生物质谱技术和方法在蛋白类药物序列鉴定中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物仿制药出现以后,为保证它与原研产品功能的一致性,保证它的质量、安全和效能,首先需要对它的结构进行表征,包括完整蛋白分子量测定,氨基酸序列鉴定,各类修饰,如二硫键、糖链的鉴定等。本论文的研究主要集中在使用生物质谱技术对两种蛋白类药物分子,重组人生长激素和重组卵泡刺激素进行表征,对完整蛋白分子量,氨基酸序列,各类修饰,特别是糖链序列进行测定和解析。
     本论文第二章的工作是对蛋白药PEG(聚乙二醇)修饰的重组人生长激素进行氨基酸的序列鉴定。还原烷基化实验后,使用UPLC-MS/MS仪器在正离子模式下进行液质联用在线分析,使用Uniprot数据库进行匹配搜索,鉴定到198条肽段,我们对原始数据和搜库结果进行了深入分析和总结,经过人工再次评估,结合一级质谱谱图,鉴定到的肽段达到204条,序列覆盖率几乎达到百分百,还发现了除胰蛋白酶酶解肽段外非正常胰蛋白酶酶解肽段的氨基酸序列,鉴定到诸如氨基酸替代,氧化、脱水、脱氨基等大量重要的化学修饰信息。这些信息对于蛋白类药物分子的氨基酸序列鉴定非常有意义,这对于鉴定肽段信息,准确鉴定蛋白分子结构,对鉴别其结构与功能方面的关系等提供了重要的信息。
     论文第三章涉及的是对N-糖蛋白完整分子量的测定以及对从该蛋白PNGase F酶解分离得到的N-糖链的序列解析。对N-糖蛋白完整分子量的测定,得到了两个亚基的分子量,并且得知其中含有唾液酸和六元糖的糖单元。由于唾液酸的存在,在对N-糖糖链进行液质联用在线解析时,采用负离子模式,结合总离子流图(TIC)和提取离子流图(XIC)及MS和MS/MS谱图,在Analyst软件上进行数据分析,找到了糖链碎裂的分子离子峰,推断出可能的糖链序列组成。
     此外,我们试图建立一种标准化的流程方法来解析糖蛋白中的糖链序列,由于还原端的衍生化可以简化谱图,特别是碎片离子的质量谱图,提高离子化效率,我们尝试用2-AB(2-氨基苯甲酰胺)这种荧光试剂进行糖链的衍生化。在前期对标记方法的尝试和摸索阶段,先使用六个葡萄单糖聚合的简单结构的麦芽六糖(Maltohexaose),标记反应完成后分离纯化除去过量的标记试剂,浓缩后进行质谱分析。首先使用MALDI-TOFTOF高分辨质谱,找到分子量增加120.06 Da的标记分子的加钠离子峰,然后使用UPLC-ESI-MS/MS液质联用在线检测,糖链标记前后1:1进样,观测到标记后麦芽六糖的质子峰信号强度明显增强,说明对于中性糖的标记是很有效果的,结合串级质谱谱图,进一步确认了这个糖链结构,然后把该方法应用到实际N-糖蛋白的糖链上,也取得了一定的效果。
     应用质谱技术对蛋白类药物的表征,包括完整蛋白分子量分析,对氨基酸的序列分析,对各类修饰,特别是N-糖糖链的解析,有助于对蛋白类药物的结构鉴定,帮助蛋白仿制药和原研产品进行比较性研究,能更真实地反应出两者之间的相似与不同,对蛋白仿制药物分子的鉴定也更具体,有针对性,更真实可靠。
After the biological medicine "Biosimilars", their molecular structures need to be characterized in order to make sure the similarity with the original products, and ensure the similar quality, accuracy and efficacy. It is necessary to determine the molecular mass of intact protein, to identify the sequence of amino acids and modifications such as disulfide bond, glycosylation, etc. The research work of this master thesis mainly focuses on the characterization of two kinds of biological medicine with biomass spectrometry, mainly for the determination of intact protein molecular mass and the determination of amino acid sequence as well as its modifications especially with N-glycan chains.
