用户名: 密码: 验证码:
耐阿奇霉素淋球菌的基因分型研究及头孢曲松低敏淋球菌的penA、porB、mtrR基因多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淋病奈瑟菌(简称淋球菌)是淋病的病原体,可引起尿道炎、宫颈炎等。阿奇霉素是我国尿道炎、宫颈炎常用治疗药物之一,临床症状不典型的淋病患者可能只接受到阿奇霉素治疗,故开展淋球菌对阿奇霉素的敏感性监测是非常有意义的。与阿奇霉素不同,头孢曲松作为目前淋病一线治疗药物,一直是我国淋球菌耐药监测药物之一,监测结果显示近年来淋球菌对头孢曲松的敏感性下降趋势比较明显,故开展淋球菌对头孢曲松的耐药机制研究显得越来越重要。淋球菌多抗原序列分型方法(NG-MAST)是一种操作简便、分型能力强的基因分型方法,本研究应用NG-MAST方法分析耐阿奇霉素淋球菌和头孢曲松低敏株的基因型别和菌株间的进化关系,为淋病防治工作提供参考依据。全文分为3个部分,各部分的主要内容简述如下:
     第一部分南京和重庆地区淋球菌对阿奇霉素的敏感性测定
     本部分旨在了解南京和重庆地区淋球菌对阿奇霉素的敏感性。选取2008年及2009年南京和重庆地区分离的318株淋球菌,采用琼脂稀释法测定阿奇霉素、头孢曲松、大观霉素、四环素、环丙沙星对这318株淋球菌的最低抑菌浓度(MIC),耐阿奇霉素淋球菌定义为每批实验中大于或等于阿奇霉素对质控菌株WHO P(阿奇霉素耐药株)的MIC值的菌株。318株淋球菌中有17株(5.3%)淋球菌对阿奇霉素耐药。
     第二部分耐阿奇霉素淋球菌的NG-MAST基因分型研究
     本部分旨在了解南京和重庆地区耐阿奇霉素淋球菌的基因型别和菌株间的进化关系。对第一部分检测出的17株耐阿奇霉素淋球菌进行NG-MAST基因分型,并利用Mega软件作进化树分析。17株耐阿奇霉素淋球菌共有11种NG-MAST基因型别,其中5种为新注册的基因型别。有6株菌的基因型别(ST)为ST3356,2株高度耐阿奇霉素的菌株(MIC>64mg/L)具有相同的基因型别ST1866。基因型别ST3367及4种新注册的基因型别与菌株数最多的基因型别ST3356亲缘关系较近,可能均为短传播链上同一来源菌株。
     第三部分头孢曲松低敏淋球菌的penA、porB、mtrR基因多态性研究
     本部分旨在了解penA、porB、mtrR基因多态性在淋球菌对头孢曲松敏感性下降中的作用。选取第一部分检测出的17株头孢曲松低敏株和4株头孢曲松敏感株进行penA、porB、mtrR基因测序和NG-MAST基因分型。21株淋球菌的penA基因编码的青霉素结合蛋白2(PBP2)中共发现9种氨基酸结构模式,其中2种未报道过。有8株头孢曲松低敏株中存在ⅩⅧ型PBP2,有4株头孢曲松低敏株中存在ⅩⅢ型PBP2,未发现镶嵌状结构模式(X)PBP2。有18株淋球菌含有porB1b基因(编码PorB1b蛋白),PorB1b中I218M、M257T/M257R和G259V氨基酸置换都只在头孢曲松低敏株中出现。21株淋球菌的1mtrR基因编码的MtrR中存在A39T或G45D或H105Y氨基酸置换,A39T氨基酸置换只在3株头孢曲松低敏株中出现,G45D或H105Y氨基酸置换在头孢曲松低敏株和头孢曲松敏感株中均出现。17株头孢曲松低敏株共有13种NG-MAST基因型别,其中3种为新注册的基因型别。PENa、porB、mtrR基因多态性可能在淋球菌对头孢曲松敏感性下降中起一定作用。
Neisseria gonorrhoeae (NG) is the causative pathogen of gonorrhea, which causes both symptomatic and asymptomatic infections. Increasing antimicrobial resistance in NG is a major challenge for prevention and control of gonorrhea. Azithromycin is usually used for the treatment of urethritis and cervicitis in syndromic management, so azithromycin-resistant NG strains should be monitored in China. Although the recommended first-line treatment for gonorrhea in China is ceftriaxone or spectinomycin, in recent years, the emergence and spread of NG strains with reduced susceptibility to ceftriaxone (Cef) has been reported in China. It's essential to monitor the susceptibility to ceftriaxone of NG strains and launch research on the resistance mechanism of NG strains resistant or non-susceptible to ceftriaxone. NG multiantigen sequence typing (NG-MAST) is a discriminatory genotyping method and easy for performing. In the current study, NG-MAST method was used to investigate the genotypes of azithromycin-resistant NG isolates and Cef isolates. The current study was divided into three parts as follow:
     Chapter1. Resistance to azithromycin of NG isolates from Nanjing and Chongqing
     We aimed to investigate azithromycin susceptibility in NG from Nanjing and Chongqing. NG isolates (n=318) were cultured from Nanjing and Chongqing between2008and2009. Minimum inhibitory concentration (MIC) of azithromycin, ceftriaxone, spectinomycin, tetracycline, and ciprofloxacin was determined using the agar dilution method. Azithromycin-resistant isolates were defined as having an MIC value equal to or greater than that of strain WHO P, which is internationally recognized as azithromycin-resistant (MIC=2mg/L). Seventeen (5.3%) isolates showed resistance to azithromycin. A relatively high prevalence of azithromycin-resistant NG strains implies that azithromycin should not be recommended for the treatment of gonococcal urethritis or cervicitis in Nanjing and Chongqing.
