用基因组改组技术提高出芽短梗霉XYE-7的木聚糖酶活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木聚糖是β-1,4-木糖的聚合物,是自然界中继纤维素之后的第二丰富的多糖。它占农业废料干重的20%-30%。它丰富的储量表明木聚糖酶将在生物转化,造纸制浆等方面有着巨大应用前景。
     从广西大学农场果园中筛选到一株产木聚糖酶的酵母菌。经过形态学和分子生物学的鉴定,发现该菌属于Dothioraceae座囊菌纲科,Aureobasidium短梗霉属,其18SrDNA序列与AureobasidiumpullulansY68具有最高的相似性,初步命名为Aureobasidiumpullulans XYE-7。
     经研究发现XYE-7合成木聚糖酶的最佳条件为:培养基由0.5%木聚糖、0.5%硫酸铵、0.2%酵母膏、0.1%磷酸二氢钾、0.95%硫酸镁组成,pH值2.0;发酵温度为35℃,培养时间为80h。
     菌株XYE-7木糖诱导的木聚糖酶粗酶液的酶学性质为:该酶作用的最适温度是70℃,最适pH值为2.5;该酶在60℃以下时稳定性较好,高于60℃时酶活性下降变快;该酶在pH值2.0-5.0时有很好的稳定性,说明木糖诱导的XYE-7木聚糖酶在酸性范围内稳定。它的km值为10.1mg·mL~(-1)。
     蔗渣木聚糖诱导的木聚糖酶的酶学性质为:该酶作用的最适温度是65℃,最适pH值为7.0;该酶在60℃以下时稳定性较好,60℃保温1h后仍然保留87%的活性,高于60℃时酶活性下降较快;该酶在pH值4.0-9.0时有很好的稳定性,说明XYE-7木聚糖酶有很宽的pH稳定范围。其km值为3.63mg·mL~(-1)。
     XYE-7菌株制备原生质体的最佳条件为:采用20mL的酵母完全培养基培养菌体18h;预处理的巯基乙醇的浓度为0.25%,EDTA的浓度为0.05mol/L;预处理时间10min;酶液的高渗离子浓度为1.2mol/LMgSO_4;纤维素酶和蜗牛酶2%,酶解时间为1.5h。
     紫外诱变得到酶活提高的菌株作为基因组改组的出发菌株,通过四轮的改组,得到18株酶活提高的菌株,其中一株菌的酶活比改组前出发菌株的酶活提高了50%,比野生型菌株的酶活提高了78%。
Xylan,a heteropolymer of (β-1-4)-linked xylose,is the next mostabundant natural polysaccharide after cellulose and accounts for 20to 30%dry weight of agricultural residues.Its abundance indicatesthat xylanolytic enzymes can play an important role inbioconversion,in the preparation of cellulose pulps,in fibre liberationtechnology, etc.
     With the method of plate, a yeast-like strain which couldproduce extracellular xylanases, was isolated from soil. According toits morphological, physiological properties, it should belong toAureobasidium pullulans. The strain was named as Aureobasidiumpullulans XYE-7.
     Through single factor tests, the optimal medium andfermentation conditions were determined, and it consisted 0.5%xylan as carbon source、0.5%(NH_4)SO_4and 0.2%barmene as nitrogen source、0.1%KH_2PO_4、initial pH 2.0 and culturetemperature 35℃for 80 h.
     The strain can produce two kinds of different xylanases.Sugarcane xylan induced the strain to produce alkaline xylanase, andxylose can induce acid xylanase. According to the studies of theirenzymology properties, the xylanase induced by xylose is acidophilic.The pH optimum of acidophilic xylanase was 2.5 and thetemperature optimum was 70℃. The enzyme retained greater than80%of the original activity between pH 2.0 and 4.0. The thermalstability was determined at temperatures from 40 to 90℃for 30 min.The enzyme remained stable up to 60℃, but it lost the activity at70℃.
     The xylanase induced by sugarcane xylan is basophilic. Theenzyme showed relatively high activity under basic conditions withan optimum of pH7.0 and stable at pH values between pH 4.0 and9.0.its temperature optimum was 65℃. The enzyme thermal stabilityis the same as the xylanase induced by xylaose. It remained stable upto 60℃, but it lost activity at70℃.
