rate of heat release from building products[S].Geneva:International Organization for Standardization.
    Levchik SV,Camino G,Costa Let al.1995.Mechanism of action of phosphorous-based flame retardants in nylon 6.I.Ammonium Polyphosphate[J].Fire and Materials,19(1):1-10
    Ma RH,Lin YC,Kuo CP.2006.The study of thermal pyrolysis mechanisms for chloro organic compounds in electric cable and medical wastes[J].Journal of Analytical and Applied Pyrolysis,75(2):245-251.
    Matheson AF, Charge R, Corneliussen T. 1992. Properties of PVC compounds with improved fire performance for electrical cables[J]. Fire Safety Journal, 19(1): 55-72.
    Parker WJ. 1984. Calculations of the Heat Release Rate by Oxygen Consumption for Various Applications[J]. Journal of Fire Science, 2(5): 380-395.
    Peacock RD, Reneke PA, Bukowski RW, et al. 1999. Defining flashover for fire hazard calculations[J]. Fire Safety Journal, 32(4): 331-345.
    Tran HC, White RH. 1992. Burning rate of solid wood measured in a heat release rate calorimeter[J]. Fire and Materials, 16(4): 197-206.
    International Standards Organization.1993.ISO 5660-1 Fire tests-reaction to fire-rate of heat release from building products[S].Geneva:International Organization for Standardization.
    International Electrotechnical Commission.1992.IEC60332-3.Tests on electric cables under fire conditions -Part 3:Tests on bunched wires or cables[S].
    Janssens ML.1991.Measuring Rate of Heat Release by Oxygen Consumption[J].Fire Technology,27:235-249
    舒中俊,李晓南,李响.2007.聚合物材料火灾燃烧性能评价[M].第1版.北京:化学工业出版社.
    邹样辉.2001.固体可燃物表面火蔓延研究fD):[博士].合肥:中国科学技术大学.
    Eklund TI.1986.A vortex model for wall flame height[J].Journal of fire science.4:4-14.
    Hasemi Y.1985.Thermal modeling of upward wall flame spread[C].Fire Safety Science--Proceedings of the First International Symposium,87-96.
    Kokkala M,Baroudi D,and Parker WJ.1997.Upward flame spread on wooden surface products:Experiments and numerical modeling[C].Fire Safety Science--Proceedings of the Fifth International Symposium,309-320.
    Saito,K,Quintiere J,and Williams FA.1991.Upward turbulent flame spread[C].Fire Safety Science:Proceedings of the First International Symposium,editors:C.E.Grant and P.J.Pagni,Hemisphere Pub.Cop.,Washington,75-86
    Tu KM,Quintiere JG.1991.Wall flame heights with external radiation[J].Fire Technology,27:195-203.
    Tsai KC,Drysdale D.2002.Flame height correlation and upward flame spread modeling[J].Fire and Materials,26:279-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700