     Chapter2. Genotyping of azithromycin-resistant NG isolates by NG-MAST method
     Our objective was to investigate the genotypes of azithromycin-resistant NG isolates from Nanjing and Chongqing. Seventeen azithromycin-resistant NG isolates identified in Chapter1were genotyped by NG-MAST method and analyzed using Mega software to construct the phylogenetic tree. Among these isolates (n=17),11sequence types were identified by NG-MAST method, of which5were novel. The most common sequence type (ST) was ST3356, represented by6isolates. ST1866was represented by2isolates, which were isolated from patients with an unknown relationship, and both isolates were highly resistant to azithromycin, i.e., displayed an MIC of>64mg/L. In the phylogenetic analysis, the isolates of4novel STs and1known ST clustered closely to the ST3356isolates and, accordingly, these may all have a common ancestor.
     Chapter3. Genetic polymorphisms in penA, porB and mtrR genes of Cef1isolates
     Our aim was to investigate the correlation of different polymorphisms in the penA, porB, and mtrR genes of Cef isolates. Seventeen Cef isolates and4susceptible NG isolates were characterized by NG-MAST method and sequencing of penA, porB, and mtrR alleles. Among the21NG isolates,9mutation patterns were observed in penicillin-binding protein2(PBP2), encoded by penA gene, of which2were novel. The most common mutation pattern is XVIII, represented by8Cef isolates. And mutation pattern XIII was represented by4Cef isolates. None of the21NG isolates contained a mosaic PBP2(pattern X). Eighteen of the21NG isolates had a porBlb gene, encoding porin protein PorBlb. Substitutions of I218M/M257T/G259V were present in PorBlb of4Cef isolates, and another257substitution (M257R) were present in PorBlb of6Cef isolates. Substitution of A39T was observed in MtrR, encoded by mtrR gene, of3Cef isolates. Substitutions of G45D or H105Y were observed in MtrR, encoded by mtrR gene, of both Cef and susceptible isolates. All17Cef isolates were assigned13NG-MAST sequence types, of which3were novel. In conclusion, these mutations in penA, porB and mtrR genes may play a role for the reduced susceptibility to ceftriaxone in NG
引文
[1]贾文祥.奈瑟菌属[A].见:陆德源.医学微生物学[M].北京:人民卫生出版社,2001:111-113.
    [2]http://www.cdc.gov/std/stats09/gonorrhea.htm
    [3]中国CDC性病控制中心.2009年全国梅毒与淋病疫情分析报告[J].性病情况简报,2010,24(1):1-6.
    [4]中国CDC性病控制中心.2006年全国梅毒与淋病疫情分析报告[J].性病情况简报,2007,21(1):2-11.
    [5]中国CDC性病控制中心.2007年全国梅毒与淋病疫情分析报告[J].性病情况简报,2008,22(1):2-13.
    [6]中国CDC性病控制中心.2008年全国梅毒与淋病疫情分析报告[J].性病情况简报,2009,23(1):1-8.
    [7]Zhao G, Detels R, Gu F, et al., The distribution of people seeking STD services in the various types of health care facilities in Chaoyang district, Beijing, China [J]. Sex Transm Dis,2008,35(1):65-67.
    [8]施小明,马家奇,王丽萍等.2005年全国医疗机构法定传染病漏报情况调查分析[J].疾病监测,2006,21(9):493-496.
    [9]Rey A. Drug susceptibility pattern of Neisseria gonorrhoeae-A worldwide review [J]. Asian J Infect Dis,1977,1:1.
    [10]Cohen MS, Cooney MH, Blackman E, et al. In vitro antimicrobial susceptibility of penicillinase-producing and intrinsically resistant Neisseria gonorrhoeae strains [J]. Antimicrob Agents Chemother,1983,24(4):597-599.
