不同能源培养的Leptospirillum ferriphilum YSK在黄铁矿表面的吸附及表面性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜铁钩端螺旋菌(Leptospirillum ferriphilum)为革兰氏阴性菌,能够生长在极端酸性(pH1.5-1.8)环境中,只能通过氧化亚铁离子获得能量,是专性好氧微生物。在生物浸出研究中,嗜铁钩端螺旋菌被广泛报道,而且被认为是主要的铁氧化细菌。黄铁矿是分布最广的硫化矿,常与铜、钼、金、银、钴、镓等有色、稀贵金属元素伴生或共生。为了探讨细菌浸出黄铁矿的机理,提高工业实践中生物浸矿的效率,本文以不同能源培养的嗜铁钩端螺旋菌为研究对象,考察其生长特性的变化以及它们对黄铁矿的浸出效果;运用荧光实时定量PCR方法测定了它们在不同条件下在黄铁矿表面的吸附情况;通过吸附量、红外光谱、Zeta电位和接触角的测定以及原子力显微镜表面表征,考察黄铁矿与细菌作用后表面性质的变化,为揭示微生物与黄铁矿的作用机制奠定了基础。
     通过绘制L. ferriphilum YSK在不同能源物质(FeSO4·7H2O和黄铁矿)中的生长曲线,得知以黄铁矿为能源生长的L. ferriphilum YSK比以亚铁为能源生长的细菌的生长周期长。亚铁培养的细菌很快就能进入对数生长期,代时为22.1h;而黄铁矿培养的细菌进入对数生长期的时间较长,为12h左右,代时为33.2h,比以亚铁为能源培养的细菌大约长11个小时。黄铁矿的摇瓶浸出实验研究表明,黄铁矿的浸出是一个产酸的过程,浸出过程中pH值呈下降趋势,而氧化还原电位在浸出初期持续上升,形成较高的氧化还原电位有利于黄铁矿的浸出。黄铁矿培养的L. ferriphilum YSK比以亚铁为能源生长的细菌能先适应浸出体系的环境,浸出效果也较之好很多。浸出后期,溶液中积累了较高浓度的Fe3+,生成黄钾铁矾阻碍了黄铁矿的溶解,矿浆电位呈下降趋势,导致浸出速率减缓。
     应用实时荧光定量PCR研究不同能源培养的浸矿细菌L.ferriphilumYSK在黄铁矿上的吸附行为被证明是可行的,研究结果表明不同能源培养的L. ferriphilum在黄铁矿表面发生了明显的吸附现象,30分钟到40分钟之间两者都达到吸附平衡,但黄铁矿培养的L.ferriphilum在黄铁矿表面的吸附量比可溶性亚铁离子培养的高。在吸附过程中,细菌的表面性质起了至关重要的作用。溶液pH值的改变使得细菌的表面性质发生了变化,从而影响细菌在矿物表面的吸附行为,因此pH值被认为是影响浸矿细菌L. ferriphilum YSK在黄铁矿表面吸附的较为关键的因素,酸性条件下吸附量较高;而温度对浸矿细菌L. ferriphilumYSK在黄铁矿表面上的吸附行为有一定影响,在最佳生长温度时吸附量最高。
     对细菌和矿物的表面性质的研究表明,不同基质生长的L.ferriphilumYSK表面性质发生了一定的变化,黄铁矿培养的细菌比亚铁培养的细菌的接触角大,疏水性强,但是它们对黄铁矿表面性质的影响规律相似。透射电镜对浸矿细菌表面蛋白质的观察表明,固体基质(黄铁矿)中生长的细菌表面的蛋白质要比在可溶性亚铁离子中生长的细菌多,这也是导致固体基质培养的细菌疏水性更大的原因。细菌的吸附使黄铁矿的等电点朝细菌的等电点方向偏移。细菌在浸矿过程中的代谢使得黄铁矿中的铁元素在表面形成Fe2O3、FeOOH和Fe2(SO4)3等亲水物质导致黄铁矿表面亲水性增加。原子力显微镜测试表明L. ferriphilum菌对黄铁矿有较强的腐蚀能力。
The gram-negative bacteria Leptospirillum ferriphilum is obligate aerobic microorganism, which habits in extremely acidic (pH1.5-1.8) environment and derives energy from the oxidation of ferrous ion. In biological leaching studies, L. ferriphilum has been widely reported and is considered the major iron-oxidizing bacteria. Pyrite is the most common sulfide mineral, and is often associated with various useful components such as copper, molybdenum, gold, silver, cobalt, gallium and other noble metals. In order to discuss the mechanism of bio-leaching of pyrite and improve the efficiency of bio-leaching in industrial practice, L. ferriphilumYSK grown on different energy sources were studied in this paper to investigate their growth characteristics and effect on pyrite bio-leaching; using fluorescence real-time quantitative polymerase chain reaction (PCR) method determined the adsorption quantity on pyrite surface under different conditions; investigate the surface properties after pyrite interaction with bacteria, application of adsorption, infrared spectroscopy, contact angle measurements and surface characterization by atomic force microscopy, and these research results are the basis for revealing the micro-organism and pyrite mechanism.