     The protein used in the second chapter is Recombinant Human Growth Hormone(rhGH) with PEGylation. After the reduction and alkylation response, the sample was analyzed by UPLC-ESI-MS-MS at positive ion mode, which yielded an identification of total 198 peptides from Uniprot database. Then the majority of original raw data from the search results are analyzed and summarized, through such manual evaluation together with the MS spectra, the peptides identified are up to 204, and the sequence coverage is close to 100%. The peptides, abnormally digested by trypsin, are discovered except the normal. Also, the substitution of amino acid and few chemical modifications such as oxidation, deamidated and dehydrated, are observed. Such information plays a very important pole in the characterization of the amino acid sequence of biological drugs. Moreover, it helps to characterize the peptide, the structure of protein, even the related function.
     The work in the third chapter mainly focuses on the determination of intact N-glycoprotein molecular mass and the analysis of the sequence of N-glycan from the N-glycoprotein. The N-glycoprotein here is Recombinantfollicle stimulating hormone (FSH). The mass values of the two subunits are determined, and the sialic acid is also detected. The sample is unknown N-glycan chain form a drug company. Because of the existence of sialic acid, the UPLC-ESI-MS-MS experiment is done at the negative ion mode. Combined the TIC spectrum, XIC spectra, retention time, MS spectra and MS/MS spectra with the help of software "Analyst", the peaks of glycan fragments are identified. At last the glycanform are obtained successfully through the analysis and calculation on the data.
     Later, the study was focused to establish a standard method to analyze the sequence of N-glycans, considering that the reducing end derivatization can help to decrease the complexity of mass spectra, especially the fragment ion mass spectra, the work adopt 2-AB(2-amino-benzamideg) as labeling. At the first step, maltohexaose polymerized by six glucoses are used in the experiment to verify the method. When the derivatization process is done, the labeled glycans need to be separated from too much labeling with the SPE cartridge. On the MALDI-TOF-TOF-MS, the increased mass 120.06 Da due to the derivatization can be easily found. Then the samples with 1:1 before and after labeling are subjected to UPLC-ESI-MS-MS, the signal of the peak with H+ can be detected with an obvious improvement, proving the effecitiveness of the method, through the structural confirmation with MS/MS spectra. Then at the second step, we apply the method to the complex N-glcans mixture.
     The characterization of the biological medicine, including the determination of molecular mass of intact protein, and the analysis of the sequence of amino acids as well as modifications, especially with N-linked glycans, provides a possibility to identify the structure of biological drugs, especially when compared to the reference, with the precision and reliability of the results.
引文
[1]Huub Schellekens BIOPHARMACEUTICALS AND BIOSIMILARS, UNRAVELLING THE COMPLEXITY. [J] EJHP Practice,2006,12:
    [2]D. T. Molowa, R. Mazanet The state of biopharmaceutical manufacturing. [J] Biotechnol Annu Rev,2003,9:285-302.
    [3]H. Schellekens Follow-on biologics:challenges of the "next generation". [J] Nephrol Dial Transplant,2005,20 Suppl 4:iv31-36.
    [4]Carsten Brockmeyer, Andreas Seidl Binocrit:assessment of quality, safety and efficacy of biopharmaceuticals. [J] EJHP Practice,2009,15:
    [5]Fritz So¨rgel, Helmut Lerch, Thomas Lauber Physicochemical and Biologic Comparability of a Biosimilar Granulocyte Colony-Stimulating Factor with Its Reference Product. [J] Biodrugs,2010,24(6):347-357.
    [6]QIN ZOU, YIN LUO Biophysical Characterization for Product Comparability. [J] BioPharm International 2010.
    [7]M. Dole, L. L. Mack, R. L. Hines Molecular Beams of Macroions. [J] J Chem Phys,1968,49(5):2240-&.
    [8]M. Yamashita, J. B. Fenn Negative-Ion Production with the Electrospray Ion-Source. [J] J Phys Chem-Us,1984,88(20):4671-4675.
    [9]C. M. Whitehouse, R. N. Dreyer, M. Yamashita, et al. Electrospray Interface for Liquid Chromatographs and Mass Spectrometers. [J] Analytical Chemistry, 1985,57(3):675-679.