    [11]Workowski KA, Berman S, Centers for Disease control and Prevention. Sexually transmitted diseases treatment guidelines,2010 [J]. MMWR Recomm Rep,2010, 59(RR-12):1-110.
    [12]杨阳,高志琴,顾伟鸣.上海地区发现1株耐大观霉素淋球菌[J].临床皮肤科杂志,2004,33(4):218.
    [13]Su XH, Zhang CF, Zhang JP. Etiological analysis of 3 cases of gonorrhea with spectinomycin treatment failure[J]. Chin J Sex Transm Infect,2004,4(1):58-61.
    [14]Su X, Jiang F, Qimuge, et al. Surveillance of antimicrobial susceptibilities in Neisseria gonorrhoeae in Nanjing, China,1999-2006 [J]. Sex Transm Dis,2007, 34(12):995-999.
    [15]Tapsall J, Read P, Carmody C, et al. Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods [J]. J Med Microbiol,2009,58(Pt 5):683-687.
    [16]Ohnishi M, Saika T, Hoshina S, et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan [J]. Emerg Infect Dis,2011,17(1):148-149.
    [17]Unemo M, Golparian D, Hestner A. Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010 [J]. Euro Surveill,2011,16(6):pii:19792.
    [18]Martin IM, Ison CA, Aanensen DM, et al. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area [J]. J Infect Dis, 2004,189(8):1497-1505.
    [19]Bilek N, Martin IM, Bell G, et al. Concordance between Neisseria gonorrhoeae genotypes recovered from known sexual contacts [J]. J Clin Microbiol,2007, 45(11):3564-3567.
    [20]Whiley DM, Goire N, Ray ES, et al. Neisseria gonorrhoeae multi-antigen sequence typing using non-cultured clinical specimens [J]. Sex Transm Infect, 2010,86(1):51-55.
    [21]Unemo M, Palmer HM, Blackmore T, et al. Global transmission of prolyliminopeptidase-negative Neisseria gonorrhoeae strains:implications for changes in diagnostic strategies [J]. Sex Transm Infect,2007,83(1):47-51.
    [22]Choudhury B, Risley CL, Ghani AC, et al. Identification of individuals with gonorrhoea within sexual networks:a population-based study [J]. Lancet,2006, 368 (9530):139-146.
    [23]Tapsall JW, Ray S, Limnios A. Characteristics and population dynamics of mosaic penA allele-containing Neisseria gonorrhoeae isolates collected in Sydney, Australia, in 2007-2008 [J]. Antimicrob Agents Chemother,2010,54 (1):554-556.
    [24]李光辉,徐向阳,钱松溪等.阿奇霉素对淋菌性尿道炎的治疗效果(附163例报告)[J].临床泌尿外科杂志,1998,13(9):396-398.
    [25]Zarantonelli L, Borthagaray G, Lee EH, Shafer WM. Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations [J]. Antimicrob Agents Chemother,1999,43(10):2468-2472.
    [26]Zhao S, Duncan M, Tomberg J, et al. Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother,2009,53(9):3744-3751.
    [27]Lee SG, Lee H, Jeong SH, et al. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone [J]. J Antimicrob Chemother,2010, 65(4):669-675.
    [28]Lindberg R, Fredlund H, Nicholas R, et al. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone:association with genetic polymorphisms in penA, mtrR, porBlb, and ponA [J]. Antimicrob Agents Chemother,2007,51(6):2117-2122.
    [1]Dan M, Poch F, Amitai Z, et al. Pharyngeal gonorrhea in female sex workers: response to a single 2-g dose of azithromycin [J]. Sex Transm Dis,2006,33(8): 512-515.
    [2]宫鹏,陈俊龙,郭秀颖等.口服维宏(阿奇霉素)治疗淋菌性咽炎及合并泌尿生殖系淋病的临床观察[J].吉林医学,2006,27(7):836.
    [3]Habib AR, Fernando R. Efficacy of azithromycin 1g single dose in the management of uncomplicated gonorrhoea [J]. Int J STD AIDS,2004,15(4):240-242.
    [4]Swanston WH, Prabhakar P, Barrow L, et al. Single dose (direct observed) azithromycin therapy for Neisseria gonorrhoeae and Chlamydia trachomatis in STD clinic attenders with genital discharge in Trinidad and Tobago [J]. West Indian Med J,2001,50(3):198-202.
    [5]Tapsall JW, Shultz TR, Limnios EA, et al. Failure of azithromycin therapy in gonorrhea and discorrelation with laboratory test parameters [J]. Sex Transm Dis, 1998,25 (10):505-508.
    [6]Handsfield HH, Dalu ZA, Martin DH, et al. Multicenter trial of single-dose azithromycin vs. ceftriaxone in the treatment of uncomplicated gonorrhea [J]. Sex Transm Dis,1994,21(2):107-111.