     By drawing the growth curves of L. ferriphilum YSK grown on different energy sources (FeSO4·7H2O and pyrite), it can be known that growth cycle of L. ferriphilumYSK grown on pyrite is longer than cells grown in ferrous ion solution. Ferrous ion cultured bacteria entered into period of logarithmic phase faster and the generation time was about 22.1h; however, time of pyrite grown cells into the period of logarithmic phase was about 12 hours and the generation time was about 33.2h, which was 11 hours longer than ferrous ion cultured bacteria. Flask bio-leaching experiments showed that, pyrite bio-leaching is an acid production process with pH value decreased while redox potential was ascend in initial bio-leaching stage and a relatively high potential was benefit for leaching of pyrite. Compared with ferrous ion grown bacteria, pyrite grown L. ferriphilum YSK can adapt to bio-leaching environment earlier and the leaching effect was much higher. In latter stage, solution was accumulated with high concentration of Fe3+ and generating jarosite hindered dissolution of pyrite, which leaded to the decline of slurry potential and low leaching velocity.
     Application of real-time quantitative PCR to research the adsorption behavior of different energy cultured L. ferriphilumYSK on pyrite surface was proved to be feasible. Results showed that different energy sources grown L. ferriphilum can adsorb onto pyrite surface obviously and reached equilibrium between 30 minutes and 40 minutes, but adsorption quantity of pyrite grown bacteria was higher than soluble ferrous ions grown bacteria. During the attachment process, surface properties of bacteria played a vital role. Due to the changes in pH value of solution, bacterial surface had been changed, which affected the adhesion of cells to mineral surface. Therefore, pH value was identified as the most crucial factor in L. ferriphilumYSK's adsorption into the pyrite surface, and the adsorption amount was relatively high in acidic conditions. Temperature had some impact on the adsorption behavior of leaching bacteria L. ferriphilumYSK in pyrite surface and the optimum growth temperature, the maximum adsorption capacity.
     Surface properties of bacteria and mineral research suggested that the surface properties of different energy substrates grown L. ferriphilum YSK changed certainly, and pyrite cultured bacteria had bigger contact angle and stronger hydrophobic property than that cultivation in ferrous ion solution. Howerver, they shared a similar change trend of pyrite surface properties after conditioning with these cells. Study of outer membrane protein using transmission electron microscopy showed that solid matrix (pyrite) grown bacteria synthesized more surface protein than grown in soluble ion, which was the reason that solid matrix cultivated bacteria was more hydrophobic. Isoelectric points (IEPs) of pyrite after bacterial treatment moved towards IEPs of pure cells. The surface hydrophilicity of pyrite increased in leaching process for that the metabolization of bacteria made iron in pyrite formed into hydrophilic substances such as Fe2O3, FeOOH and Fe2(SO4)3. Images of atomic force microscopy showed that L. ferriphilum had strong corrosion ability for pyrite leaching.