     The conditions of protoplast preparation and regeneration fromthe XYE-7 were studied. Results showed that the 18-hour-oldmycelia,when subjected 2%celluanse and 2%helicase solution in1.2Mol/L MgSO4 (pH value 6.0)at 30℃for 1.5 hours with gentle sbaking, produced an eficient yield of protoplasts.
     We have used genome shuffling to improve the xylanaseactivities of XYE-7, We have obtained several strains that activityhigher than the wide type strain by UV mutation.Eighteen strainswere obtained after the four rounds of shuffling. The hignest activityimproved half-fold than that of UV mutant.
引文
[1] Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases (J). FEMS Microbiology Reviews, 2005, 29:3-23.
    [2] P Biely, M Vrsanska and Z Kratky. Xylan-degrading enzymes of the yeast Cryptococcus albidus. Identification and cellular localization [J]. Eur J Biochem, 1980, 108(1):313-321.
    [3] Surma A, Antranikian G. Xylanolytice enzymes from fungi and bacteria. Critical Rev Biotechnol, 1997, 17 (1):39-67.
    [4] Joselean J P, Combtat J, Ruel K. Chemical structure of xylans and their interactions in the plant cell wall. In: Visser J, Beldman G. van Someren MAK, et al, eds. Xylans and Xylanases. Amsterdam: Elservier, 1992:1-15.
    [5] Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 2005, 67: 577-591.
    [6] Poutanen, K, Tenkanen, M., Korte, H. & Puls, J. Accessory enzymes involved in the hydrolysis of xylans. In: Enzymes in Biomass Conversion. ACS Symp. Series, Vol. 460, ed. G. ELeatham & M. E. Himmel. American Chemical Society, Washington, 1991: 426-436.
    [7] 李雄彪,张金忠.半纤维素的化学结构和生理功能.植物学通报,1994,11(1):27-33.
    [8] Reilly PJ. Xylanases, structure and function. In: Hollaender A(ed) Trends in the biology of fermentation for fuels and chemicals. Plenum, New York, 1981: 111-129.
    [9] Puls J, Poutanen K. Mechanisms of enzymatic hydrolysis of hemicelluloses xylans and procedures for determination of the enzyme activities involved. In: Ericksson KEE, Ander P (eds) Proceedings of the 3rd International Conference on Biotechnology in the Pulp and Paper Industry. STFI, Stockholm, 1989:93-95
    [10] Li K, Azadi P, Collins R, et. al. Relationships between activities of xylanases and xylan structures. Enzyme Microb Technol, 2000, 27:89-94.
    [11] 怀文辉,何秀萍等.微生物木聚糖降解酶研究进展及应用前景.微生物学通报 2000,27(2):137-139.
    [12] Wong KKY, Tan LUL, Saddler JN. Multiplicity of β-1, 4-xylanase in microorganisms, functions and applications. Microbiol Rev, 1988, 52(3): 305-317.
    [13 Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J, 1993, 293:781-788.
    [14] Torronen A, Rouvinen J. Structural and functional properties of low molecular weight endo-1, 4-β-xylanases. J Biotechnol 1997, 57:137-149.
    [15] Biely P. Microbial xylanolytic systems. Trends Biotechnol 1985, 3:286-290
    [16] Biely P. Biochemical aspects of the production of microbial hemicellulases. In: Cougland, MP, Hazlewood, GP (eds) Hemicelluloses and hemicellulases. Portland Press, London, 1993, 29-52.
    [17] Andrade SV, Polizeli MLTM, Terenzi HF, et. al. Effect of carbon source on the biochemical properties of the β-xylosidase produced by Aspergillus versicolor. Process Biochem, 2004, 39:1931-1938.
    [18] Zanoelo FF, Polizeli MLTM, Terenzi HF, et.al. Purification and biochemical properties of a thermostablexylose-tolerant β-D-xylosidase from Scytalidium thermophilum. Microbiol Biotech 2004, 31:170-176.
    [19] K P McDermid, C W Forsberg, and C R MacKenzie. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 1990, 56: 3805-3810.
    [20] Shao W, Wiegel J. Purification and characterization of thermostable β-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol, 1992, 5848-5853.
    [21] Blum DL, Li X-L, Chen H, et. al. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 1999, 65:3990-3995.
    [22] Caufrier F, Martinou A, Dupont C, et. al. Carbohydrate esterase family 4 enzymes: substrate specificity. Carbohydr Res 2003, 338(7):687-692.