    [7]Khaki P, Bhalla P, Sharma A, et al. Correlation between in vitro susceptibility and treatment outcome with azithromycin in gonorrhoea:a prospective study [J]. Indian J Med Microbiol,2007,25(4):354-357.
    [8]Mann J, Kropp R, Wonq T, et al. Gonorrhea treatment guidelines in Canada:2004 update [J]. CMAJ,2004,171(11):1345-1346.
    [9]Dillon JA, Rubabaza JP, Benzaken AS, et al. Reduced susceptibility to azithromycin and high percentages of penicillin and tetracycline resistance in Neisseria gonorrhoeae isolates from Manaus, Brazil,1998 [J]. Sex Transm Dis, 2001,28(9):521-526.
    [10]Arreaza L, Vazquez F, Alcala B, et al. Emergence of gonococcal strains with resistance to azithromycin in Spain [J]. J Antimicrob Chemother,2003,51(1): 190-191.
    [11]Mclean CA, Wang SA, Hoff GL, et al. The emergence of Neisseria gonorrhoeae with decreased susceptibility to azithromycin in Kansas City, Missouri,1999 to 2000 [J]. Sex Transm Dis,2004,31(2):73-78.
    [12]Palmer HM, Young H, Winter A, et al. Emergence and spread of azithromycin-resistant Neisseria gonorrhoeae in Scotland [J]. J Antimicrob Chemother,2008,62(3):490-494.
    [13]Starnino S, Stefanelli P, Neisseria gonorrhoeae Italian Study Group. Azithromycin-resistant Neisseria gonorrhoeae strains recently isolated in Italy [J]. J Antimicrob Chemother,2009,63(6):1200-1204.
    [14]Galarza PG, Alcala B, Salcedo C, et al. Emergence of high level azithromycin-resistant Neisseria gonorrhoeae strain isolated in Argentina [J]. Sex Transm Dis,2009,36(12):787-788.
    [15]Chisholm SA, Neal TJ, Alawattegama AB, et al. Emergence of high-level azithromycin resistance in Neisseria gonorrhoeae in England and Wales [J]. J Antimicrob Chemother,2009,64(2):353-358.
    [16]Dillon JA, Ruben M, Li H, et al. Challenges in the control of gonorrhea in South America and the Caribbean:monitoring the development of resistance to antibiotics [J]. Sex Transm Dis,2006,33(2):87-95.
    [17]袁柳凤,尹跃平,戴秀芹等.南京地区淋球菌分离株对阿奇霉素的敏感性研究[J].中国麻风皮肤病杂志,2010,26(2):110-111.
    [18]Martin IMC, Hoffmann S, Ison CA, et al. European surveillance of sexually transmitted infections (ESSTI):the first combined antimicrobial susceptibility data for Neisseria gonorrhoeae in Western Europe [J]. J Antimicrob Chemother, 2006,58(3):587-593.
    [19]涂亚庭,张丽霞,林能兴等.武汉地区淋球菌对6种抗菌药物敏感性的监测[J].中国麻风皮肤病杂志,2006,22(6):451-452.
    [20]Barry AL, Jones RN. Interpretative criteria for the agar diffusion susceptibility test with azithromycin [J]. J Antimicrob Chemother,1988,22(5):637-641.
    [21]俞莲花,曲颖.201株淋病奈瑟菌的耐药性分析[J].浙江实用医学,2004,9(1):60-61.
    [22]Johnson SR, Sandul AL, Parekh M, et al. Mutations causing in vitro resistance to azithromycin in Neisseria gonorrhoeae [J]. Int J Antimicrob Agents,2003,21 (5): 414-419.
    [1]中国CDC性病控制中心.2008年全国性病监测点性病疫情分析报告[J].性病情况简报,2009,23(1):8-18.
    [2]Martin IM, Ison CA, Aanensen DM, et al. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area [J]. J Infect Dis, 2004,189(8):1497-1505.
    [3]Palmer HM, Young H, Winter A, Dave J. Emergence and spread of azithromycin-resistant Neisseria gonorrhoeae in Scotland [J]. J Antimicrob Chemother,2008,62(3):490-494.
    [4]Chisholm SA, Neal TJ, Alawattegama AB, et al. Emergence of high-level azithromycin resistance in Neisseria gonorrhoeae in England and Wales [J]. J Antimicrob Chemother,2009,64(2):353-358.
    [5]Tapsall J, Read P, Carmody C, et al. Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods [J]. J Med Microbiol,2009,58(Pt 5):683-687.
    [6]Unemo M, Palmer HM, Blackmore T, et al. Global transmission of prolyliminopeptidase-negative Neisseria gonorrhoeae strains:implications for changes in diagnostic strategies [J]. Sex Transm Infect,2007,83(1):47-51.
    [7]Choudhury B, Risley CL, Ghani AC, et al. Identification of individuals with gonorrhoea within sexual networks:a population-based study [J]. Lancet,2006, 368(9530):139-146.