引文
[1]魏德洲,朱一民,李小安.生物技术在矿物加工的应用.北京:冶金工业出版社:2008
    [2]Brieriey L.细菌的氧化作用.湿法冶金,1996,4:44-47
    [3]Deveci H, Akcil A, Alp I. Parameters for control and optimisation of bioleaching of sulphide minerals. In:Kongoli F, Thomas B, Sawamiphakdi K (Eds.), Process Control and Optimization in Ferrous and Non Ferrous Industry. Materials Science and Technology Symposium,2003, pp.9-12
    [4]杨显万,沈庆峰,郭玉霞.微生物湿法冶金.北京:冶金工业出版社:2003
    [5]Rudolf W. Oxidation of pyrite by microorganisms and their use for making mineral phosphates available.Soil Science.1922,14:135-147
    [6]Rudolf W, Helbronner A. Oxidation of zinc sulfides by microorganisms. Soil Science.1922,14:459-464
    [7]Colmer A R, Hinckle M E. The role of microorganisms in acid mine drainage a preliminary report. Science,1947,106:253-256
    [8]Temple K L, Delchamps E W. Autotrophic bacteria and the formation of acid in bituminous coal mines. Applied Microbiology,1953,1:255-258
    [9]Leathen W W, Kinsel N A, Braley S A. Ferrobacillus ferrooxidans:A chemosynthetic autotrophic bacterium. Journal of Bacteriology,1956, 72(5):700-704
    [10]Zimmerley S R, Wilson D G, Prater J D. Cyclic leaching process employing iron oxidizing bacteria[P]. US patent2,1958,2:829-964
    [11]Fisher J R. Bacterial leaching of Elliot Lake Uranium Ore. Can Min Metal Bull.,1966,69:167-171
    [12]童雄.微生物浸矿的理论与实践.北京:冶金工业出版社,1997
    [13]范P C,阿斯韦根.难浸金矿的生物氧化——Genmin的经验.国外金属矿选矿,1996,1:40~46
    [14]Douglas E R. Biomining:Theory, Microbes and Industrial Processes [M]. Springer-Verlag and Landes Bioscience 1997:19-244
    [15]陈顺方,钟文远.难浸硫化矿的微生物氧化预处理及应用现状.国外金属矿选矿,2000,2:6~10
    [16]Leduc L G, Ferroni G D.The chemolithotrophic bacterium Thiobacillus ferrooxidans.FEMS Microbiol. Rev,1994,14:103-120
    [17]姚静,徐文静,李玉红.氧化亚铁硫杆菌驯化菌株的铜离子运输特性.中国有色金属学报,2005,15(12):2009-2015
    [18]Lizama H M, Suzuki I.Bacterial leaching of a sulpuide ore by Thiobacillus thiooxidans and T. ferrooxidans:Shake flask studies. Biotechnol Bioeng,1988, 32:110-116
    [19]陈顺方,钟文远.难浸硫化矿的微生物氧化预处理及应用现状.国外金属矿选矿,2000.2:6~10
    [20]周吉奎.三类生物冶金微生物菌种的选育及其与矿物作用研究[D].长沙:中南大学,2004
    [21]Tsuchiya H M,Trivedi N C,Schuler M L. Microbial mutualism in ore leaching. Biotechnology and Bioengineering,1974,16:991-995
    [22]和致中,彭谦,陈俊英.高温菌生物学[M].北京:科学出版社,2000
    [23]Nicolette J Coram, Douglas E Rawlings. Molecular Relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. Dominates South Afican commercial biooxidation tanks that operate at 40℃. Applied and Environmental Microbiology,2002,68(2):838-845
    [24]Naoko Okibe, Mariekie Gericke, Kevin B Hallberg. Enumeration and characterization of Acidophilic Microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol,2003,69:1936-1943
    [25]Dopson M, Lindstrom E B. Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching. Appl Environ Microbiol.,1999,65(1):36-40
    [26]Zhou H B, Liu X, Fu B, et al. Isolation and Characterization of Acidithiobacillus caldus from Several Typical Environments in China. Journal of Central South University of Technology.2007,14 (2):163-169
    [27]Schippers A, Jozsa P G, Sand W. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol.,1996,62:3424-3431
    [28]Schippers A, Sand W. Bacterial leaching of metal sulfide proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol.,1999,65:319-321
    [29]Rohwerder T. Gehrke T, Kinzler K,et al. Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation.Appl. Microbiol Biotechnol.,2003,63:239-248
    [30]Gehrke T, Hallmann R, Kinzler K, et al. Importance of extracellular polymeric substances from Thiobacillus ferooxidans for bioleaching. Appl Environ Microbiol.,1998,64:2743-2747