    [10]J. B. Fenn, M. Mann, C. K. Meng, et al. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. [J] Science,1989,246(4926):64-71.
    [11]Richard D. Smith, Karen J. Light-Wahl The observation of non-covalent interactions in solution by electrospray ionization mass spectrometry:Promise, pitfalls and prognosis. [J] Biological Mass Spectrometry,1993,22(9):493-501.
    [12]K. Tanaka, H. Waki, Y. Ido, et al. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. [J] Rapid Commun. Mass Spectrom,1988,2(8):151-153.
    [13]M. Karas, F. Hillenkamp Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. [J] Anal. Chem.,1988,60(20): 2299-2301.
    [14]F. Hillenkamp, M. Karas, R.C. Beavis, et al. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. [J] Anal. Chem.,1991, 63(24):1193-1203.
    [15]E.De Pauw, A. Agnello, F. Derwa Liquid matrices for liquid secondary ion mass spectrometry-fast atom bombardment:An update. [J] Mass Spectrom. Rev., 1991,10(4):283-301.
    [16]M.M.Siegel,I.J.Hollander,P.R.Hamann, et al. Matrix-assisted UV-laser desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator, and conjugated drug content. [J] Anal. Chem.,1991,63(21):2470-2481.
    [17]A. Overberg, M. Karas, F. Hillenkamp, et al. Matrix-assisted laser desorption of large biomolecules with a TEA-CO2-laser. [J] Rapid Commun. Mass Spectrom.,1991,5(3):128-131.
    [18]S. Zhao, K.V. Somayajula, A.G. Sharkey, et al. Novel method for matrix-assisted laser mass spectrometry of proteins. [J] Anal. Chem.,1991,63(5): 450-453.
    [19]R.C. Beavis, B.T. Chait High-accuracy molecular mass determination of proteins using matrix-assisted laser desorption mass spectrometry. [J] Anal. Chem., 1990,62(17):1836-1840.
    [20]P. Juhasz, M.T. Roskey, I.P. Smirnov, et al. Applications of delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry to oligonucleotide analysis. [J] Anal. Chem.,1996,68(6):941-946.
    [21]F. Hillenkamp, M. Karas, R.C. Beavis, et al. Matrix-Assisted Laser Desorption Lonization Mass-Spectrometry of Biololymers. [J] Analytical Chemistry,1991,63(24):A1193-A1202.
    [22]M. S. Bereman, M. M. Lyndon, R. B. Dixon, et al. Mass measurement accuracy comparisons between a double-focusing magnetic sector and a time-of-flight mass analyzer. [J] Rapid Commun Mass Spectrom,2008,22(10): 1563-1566.
    [23]A. Loboda, A. Krutchinsky, O. Loboda, et al. Novel Linac Ⅱ electrode geometry for creating an axial field in a multipole ion guide. [J] Eur. J. Mass Spectrom.,2000,6(6):531-536.
    [24]P. Roepstorff, J. Fohlman Proposed nomenclature for sequence ions. [J] Biomed. Mass Spectrom,1984,11:601.
    [25]M. Fernandez Ocana, J. Jarvis, R. Parker, et al. C-terminal sequencing by mass spectrometry:Application to gelatine-derived proline-rich peptides. [J] Proteomics,2005,5(5):1209-1216.
    [26]David M. Horn, Roman A. Zubarev, Fred W. McLafferty Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. [J] Proc. Natl. Acad. Sci. USA,2000,97:
    [27]George R. Stark Sequential degradation of peptides from their carboxyl termini with ammonium thiocyanate and acetic anhydride. [J] Biochemistry,1968, 7(5):1796-1807.
    [28]J.R. Yates, D. Cociorva, L. Liao, et al. Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. [J] Anal. Chem.,2006,78(2):493-500.
    [29]B.L. Williamson, J. Marchese, N.A. Morrice Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. [J] Molecular & Cellular Proteomics,2006,5(2):337.
    [30]H. Xie, N.L. Rhodus, R.J. Griffin, et al. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. [J] Molecular & Cellular Proteomics,2005,4(11): 1826.