    [23] Christov LP, Prior BA. Esterases of xylan-degrading microorganisms, production, properties and significance. Enzyme Microb Technol. 1993, 15:460-475.
    [24] Crepin VF, Fauld CB, Connerton IF. Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol, 2004, 63(6):647-652.
    [25] Williamson G, Faulds CB, Kroon PA. Specificity of ferulic acid (feruloyl) esterases. Biochem Soc Trans 1998, 26(2):205-209.
    [26] Simpson H D, Haufler U R, Daniel R M. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J, 1991, 277:413~417.
    [27] 汪正强.微生物木聚糖酶的生产及其在食品工业中应用的研究进展.中国食品学报,2001,5(1):1-8.
    [28] Haltrich, et.al. Production of extremely high values of xylanase activity by Schizophyllum commune. In : Biotechnology in the Pulpand Paper Industry. Proc.5th Intern. Conf. Biotechnol.Pulp Paper Ind., ed. M. Kuwahara & M. Shimada. UniPublishers, Tokyo, 1992, 123-128.
    [29] R. Haapala, S. Linko, E. Parkkinen et.al. Production of endo-1, 4-β-glucanase and xylanase by Trichoderma reesei immobilized on polyurethane foam, Biotechnol. Techniques. 1994, 401-406.
    [30] 石军,陈安国.木聚糖酶和应用研究进展.饲料工业,2001,22(9):40-43.
    [31] Biely P, Kratky Z, Vrsanska M, et al. Induction and inducers of endo-1, 4-beta-xylanase in the yeast Cryptococcus albidus[J]. Eur J Biochem, 1980, 108(1), 323-329.
    [32] Nakanishi K, Yasui T, Kobayashi T. Inducers for xylanase, production by Streptomyces sp. J. Ferment. Technol. 1976, 54: 801-807.
    [33] Gikes N R, Henrissat B, Kilburn. Microbiological Reviewa, 1991, 55(2): 303~315.
    [34] Zui F, Atsushi K, Satoshi K, et al. J Mol Biol, 2000, 300: 575~585.
    [35] Bhat MK. Cellulases and related enzymes in biotechnotogy. Biotechnol Adv, 2000, 18:355-383.
    [36] Aristidou A, Pentilla M. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol.2000, 11:187-198.
    [37] Beg QK, Bhushan B, Kapoor M, et. al. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol, 2000, 27: 459-466.
    [39] Beg QK, Kapoor M, Mahajan L. et. al. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol, 2001, 56: 326-338.
    [40] Subramaniyan S, Prema P. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett, 2000, 183: 1-7.
    [41] Subramaniyan S, Prema P. Biotechnology of microbial xylanases, enzymology, molecular biology, and application. Crit Rev Biotechnol, 2002, 22:33-64.
    [42] Techapun C, Poosaran N, Watanabe M, et. al. Thermostable and alkaline-tolerant microbial cellulose-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem 2003, 38:1327-1340.
    [43] Viikari L, Sundquist J, Kettunen J. Xylanase enzymes promote pulp bleaching. Paper Timber, 1991, 73: 384-389.
    [44] Wong KKY, Saddler JN. Applications of hemicellulases in the food, feed, and pulp and paper industries. In: Coughlan MP, Hazlewood GP (eds) Hemicelluloses and hemicellulases. Portland Press, London, 1993, 127-143.
    [45] Tenkanen M, Viikari L, Buchert J .Use of acid-tolerant xylanase for bleaching of kraft pulps. Biotechnol Tech, 1997, 1112: 935-938.
    [46] Whitmire D, Miti B. Xylanase effects on pulp delignification. Chem Eng Commun, 2002, 189(5): 608-622.
    [47] Sandrim V. C, Rizzatti A. C. S, Terenzi, H. F. et. al. Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem, 2005, 40(5): 1823-1828,
    [48] Senior D J, Harmilton J. Biobleaching with xylanases brings biotechnology to reality. Pulp & Paper, 1992, 66(9): 11.
    [49] 周素梅,王璋,许时婴.面包制作过程中戊聚糖酶的作用机理.无锡轻工 大学学报.2001,20(3).