    [31]Frederic Nunzi, Mireille Woudstra, Daniel Campese, et al. Amino-acid sequence of rusticyanin from Thiobacillus ferrooxidans and its comparison with other blue copper proteins.Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1993,1162:28-34
    [32]Lalji D K, Svetlana A, Michael A H, et al. Crystal Structures of the Metl48Leu and Ser86Asp Mutants of Rusticyanin from Thiobacillus ferrooxidans:Insights into the Structural Relationship with the Cupredoxins and the Multi Copper ProteinsJournal of Molecular Biology.2002,320:263-275
    [33]Zeng Jia, Geng Meimei, Liu Yuandong, et al. The sulfhydryl group of Cys138 of rusticyanin from Acidithiobacillus ferrooxidans is crucial for copper binding. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics.2007,1774: 519-525
    [34]Brierley C L. Microbiological mining. Scientific American,1982,247 (2): 42-53
    [35]Preston D, Natapajan K A, Sathyanarayana D N, et al. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Applied And Environmental Microbiology,1993,12:4051-4055
    [36]Sampson M I, Blake II R C.Cell Attachment and Oxygen Consumption of Two Strains of Thiobacillus ferrooxidans. Minerals Engineering,1999,12(6): 671-686
    [37]Sampson M I, Phillips C V, Blake II R C. Influence of the Attachment of Acidophilic Bacteria during the Oxidation of Mineral Sulfides. Minerals Engineering,2000,13(4):373-389
    [38]Sampson M I, Blake II R C.The cell attachment and oxygen consumption of two strains of Thiobacillus ferrooxidans.Minerals Engineering,1999,12:671-686
    [39]Loosdrecht V, Mark C M, Lyklema J, et al. Electrophoretic mobilityand hydrophobicity to predict the initial steps of bacterial adhesion. Microbiol,1987, 53:1898-1901
    [40]Loosdrecht V, Mark C M, Zehnder A J B. Energetics of bacterial adhesion. Experimentia,1990,46:817-822
    [41]Sharma P K, Dasb A, Hanumantha R K, et al. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy,2003,71:285-292.
    [42]Vilinska A, Hanumantha Rao, Forssberg K S E. Selective coagulation in chalcopyrite/pyrite mineral system using Acidithiobacillus group bacteria. Advanced Materials Research,2007,21:366-370
    [43]Gu Guohua, Su Lijun, Chen Minglian, et al. Bio-leaching effects of Leptospirillum ferriphilum on the surface chemical properties of pyrite. Mining Science and Technology,2010,20:286-291
    [44]Tilman G, Judit T, Dominique T, et al. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching. Applied and Enviromental Microbiology,1998,64 (7):2743-2747
    [45]贺治国.氧化亚铁硫杆菌遗传多样性及比较蛋白质组学研究:[博士学位论文].长沙:中南大学,2005
    [46]杨鸿英.难处理金矿中硫化矿物细菌氧化过程的研究.[博士学位论文].沈阳:东北大学,2000
    [47]李英堂,田淑艳,汪美风.应用矿物学.北京:科学出版社.1995
    [48]Vavghan D J, Becker U, Wright K. Sulphide mineral surface:Theory and experiment. International Journal of Mineral Processing.1997,5(1):1-14.
    [49]傅建华.硫化铜矿浸矿细菌超微结构与吸附机理及SFORase的纯化:[博士学位论文].长沙:中南大学,2004
    [50]张世柏,张平成.黄铁矿表面及其Au(HS)2溶液作用STM研究.矿物学报.1996,16(1):28-32.
    [51]Ohmura N, Kitamura K, Saild H. Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression. Biotechnol Bioeng,1993,41 (6):671-676.
    [52]Attia Y A. Feasibility of selective biomodification of pyrite floatability in coal desulfurization by froth flotatio. Resources Conservation and Recycling,1990,3 (2):169-175.
    [53]Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review. Hydrometallurgy,2006,84:81-108.
    [54]Yelloji Rao M K, Natarajan K A, Somasundaran P. Effect of biotreatment with Thiobacillus ferrooxidans on the flotability of sphalerite and galena. Miner. Metallurg. Processing,1992,9(4):95-100.