    [31]M. Thevis, A.A. Makarov, S. Horning, et al. Mass spectrometry of stanozolol and its analogues using electrospray ionization and collision-induced dissociation with quadrupole-linear ion trap and linear ion trap-orbitrap hybrid mass analyzers. [J] Rapid Commun. Mass Spectrom.,2005,19(22):3369-3378.
    [32]Z. Ouyang, G. Wu, Y. Song, et al. Rectilinear ion trap:concepts, calculations, and analytical performance of a new mass analyzer. [J] Anal. Chem., 2004,76(16):4595-4605.
    [33]T. Rejtar, H. Chen, V. Andreev, et al. Increased identification of peptides by enhanced data processing of high-resolution MALDI TOF/TOF mass spectra prior to database searching. [J] Anal. Chem.,2004,76(20):6017-6028.
    [34]D.J. Harvey, R.L. Martin, K.A. Jackson, et al. Fragmentation of N-linked glycans with a matrix-assisted laser desorption/ionization ion trap time-of-flight mass spectrometer. [J] Rapid Commun. Mass Spectrom.,2004,18(24): 2997-3007.
    [35]B. Peeters, W. Rombauts, J. Mous, et al. Structural Studies on Rat Prostatic Binding Protein. [J] European Journal of Biochemistry,1981,115(1):115-121.
    [36]夏其昌,曾嵘等,蛋白质化学与蛋白质组学,科学出版社,2004.
    [37]RP Ambler Enzymatic hydrolysis with carboxypeptidases. [J] Methods Enzymol,1972,25:143-154.
    [38]R. Hayashi, S. Moore, W.H. Stein Carboxypeptidase from yeast. [J] Journal of Biological Chemistry,1973,248(7):2296.
    [39]M.O.B. Lan, LI Jiang, L.S. Ping Mechanism and Progress of (iso) Thiocyanate Approach for C Terminal Sequence Analysis of Proteins. [J] PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS,1999:03.
    [40]B. Thiede, B. Wittmann-Liebold, M. Bienert, et al. MALDI-MS for C-terminal sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. [J] FEBS Lett.,1995,357(1):65-69.
    [41]B. Samyn, K. Sergeant, P. Castanheira, et al. Anew method for C-terminal sequence analysis in the proteomic era. [J] Nat. Methods,2005,2(3):193-200.
    [42]B. Samyn, K. Sergeant, J. Van Beeumen A method for C-terminal sequence analysis in the proteomic era (proteins cleaved with cyanogen bromide). [J] Nature Protocols,2006,1(1):318-323.
    [43]KR Anumula, S. Tang Novel chemistry for sequencing of proteins from carboxyl terminus yields a simple method. [J] FASEB J,1995,9:A1477.
    [44]Victoria L. Boyd, MeriLisa Bozzini, Piotr J. Guga, et al. Activation of the Carboxy Terminus of a Peptide for Carboxy-Terminal Sequencing. [J] The Journal of Organic Chemistry,1995,60(8):2581-2587.
    [45]高彦飞蛋白质及多肽C端测序的研究进展[J] Chinese J. Anal. Chem., 2007,7(12):
    [46]V.L. Boyd, M.L. Bozzini, G. Zon, et al. Sequencing of peptides and proteins from the carboxy terminus. [J] Analytical biochemistry,1992,206(2): 344-352.
    [47]B.T. Chait, R. Wang, R.C. Beavis, et al. Protein ladder sequencing. [J] Science,1993,262(5130):89.
    [48]B. Domon, R. Aebersold Mass spectrometry and protein analysis. [J] Science,2006,312(5771):212.
    [49]P. Hagglund, J. Bunkenborg, F. Elortza, et al. Introduction A New Strategy for Identification of N-Glycosylated Proteins and Unambiguous Assignment of Their Glycosylation Sites Using HILIC. [J] 2008:
    [50]R.C. Lloyd, B.G. Davis, J.B. Jones Site-selective glycosylation of subtilisin Bacillus lentus causes dramatic increases in esterase activity. [J] Biorg. Med. Chem.,2000,8(7):1537-1544.
    [51]K.S. Kwon, M.H. Yu Effect of glycosylation on the stability of [alpha] 1-antitrypsin toward urea denaturation and thermal deactivation. [J] Biochimica et Biophysica Acta (BBA)-General Subjects,1997,1335(3):265-272.