    [8]Wong WW, Huang CT, Li LH, et al. Molecular epidemiological identification of Neisseria gonorrhoeae clonal clusters with distinct susceptibility profiles associated with specific groups at high risk of contracting human immunodeficiency virus and syphilis [J]. J Clin Microbiol,2008,46(12): 3931-3934.
    [9]Tapsall JW, Ray S, Limnios A. Characteristics and population dynamics of mosaic penA allele-containing Neisseria gonorrhoeae isolates collected in Sydney, Australia, in 2007-2008 [J]. Antimicrob Agents Chemother,2010,54(1):554-556.
    [10]Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms [J]. Proc Natl Acad Sci USA,1998,95(6):3140-3145.
    [11]Whiley DM, Goire N, Ray ES, et al. Neisseria gonorrhoeae multi-antigen sequence typing using non-cultured clinical specimens [J]. Sex Transm Infect, 2010,86(1):51-55.
    [12]Martin IM, Foreman E, Hall V, et al. Non-cultural detection and molecular genotyping of Neisseria gonorrhoeae from a piece of clothing [J]. J Med Microbiol,2007,56(Pt 4):487-490.
    [13]Starnino S, Stefanelli P, Neisseria gonorrhoeae Italian Study Group. Azithromycin-resistant Neisseria gonorrhoeae strains recently isolated in Italy [J]. J Antimicrob Chemother,2009,63(6):1200-1204.
    [14]Galarza PG, Alcala B, Salcedo C, et al. Emergence of high level azithromycin-resistant Neisseria gonorrhoeae strain isolated in Argentina [J]. Sex Transm Dis,2009,36(12):787-788.
    [1]Yoshikawa TT, Shibata SA, Herbert P, et al. In vitro activity of Ro 13-9904, cefuroxime, cefoxitin, and ampicillin against Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother,1980,18(2):355-356.
    [2]Tapsall J, Read P, Carmody C, et al. Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods [J]. J Med Microbiol,2009,58(Pt 5):683-687.
    [3]Unemo M, Golparian D, Hestner A. Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010 [J]. Euro Surveill,2011,16(6):pii:19792.
    [4]Tapsall JW. Implications of current recommendations for third-generation cephalosporins use in the WHO Western Pacific region following the emergence of multi-resistant gonococci [J]. Sex Transm Infect,2009,85(4):256-258.
    [5]Zhao S, Duncan M, Tomberg J, et al. Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother,2009,53(9):3744-3751.
    [6]Lee SG, Lee H, Jeong SH, et al. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone [J]. J Antimicrob Chemother,2010,65(4):669-675.
    [7]Lindberg R, Fredlund H, Nicholas R, et al. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone:association with genetic polymorphisms in penA, mtrR, porBlb, and ponA [J]. Antimicrob Agents Chemother,2007,51(6):2117-2122.
    [8]Liao MM, Gu WM, Yang Y, et al. Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone [J]. J Antimicrob Chemother,2011,66(5):1016-1023.
    [9]Osaka K, Takakura T, Narukawa K, et al. Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone [J]. J Infect Chemother,2008, 14(3):195-203.
    [10]Unemo M, Olce'n P, Berglund T, et al. Molecular epidemiology of Neisseria gonorrhoeae:sequence analysis of the porB gene confirms presence of two circulating strains [J]. J Clin Microbiol,2002,40(10):3741-3749.
    [11]Mavroidi A, Tzouvelekis LS, Kyriakis KP, et al. Multidrug-resistant strains of Neisseria gonorrhoeae in Greece [J]. Antimicrob Agents Chemother,2001,45(9): 2651-2654.
    [12]Ito M, Deguchi T, Mizutani KS, et al. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in central Japan [J]. Antimicrob Agents Chemother,2005, 49(1):137-143.
    [13]Whiley DM, Limnios EA, Ray S, et al. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone [J]. Antimicrob Agents Chemother,2007,51(9):3111-3116.
    [14]Whiley DM, Goire N, Lambert SB, et al. Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is associated with mutations G542S, P551S and P551L in the gonococcal penicillin-binding protein 2 [J]. J Antimicrob Chemother,2010, 65(8):1615-1618.
    [15]蒋法兴,其木格,钱革等.头孢曲松低敏的淋球菌中青霉素结合蛋白2氨基酸替代或插入模式研究[J].中华皮肤科杂志,2008,41(7):451-454.
    [16]Olesky M, Hobbs M, Nicholas RA. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother,2002, 46(9):2811-2820.
    [1]Martin IM, Ison CA, Aanensen DM,et al. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area [J]. J Infect Dis, 2004,189(8):1497-1505.
    [2]Whiley DM, Goire N, Ray ES, et al. Neisseria gonorrhoeae multi-antigen sequence typing using non-cultured clinical specimens [J]. Sex Transm Infect, 2010,86(1):51-55.