    [55]Karavaiko G I, Grossi Z A. Microflora of two industrial copper dump leaching operations [C]. Biohydrometallurgy. Moscow,1990:212~217
    [56]柳建设,夏海波,王兆慧,等.德兴铜矿堆浸厂浸出率低的原因探讨.铜业工程,2004,1:23~26
    [57]Y·科西尼.嗜热嗜酸杆菌浸出硫化锌精矿.国外金属矿选矿,2000,9:31~35
    [58]前德拉普拉布哈M N.应用嗜酸的嗜酸氧化亚铁硫杆菌对矿物生物改性的方法从黄铜矿和毒砂中选择性浮选分离黄铁矿.国外金属矿选矿,2005(4):34~38
    [59]Jia Chunyun, Wei Dezhou, Liu Wen-gang, et al. Selective adsorption of bacteria on sulfide minerals surface. Trans. Nonferrous Met. Soc. China,2008,18: 1247-1252
    [60]贾春云,魏德洲,高淑玲,等.氧化亚铁硫杆菌在硫化矿表面的吸附.金属矿山,2007,374:34-38
    [61]R.K.Yelloji, K.A.Mirajkar, et al. Growth and attachment of thiobacillus ferrooxidans during sulfide mineral leaching. Miner. Process,1997,50:203~210
    [62]周吉奎,钮因健,邱冠周等.茚三酮比色法测定矿物表面吸附浸矿细菌蛋白质含量.中南工业大学学报(自然科学版),2003,34(2):128~131
    [63]李秀艳.金属硫化矿物生物浸出过程中细菌吸附过程的研究:[博士学位论文].沈阳:东北大学,2001
    [64]L. P.Gary, Lowry, et al. A simplification of the protein assay method of which is more generally applicable. Analytical Biochemistry,1977,83:346~356
    [65]Dinko Mitrecic, Miljenko Huzak, Marija Curlin, et al. An improved method for determination of gene copy numbers in transgenic mice by serial dilution curves obtained by real-time quantitative PCR assay. J. Biochem. Biophys. Methods, 2005,64:83-98
    [66]Gibson U E M, Heid C A, Williams P M. A novel method for real time quantitative RT-PCR.Genome Res.1996,6:995-1001
    [67]Ramakers Christian, Ruijter J M, Lekanne D R H, et al. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters,2003,339(1):62-66
    [68]Kains P. The PCR plateau phase-towards an understanding of its limitations. Biochim. Biophys. Acta,2000,1494:23-27
    [69]Thomas D S. Real-time quantitative PCR.Methods,2001,25:383-385
    [70]黎松庆,叶朗光,黎旭宇,等.实时定量PCR实验设计原则及应用.畜牧与饲料科学,2009,30(1):43-44
    [71]张佳峰,朱海,杨泽,等.实时定量PCR快速检测01群和0139群霍乱弧 菌.中华微生物学和免疫学杂志,2007,27(7):675-676
    [72]Hoshino K, Yamasaki S, Mukhopadhyay A K, et al. Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae 01 and 0139. FEMS Immunol Med Microbiol.1998.20(3):201-207.
    [73]Tanja Ficko, Peter Cernelc. Real-time quantitative PCR assay for analysis of platelet glycoprotein Ⅲa gene expression. J. Biochem. Biophys. Methods,2005, 62:241-250
    [74]Seidl C, Siehl J, Kirchmaier C M, et al. Analysis of glycoprotein Ⅰa, Ⅰb, Ⅱb and IV RNA in platelets quantitative determination using fluorescence-based polymerase chain reaction. Haemostasis:1997,27:131-139
    [75]Xander W H, Linskens R K, Mariette Mak, et al. Quantification of Bacteria Adherent to Gastrointestinal Mucosa by Real-Time PCR. J Clin Microbiol.2002, 40(12),4423-4427
    [76]Zhang Rubing, Wei Man-man, Ji Houguo, et al. Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Appl Microbiol Biotechnol, 2009,81:1161-1168
    [77]Rodriguez Y, Ballester A, Blazquez M L, et al.New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy,2003,71: 37-46
    [78]Oswaldo G J, Jerry M B, Olli H T. Oxidation of isochemical FeS2 (marcasite-pyrite) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Minerals Engineering,2007,20(1):98-101
    [79]陈曦,赵岩,赵旭,等.黄铁矿标型特征在矿床中的应用.科技创新导报,2009,4:54
    [80]邱亚林,杨丽,许守东,等.煤的微生物浸出脱硫技术.陕西煤炭,2006,25(1):30-31
    [81]章春芳,解庆林,张萍,等.煤炭生物脱硫技术研究进展.矿业安全与环保,2008,35(4):69-72
    [82]Olson G J. Prospects for biodesulfurization of coal:mechanisms and related process designs. Fuel processing technology,1994,40:103-114