    [52]J.W. Tams, J. Vind, K.G. Welinder Adapting protein solubility by glycosylation.::N-Glycosylation mutants of Coprinus cinereus peroxidase in salt and organic solutions. [J] Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1999,1432(2):214-221.
    [53]H.M. Linden, K. Kaushansky The glycan domain of thrombopoietin enhances its secretion. [J] Biochemistry,2000,39(11):3044-3051.
    [54]MJ Coloma, RK Trinh, AR Martinez, et al. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1--> 6) dextran antibody. [J] Journal of immunology (Baltimore, Md.:1950),1999, 162(4):2162.
    [55]W. Morelle, K. Canis, F. Chirat, et al. The use of mass spectrometry for the proteomic analysis of glycosylation. [J] Proteomics,2006,6(14):3993-4015.
    [56]B. Sun, J.A. Ranish, A.G. Utleg, et al. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. [J] Molecular & Cellular Proteomics,2007,6(1):141.
    [57]P. Shah, J.A. Atwood Ⅲ, R. Orlando, et al. Comparative proteomic analysis of Botrytis cinerea secretome. [J] Journal of proteome research,2009,8(3): 1123-1130.
    [58]R. Yamashita, Y. Fujiwara, K. Ikari, et al. Extracellular proteome of human hepatoma cell, HepG2 analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. [J] Mol. Cell. Biochem.,2007,298(1): 83-92.
    [59]V.TRETTER,F.ALTMANN,L.MRZ Peptide-N4-(N-acetyl-p-glucosaminyl) asparagine amidase F cannot release glycans with fucose attached α1→ 3 to the asparagine-linked N-acetylglucosamine residue. [J] Eur. J. Biochem.,1991,199(3):647-652.
    [60]R.A. O'Neill Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. [J] J. Chromatogr. A,1996, 720(1-2):201-215.
    [61]P. Hermentin, R. Doenges, R. Witzel, et al. A strategy for the mapping of N-glycans by high-performance capillary electrophoresis. [J] Anal. Biochem., 1994,221(1):29-41.
    [62]O. Funatsu, T. Sato, P. Kotovuori, et al. Structural study of N-linked oligosaccharides of human intercellular adhesion molecule-3 (CD50). [J] Eur. J. Biochem.,2001,268(4):1020-1029.
    [63]H. Geyer, M. Wuhrer, A. Resemann, et al. Identification and characterization of keyhole limpet hemocyanin N-glycans mediating cross-reactivity with Schistosoma mansoni. [J] J. Biol. Chem.,2005,280(49): 40731.
    [64]D.R.P. Tulsiani Structural Analysis of the Asparagine-Linked Glycan Units of the ZP2 and ZP3 Glycoproteins from Mouse Zona Pellucida* 1. [J] Arch. Biochem. Biophys.,2000,382(2):275-283.
    [65]J. Hirabayashi Lectin-based structural glycomics:glycoproteomics and glycan profiling. [J] Glycoconjugate J.,2004,21(1):35-40.
    [66]B. Zhang, M.M. Palcic, H. Mo, et al. Rapid determination of the binding affinity and specificity of the mushroom Polyporus squamosus lectin using frontal affinity chromatography coupled to electrospray mass spectrometry. [J] Glycobiology,2001,11(2):141.
    [67]Y. Mechref, M.V. Novotny Structural investigations of glycoconjugates at high sensitivity. [J] Chem. Rev.,2002,102(2):321-370.
    [68]M.V. Novotny, Y. Mechref New hyphenated methodologies in high-sensitivity glycoprotein analysis. [J] J. Sep. Sci.,2005,28(15):1956-1968.
    [69]B. Domon, C.E. Costello A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. [J] Glycoconjugate J., 1988,5(4):397-409.
    [70]D.M. Sheeley, V.N. Reinhold Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole Ion trap mass spectrometer: neutral oligosaccharides and N-linked glycans. [J] Anal. Chem.,1998,70(14): 3053-3059.
    [71]N. Viseux, E. De Hoffmann, B. Domon Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. [J] Anal. Chem.,1997,69(16):3193-3198.