    [3]Bilek N, Martin IM, Bell G, et al. Concordance between Neisseria gonorrhoeae genotypes recovered from known sexual contacts [J]. J Clin Microbiol,2007, 45(11):3564-3567.
    [4]Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms [J]. Proc Natl Acad Sci U S A,1998,95(6):3140-3145.
    [5]Tapsall J, Read P, Carmody C, et al. Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods [J]. J Med Microbiol,2009,58(Pt 5):683-687.
    [6]Unemo M, Palmer HM, Blackmore T, et al. Global transmission of prolyliminopeptidase-negative Neisseria gonorrhoeae strains:implications for changes in diagnostic strategies [J]. Sex Transm Infect,2007,83(1):47-51.
    [7]Tapsall JW, Ray S, Limnios A. Characteristics and population dynamics of mosaic penA allele-containing Neisseria gonorrhoeae isolates collected in Sydney, Australia, in 2007-2008 [J]. Antimicrob Agents Chemother,2010,54(1):554-556.
    [8]Choudhury B, Risley CL, Ghani AC, et al. Identification of individuals with gonorrhoea within sexual networks:a population-based study [J]. Lancet,2006, 368(9530):139-146.
    [9]Wong WW, Huang CT, Li LH, et al. Molecular epidemiological identification of Neisseria gonorrhoeae clonal clusters with distinct susceptibility profiles associated with specific groups at high risk of contracting human immunodeficiency virus and syphilis [J]. J Clin Microbiol,2008,46(12): 3931-3934.
    [10]Palmer HM, Young H, Graham C, et al. Prediction of antibiotic resistance using Neisseria gonorrhoeae multi-antigen sequence typing [J]. Sex Transm Infect, 2008,84(4):280-284.
    [11]Lindberg R, Fredlund H, Nicholas R, et al. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone:association with genetic polymorphisms in penA, mtrR, porBlb, and ponA [J]. Antimicrob Agents Chemother,2007,51(6):2117-2122.
    [12]Unemo M, Sjostrand A, Akhras M, et al. Molecular characterization of Neisseria gonorrhoeae identifies transmission and resistance of one ciprofloxacin-resistant strain [J]. APMIS,2007,115(3):231-241.
    [13]Palmer HM, Young H. Dramatic increase in a single genotype of TRNG ciprofloxacin-resistant Neisseria gonorrhoeae isolates in men who have sex with men [J]. Int J STD AIDS,2006,17(4):254-256.
    [14]Moodley P, Martin IM, Pillay K, et al. Molecular epidemiology of recently emergent ciprofloxacin-resistant Neisseria gonorrhoeae in South Africa [J]. Sex Transm Dis,2006,33(6):357-360.
    [15]De Jongh M, Dangor Y, Ison CA, Hoosen AA. Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST) of ciprofloxacin resistant isolates of Pretoria, South Africa [J]. J Clin Pathol,2008,61(5):686-687.
    [16]Palmer HM, Young H, Winter A, Dave J. Emergence and spread of azithromycin-resistant Neisseria gonorrhoeae in Scotland [J]. J Antimicrob Chemother,2008,62(3):490-494.
    [17]Chisholm SA, Neal TJ, Alawattegama AB, et al. Emergence of high-level azithromycin resistance in Neisseria gonorrhoeae in England and Wales [J]. J Antimicrob Chemother,2009,64(2):353-358.
    [18]Martin IM, Foreman E, Hall V, et al. Non-cultural detection and molecular genotyping of Neisseria gonorrhoeae from a piece of clothing [J]. J Med Microbiol,2007,56(Pt 4):487-490.
    [1]Klotman ME, Rapista A, Teleshova N, et al. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity:role in enhanced transmission [J]. J Immunol,2008,180(9):6176-6185.
    [2]Zhao G, Detels R, Gu F, et al. The distribution of people seeking STD services in the various types of health care facilities in Chao Yang District, Beijing, China [J]. Sex Transm Dis,2008,35(1):65-67.
    [3]施小明,马家奇,王丽萍等.2005年全国医疗机构法定传染病漏报情况调查分析[J].疾病监测,2006,21(9):493-496.
    [4]Berglund T, Asikainen T, Grutzmeier S, et al. The epidemiology of gonorrhea among men who have sex with men in Stockholm, Sweden,1990-2004 [J]. Sex Transm Dis,2007,34(3):174-179.
    [5]Wang SA, Harvey AB, Conner SM, et al. Antimicrobial resistance for Neisseria gonorrhoeae in the United States,1988 to 2003:the spread of fluoroquinolone resistance [J]. Ann Intern Med,2007,147(2):81-88.
    [6]Tapsall JW, Limnios EA, Murphy D, et al. Analysis of trends in antimicrobial resistance in Neisseria gonorrhoeae isolated in Australia,1997-2006 [J]. J Antimicrob Chemother,2008,61(1):150-155.