    [83]Kargi J M, Robinson. Removal of organic sulphur from bituminous coal use of the thermophilic organism Sulfolobus acidocaldarius. Fuel,1986,65 (3):397-399
    [84]张丽芳,王倩,孙玉凤.氧化亚铁硫杆菌脱除煤中硫的研究.沈阳工业学院学报,2004,23(1):81-84
    [85]刘德洪,金文杰,朱新宇.微生物法脱除大石桥硫铁矿烧渣中硫的研究.工业安全与环保,2006,32(8):10-11
    [86]冯雅丽,李浩然.黄铁矿烧渣微生物脱硫研究.北京科技大学学报,2004,24(2):216-218
    [87]李浩然,冯雅丽.微生物氧化硫铁矿烧渣脱硫的研究.有色金属,2003,55(1):92-95
    [88]田翱宇.硫铁矿烧渣的微生物脱硫的实验研究:[硕士学位论文].武汉:武汉理工大学,2004
    [89]Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A:progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol,2003,63(3):239-248
    [90]刘缨,林建群,颜望明.浸矿细菌—钩端螺旋菌属菌株研究进展.微生物学通报,2006,33(2):151-155
    [91]Antonio Garcia-Moyano, Elena Gonzalez-Toril, Mercedes Moreno-Paz, et al. Evaluation of Leptospirillum spp. in the Rio Tinto, a model of interest to biohydrometallurgy. Hydrometallurgy,2008,94:155-161
    [92]Groot P D, Deane S M, Rawlings D E. A transposon-located arsenic resistance mechanism from a strain of Acidithiobacillus caldus isolated from commercial, arsenopyrite biooxidation tanks. Hydrometallurgy,2003,71:115-123
    [93]Faine S, Adler B, Bolin C, et al. Leptosoi ra and Leptospirosis[M].Melbourne, Australia,1999,31~91
    [94]John Wiley, Sons Ltd. Bacterial cell culture. Colchester U K:University of Essex,1994
    [95]黄红垒,徐建国,蒋秀高,等.钩端螺旋体对数生长期的测定.中国人兽共患病杂志,2002,18(3):60-62
    [96]Boon M, Heijnen J J. Mechanisms and rate limiting steps in bioleaching of sphalerite, chalcopyrite and pyrite with Thiobacillus ferrooxidans. In:Tormo A E, Lakshamanan V L (Eds.). Biohydrometallurgical Technologies. Miner. Met. Mat.Soc, Warrendale, Pennsylvania,1993, pp:217-235
    [97]Liu C, Plumb J, Hendry P. Rapid specific detection and quantification of bacteria and archaea involved in mineral sulfide bioleaching using real-time PCR. Biotechnology and Bioengineering,2006,94(2):330-336
    [98]孙晓莹,施汉昌,全向春,等.细菌表面疏水性及活性污泥中粘附率影响因素研究.环境科学,2008,29(10):2809-2814
    [99]Ohmura N, Kitamura K, Saiki H. Selective adhension of T.ferrooxidans to pyrite. Appl. Environ. Microbiol.,1993,59:4044-4050
    [100]P.德瓦西亚.细菌生长条件和细菌吸附在氧化铁硫杆菌生物浸出黄铜矿中的作用.国外金属矿选矿,1992,2:28-30
    [101]Tilman Gehrke, Judit Telegdi, Dominique Thierry and Wolfgang Sand. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching. Appl Environ Microbiol.1998,64:2743-2747
    [102]Sand W, Gehrke T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteri. Research in Microbiology.2006,157:49-56
    [103]Arredondo R, Garcia A, Jerez C A. Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids. Applied and environmental microbiology.1994,60:2846-2851
    [104]Sharma P K, Das A, Hanumantha Rao K, et al. Thiobacillus ferrooxidans interaction with sulphide minerals and selective chalcopyrite flotation from pyrite. Advances in Flotation Technology,1999,21:147-165
    [105]Zhang Lin, Qiu Guanzhou, Hu Yuehua, et al. Bioleaching of pyrite by Leptospirillum ferriphilum and Acidthiobacillus ferrooxidans. Transactions of Nonferrous Metals Society of China,2008,18:1415-1420
    [106]Moses C O, Herman J S. Pyrite oxidation at circumneutral pH. Geochim. Coschim. Acta,1991,55:471-482
    [107]卢龙, 雷良城,林锦富,等.矿物表面特征和表面反应的研究现状及其应用.林工学院学报,2002,22(3):354-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700