    [72]A.S. Weiskopf, P. Vouros, D.J. Harvey Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. [J] Anal. Chem.,1998,70(20):4441-4447.
    [73]E. Stephens, S.L. Maslen, L.G. Green, et al. Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. [J] Anal. Chem.,2004,76(8):2343-2354.
    [74]D. Ashline, S. Singh, A. Hanneman, et al. Congruent strategies for carbohydrate sequencing.1. Mining structural details by MS n. [J] Anal. Chem., 2005,77(19):6250-6262.
    [75]A.J. Lapadula, P.J. Hatcher, A.J. Hanneman, et al. Congruent strategies for carbohydrate sequencing.3. OSCAR:An algorithm for assigning oligosaccharide topology from MS n data. [J] Anal. Chem.,2005,77(19):6271-6279.
    [76]H. Zhang, S. Singh, N. Vernon Congruent strategies for carbohydrate sequencing.2. FragLib:an MS n spectral library. [J] Anal. Chem.,2005,77(19): 6263-6270.
    [77]D. Goldberg, M. Sutton-Smith, J. Paulson, et al. Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. [J] Proteomics, 2005,5(4):865-875.
    [78]H.J. Joshi, M.J. Harrison, B.L. Schulz, et al. Development of a mass fingerprinting tool for automated interpretation of oligosaccharide fragmentation data. [J] Proteomics,2004,4(6):1650-1664.
    [79]CG Hellerqvist Linkage analysis using Lindberg method. [J] Methods Enzymol.,1990,193:554.
    [80]S.B. Levery, S.I. Hakomori Microscale methylation analysis of glycolipids using capillary gas chromatography-chemical ionization mass fragmentography with selected ion monitoring. [J] Methods Enzymol.,1987,138: 13-25.
    [81]R. Geyer, H. Geyer Saccharide linkage analysis using methylation and other techniques. [J] Methods Enzymol.,1994,230:86-108.
    [82]F.G. Hanisch Methylation analysis of complex carbohydrates:Overview and critical comments. [J] Biological mass spectrometry,1994,23(6):309-312.
    [83]D.H. Patterson, G.E. Tarr, F.E. Regnier, et al. C-terminal ladder sequencing via matrix-assisted laser desorption mass spectrometry coupled with carboxypeptidase Y time-dependent and concentration-dependent digestions. [J] Analytical Chemistry,1995,67(21):3971-3978.
    [84]B. Thiede, B. Wittmann-Liebold, M. Bienert, et al. MALDI-MS for C-terminal sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. [J] FEBS letters,1995,357(1):65-69.
    [85]K. Biemann Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. [J] Methods in enzymology,1990,193: 455-479.
    [86]R.N. Hayes, ML Gross Collision-induced dissociation. [J] Methods in enzymology,1990,193:237.
    [87]P. Roepstorff, J. Fohlman Proposal for a common nomenclature for sequence ions in mass spectra of peptides. [J] Biomedical mass spectrometry, 1984,11(11):601.
    [88]R.S. Johnson, S.A. Martin, K. Biemann Collision-induced fragmentation of (M+H)+ions of peptides. Side chain specific sequence ions. [J] International journal of mass spectrometry and ion processes,1988,86:137-154.
    [89]Francesco M. Veronese Peptide and protein PEGylation-a review of problems and solution. [J] Biomaterials,2001,22
    [90]RA Laine A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10 (12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. [J] Glycobiology,1994,4(6):759.
    [91]D.J. Harvey Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. [J] J. Chromatogr. B:
    [92]J. C. Bigge, T. P. Patel, J. A. Bruce, et al. Nonselective and Efficient Fluorescent Labeling of Glycans Using 2-Amino Benzamide and Anthranilic Acid. [J] Anal. Biochem.,1995,230(2):229-238.
    [93]Geoffrey R. Guile, Pauline M. Rudd, David R. Wing, et al. A Rapid High-Resolution High-Performance Liquid Chromatographic Method for Separating Glycan Mixtures and Analyzing Oligosaccharide Profiles. [J] Anal. Biochem.,1996,240(2):210-226.
    [94]Louise Royle, Matthew P. Campbell, Catherine M. Radcliffe, et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. [J] Anal. Biochem.,2008,376(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700