    [50] Haros M, Rosell CM, Benedito,C. Efect of different carbohydrases on fresh bread texture and bread staling[J]. Eur Food Res Technol, 2002, 215:425-430
    [51] Courtin CW, Delcour JA. Arabinoxylans and endoxylanases in wheat flour bread—making J. Cereal Sci, 2002, 35: 225-243.
    [52] Ganga MA, Pinaga F, Valles S, et. al. Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int J Food Microbiol 1999, 47:171-178.
    [53] Debyser W, Derdelinckx G, Delcour JA, Arabinoxylan solubilization and inhibition of the bedey malt system by wheat during mashing with wheat whole meal adjunct, evidence for a new class of enzyme inhibitors in wheat. J Am Soc Brew Chem 1997, 55: 153-157.
    [54] Dervilly G, Leclercq C, Zimmerman D, et. al. Isolation and characterization of high molecular mass water-soluble arabinoxylans from barley malt. Carbohydr Polym 2002, 47:143-149.
    [55] Burchhardt G, Ingram L O. Conversion of xylan, to ethanol by ethanologenic strains of Escherichia coli. And Klebsiella oxytoca. Appl. Environ. Microbiol. 1992, 58: 1128-1133.
    [56] Csiszar E, Urbanszki K, Szakas G. Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B Enzym, 2001, 11: 1065-1072.
    [57] Briihlmann F, Leupin M, Erismann KH, et. al. Enzymatic degumming of ramie bast fibers. J Biotechnol, 2000, 76:43-50.
    [58] Prade RA. Xylanases, from biology to biotechnology. Biotechnol Genet Eng Rev 1995, 13:101-131.
    [59] 王修启,张兆敏,李春群.高比例小麦口粮添加不同水平木聚糖酶对猪生产性能的影响[J].动物营养学报,2002,(14):60—62.
    [60] 倪志勇,张克英,左绍群,陈代文.不同营养水平饲粮中添加饲用复合酶对肉鸡生产性能的影响[J].饲料工业,2001,(12).
    [61] Biely P, Vrsanska M and Kratky Z. Xylan-degrading enzymes of the yeast Cryptococcus albidus. Identification and cellular localization. Eur J Biochem, 1980, 108(1), 313-321.
    [62] Biely P, Kratky Z, Vrsanska M and Urmanicova D. Induction and inducers of endo-1, 4-beta-xylanase in the yeast Cryptococcus albidus. Eur J Biochem, 1980, 108(1), 323-329.
    [63] Biely P, Vrsanska M and Kratky Z. Mechanisms of substrate digestion by endo-1, 4-beta-xylanase of Cryptococcus albidus. Lysozyme-type pattern of action. Eur J Biochem, 1981, 119(3), 565-571.
    [64] Biely P and Vrsanska M. Synthesis and hydrolysis of 1,3-beta-xylosidic linkages by endo-1, 4- beta-xylanase of Cryptococcus albidus. Eur J Biochem, 1983, 129, 645-651.
    [65] Morosoli R, Roy C and Yaguchi M. Isolation and partial primary sequence of a xylanase from the yeast Cryptococcus albidus. Biochim Biophys Acta, 1986, 870:473-478.
    [66] Moreau A, Durand S and Morosoli R. Secretion of a Cryptococcus albidus xylanase in Saccharomyces cerevisiae. Gene, 1992, 116(1): 109-13.
    [67] Boucher F, Morosoli R and Durand D. Complete nucleotide sequence of the xylanase gene from the yeast Cryptococcus albidus. Nucleic Acids Res, 1988, 16(20): 9874.
    [68] Wen Liu, Yanling Lu and Guirong Ma. Induction and glucose repression of endo-β-xylanase in the yeast Trichosporon cutaneum SL409. Process Biochem,1999, 34: 67-72.
    [69] 张玉臻,马桂荣,吕艳玲等.碳源对丝孢酵母(Trichosporon cutaneum ST851)生长和β-木聚糖酶诱导形成的影响.山东大学学报(自然科学版),1997,32(1):108-112.
    [70] Joseph Gomes, Isidore Gomes, Walter Steiner. Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles, 2000, 4: 227-235.
    [71] Petrescu I, Lamotte-Brasseur J, Chessa J P, et. al. Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles, 2000; 4: 137-144.
    [72] Amoresano A, Andolfo A, Corsaro M M, et.al.Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiol, 2000, 10(5): 451-458.