    [7]Australian gonococcal surveillance programme. Annual report of the Australian gonococcal surveillance programme,2007 [J]. Commun Dis Intell,2008,32(2): 227-231.
    [8]Cao V, Ratsima E, Van Tri D, et al. Antimicrobial susceptibility of Neisseria gonorrhoeae strains isolated in 2004-2006 in Bangui, Central African Republic;Yaounde', Cameroon; Antananarivo, Madagascar; and Ho Chi Minh Ville and Nha Trang, Vietnam [J]. Sex Transm Dis,2008,35(11):941-945.
    [9]Bala M, Ray K, Gupta SM, et al. Changing trends of antimicrobial susceptibility patterns of Neisseria gonorrhoeae in India and the emergence of ceftriaxone less susceptible N. gonorrhoeae strains [J]. J Antimicrob Chemother,2007,60(3): 582-586.
    [10]Su X, Jiang F, Qimuge, et al. Surveillance of antimicrobial susceptibilities in Neisseria gonorrhoeae in Nanjing, China,1999-2006 [J]. Sex Transm Dis,2007, 34(12):995-999.
    [11]唐桂林,覃善列,李伟等.694株淋病奈瑟菌对环丙沙星、头孢曲松耐药性测定[J].广西医学,2008,30(11):1742-1743.
    [12]方谷芬,刘湘林,袁正泉.岳阳地区266株淋球菌药敏结果分析[J].医学临床研究,2007,24(4):617-619.
    [13]Yang Y, Liao M, Gu WM, et al. Antimicrobial susceptibility and molecular determinants of quinolone resistance in Neisseria gonorrhoeae isolates from Shanghai [J]. J Antimicrob Chemother,2006,58(4):868-872.
    [14]柯丹,刁庆春,代详安等.淋球菌对5种抗菌药物敏感性的监测分析[J].中国皮肤性病学杂志,2008,22(9):549-550.
    [15]潘坤,魏磊,胡素娟.济宁地区淋球菌临床分离株对抗生素的耐药性检测[J].中国病原生物学杂志,2008,3(11):附页3,804.
    [16]Ropp PA, Hu M, Olesky M, Nicholas RA. Mutations in ponA,the gene encoding penicillin-binding protein 1, and a novel locus, penC, arerequired for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother,2002,46(3):769-777.
    [17]Brannigan JA, Tirodimos IA, Zhang QY, Dowson CG, and Spratt BG. Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae [J]. Mol Microbiol,1990,4(6):913-919.
    [18]Olesky M, Hobbs M, Nicholas RA. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae [J]. J Antimicrob Chemother,2002,46(9): 2811-2820.
    [19]Veal WL, Nicholas RA, and Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae [J]. J Bacteriol,2002, 184(20):5619-5624.
    [20]Deguchi T, Yasuda M, Asano M, et al. DNA gyrase mutations in quinolone-resistant clinical isolates of Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother,1995,39(2):561-563.
    [21]Trees DL, Sandul AL, Whittington WL, Knapp JS. Identification of novel mutation patterns in the parC gene of ciprofloxacin-resistant isolates of Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother,1998,42(8): 2103-2105.
    [22]Deguchi T, Yasuda M, Nakano M, et al. Quinolone-resistant Neisseria gonorrhoeae:correlation of alterations in the GyrA subunit of DNA Gyrase and the ParC subunit of topoisomerase IV with antimicrobial susceptibility profiles [J]. Antimicrob Agents Chemother,1996,40(4):1020-1023.
    [23]Ito M, Deguchi T, Mizutani KS, et al. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in central Japan [J]. Antimicrob Agents Chemother,2005, 49(1):137-143.
    [24]Tanaka M, Nakayama H, Huruya K, et al. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype [J]. Int J Antimicrob Agents,2006,27(1):20-26.
    [25]Lindberg R, Fredlund H, Nicholas R, et al. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone:association with genetic polymorphisms in penA, mtrR, porBlb, and ponA [J]. Antimicrob Agents Chemother,2007,51(6):2117-2122.
    [26]Osaka K, Takakura T, Narukawa K, et al. Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone [J]. J Infect Chemother,2008, 14(3):195-203.
    [27]Whiley DM, Limnios EA, Ray S, et al. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone [J]. Antimicrob Agents Chemother,2007,51(9): 3111-3116.
    [28]Takahata S, Senju N, Osaki Y, et al. Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother, 2006,50(11):3638-3645.
    [29]蒋法兴,其木格,钱革等.头孢曲松低敏的淋球菌中青霉素结合蛋白2氨基酸替代或插入模式研究[J].中华皮肤科杂志,2008,41(7):451-454.
    [30]赖维,龚子鉴,黄朝伟等.抑制性消减杂交结合基因芯片研究淋球菌耐头孢 曲松的分子机制[J].中华皮肤科杂志,2008,41(5):288-291.
    [31]Yoshikawa TT, Shibata SA, Herbert P, et al. In vitro activity of Ro 13-9904, cefuroxime, cefoxitin, and ampicillin against Neisseria gonorrhoeae [J]. Antimicrob Agents Chemother,1980,18(2):355-356.
    [32]Tapsall JW. Implications of current recommendations for third-generation cephalosporins use in the WHO Western Pacific region following the emergence of multi-resistant gonococci [J]. Sex Transm Infect,2009,85(4):256-258.
    [33]Muratani T, Inatomi H, Ando Y, et al. Single dose 1 g ceftriaxone for urogenital and pharyngeal infection caused by Neisseria gonorrhoeae [J]. Int J Urol,2008, 15(9):837-842.
    [1]Pepin J, Labbe AC, Khonde N, et al. Mycoplasma genitalium:an organism commonly associated with cervicitis among west African sex workers [J]. Sex Transm Infect,2005,81(1):67-72.
    [2]Cohen CR, Nosek M, Meier A, et al. Mycoplasma genitalium infection and persistence in a cohort of female sex workers in Nairobi, Kenya [J]. Sex Transm Dis,2007,34(5):274-279.
    [3]Pingmin W, Yuepu P, Jiwen Z. Prevalence survey on condom use and infection of urogenital mycoplasmas in female sex workers in China [J]. Contraception,2005, 72(3):217-220.
    [4]Zdrodowska-Stefanow B, Klosowska WM, Ostaszewska-Puchalska I, et al. Ureaplasma urealyticum and Mycoplasma hominis infection in women with urogenital diseases [J]. Adv Med Sci,2006,51:250-253.
    [5]Falk L, Fredlund H, Jensen JS. Symptomatic urethritis is more prevalent in men infected with Mycoplasma genitalium than with Chlamydia trachomatis [J]. Sex Transm Infect,2004,80(4):289-293.
    [6]Anagrius C, Lore B, Jensen JS. Mycoplasma genitalium:prevalence, clinical significance, and transmission [J]. Sex Transm Infect,2005,81(6):458-462.
    [7]Christopoulos P, Deligeorogloua E, Papadias K. Genital mycoplasmas in non-sexually active young females with vaginal discharge [J]. Int J Gynaecol Obstet,2007,97(1):49-50.
    [8]Massari V, Dorleans Y, Flahault A. Persistent increase in the incidence of acute male urethritis diagnosed in general practices in France [J]. Br J Gen Pract,2006, 56(523):110-114.
    [9]Takahashi S, Takeyama K, Miyamoto S, et al. Detection of Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma urealyticum, and Ureaplasma parvum DNAs in urine from asymptomatic healthy young Japanese men [J]. J Infect Chemother,2006,12(5):269-271.
    [10]Andersen B, Sokolowski I, Olesen F, et al. Mycoplasma genitalium prevalence and behavioural risk factors in the general population [J]. Sex Transm Infect, 2007,83(3):237-241.
    [11]Manhart LE, Holmes KK, Hughes JP, et al. Mycoplasma genitalium among young adults in the United States:an emerging sexually transmitted infection [J]. Am J Public Health,2007,97(6):1118-1125.
    [12]Cordova CM, Cunha RA. Relevant prevalence of Mycoplasma hominis and Ureaplasma urealyticum serogroups in HIV-1 infected men without urethritis symptoms [J]. Rev Inst Med trop Sao Paulo,2000,42(4):185-188.
    [13]Machado AA, Zorzi AR, Gleria AE, et al. Frequency of Mycoplasma hominis and Ureaplasma urealyticum infections in women with systemic lupus erythematosus [J]. Rev Soc Bras Med Trop,2001,34(3):243-247.
    [14]Yoshida T, Dequchi T, Meda S, et al. Quantitative detection of Ureaplasma parvum (biovar 1) and Ureaplasma urealyticum (biovar 2) in urine specimens from men with and without urethritis by real-time polymerase chain reaction [J]. Sex Trans Dis,2007,34(6):416-419.
    [15]Jensen JS, Bjo'rnelius E, Dohn B, et al. Use of TaqMan 5'nuclease real-time PCR for quantitative detection of Mycoplasma genitalium DNA in males with and without urethritis who were attendees at a sexually transmitted disease clinic [J]. J Clin Microbiol,2004,42(2):683-692.
    [16]Tosh AK, Van Der Pol B, Fortenberry JD, et al. Mycoplasma genitalium among adolescent women and their partners [J]. J Adolesc Health,2007,40(5):412-417.
    [17]Schlicht MJ, Lovrich SD, Sartin JS, et al. High prevalence of genital mycoplasmas among sexually active young adults with urethritis or cervicitis symptoms in La Crosse, Wisconsin [J]. J Clin Microbiol,2004,42(10):4636-4640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700