    [73] TD Leathers. Color Variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl. Environ Microbiol., 1986, 52: 1026-1030.
    [74] Myburgh J, Prior, BA, Kilian, SG. Production of xylan-hydrolyzing enzymes by Aureobasidium pullulans. J. Ferment. Bioeng, 1991, 72, 135-137.
    [75] Christov LP, Prior BA, Repeated treatments with Aureobasidium pullulans hemicellulases and alkali enhance bleaching of sulphite pulps. Enzyme Microb Technol, 1996, 18:244-250.
    [76] Christov LP, Prior BA.Reduction of active chlorine charges in bleaching of xyianase-pretreated sulfite pulp. In: Jeffries TW, Viikari L, eds. Enzymes for Pulp and Paper Processing. Washington, DC: American Chemical Society, 1996b. 208-218.
    [77] LP Christov1; G Szakacs, M.V. Rele4 & H. Balakrishnan. Screening of cellulase-free fungal xylanases and evaluation of theirperformance on sulfite dissolving pulp. Biotechnology Techniques, 1999, 13(3): 13-16.
    [78] 吴凌伟,王水兴,严有明.利用甘蔗渣固态发酵木聚糖酶.食品与发酵工业,2003,29(8):100-102.
    [79] Roose-Amsaleg CL, Garnier-Sillam E, et al. Extraction and purification of microbial DNA from soil and sediment samples. Applied Soil Ecology, 2001, 18: 47-60.
    [80] Burgmann H, Pesaro M, et al. A strategy for optimizing quality and quantity of DNA extracted from soil. Journal of Microbiological Methods, 2001, 45: 7-20.
    [81] 周德庆.微生物学教程.第二版,北京:高等教育出版社,2002:361.
    [82] 胡沂淮.草菇木聚糖酶的纯化提取和酶学性质[J].食品与生物技木,2004,23(5):86-90.
    [83] 陈冠军,王娜,迟菲,刘稳.棘孢曲霉SM2L22木聚糖酶系主要组分的纯化 与性质[J].微生物学报,2004,44(3):352-355.
    [84] 崔堂兵,郭勇,郑穗平.出芽短梗霉的研究进展.工业微生物,2002,32(2):41-46.
    [85] Christov LP, Myburgh J, van Tonder A, et. al. Hydrolysis of extracted and fibre-bound xylan with Aureobasidium pullulans enzymes. Journal of Biotechnology, 1997, 55(1):21-29.
    [86] Li, X.-L, Zhang, Z. -Q., Dean, JFD, et. al. Purification and characterization of a new xylanase (APX-Ⅱ) from the fungus Aureobasidiurnpullulans Y-231l-l. Appl. Environ. Microbial. 1993, 59, 3212-3218.
    [87]. Leathers, T. D. Purification and properties of xylanase from Aureobasidium. J. Ind. Microbiol. 1989, 4:341-348.
    [88] Kazuyoshi ohta, Satoshi, moriyama et.al Purification and Characterization of an Acidophilic Xylanase from Aureobasidium pullulans var. melanigenum and Sequence Analysis of the Encoding Gene. Journal of biosciencen and bioengineering. 2001, 92 (3):262-270.
    [89] 周世宁,陆勇军,杜扬.木聚糖降解菌的筛选和木聚糖酶性质的研究[J].中山大学学报(自然科学版);1996,35(1):91-96.
    [90] Del Cardayre, SB. et al, Evolution of whole cells and organisms by recursive sequence recombination[J]. International Patent Application No WO 00/04190(2000).
    [91] 高玉荣,李大鹏.利用原生质体诱变育种选育富硒能力强的酵母菌株[J].微生物学通报,2005,32(2):10-14.
    [92] 施巧琴,吴松刚.工业微生物学[M],科学出版社,2003,2:141-143.
    [93] Zhang Y X, Perry K, Vinci V A, et.al. Genome Shuffling Leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415: 644-646.
    [94] Dai Minghua, Shelley D C. Genome shuffling improved degradation of the anthropogenicpesticide pentachlorophenol by sphingobium chlorophenolicum ATCC 39723. Applied and Environmental Microbiology, 2004, 70 (4): 2391-2397.
    [95] Patnaik R, Louie S, Gavrilovic V, et. al. Genome shuffling of lactobacillus for improved acidtolerance. Nat. Biotechnol. , 2002, 20: 707—712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700